

 [image: pyHanko]
 [https://github.com/MatthiasValvekens/pyHanko]
pyHanko

PyHanko is a tool for signing and stamping PDF files.

[image: status]
 [https://github.com/MatthiasValvekens/pyHanko][image: Codecov]
 [https://img.shields.io/codecov/c/github/MatthiasValvekens/pyHanko][image: Language grade: Python]
 [https://lgtm.com/projects/g/MatthiasValvekens/pyHanko/context:python][image: PyPI]
 [https://pypi.org/project/pyHanko/]
Contents:

	CLI user’s guide
	Signing PDF files
	Some background on PDF signatures

	Creating signature fields

	Creating simple signatures

	Creating signatures with long lifetimes

	Customising signature appearances

	Validating PDF signatures
	Basic use

	Factors in play when validating a signature

	Stamping PDF files

	Configuration options
	Config file location

	Configuration options

	Library (SDK) user’s guide
	Reading and writing PDF files
	Reading files

	Modifying files

	Signature fields
	General API design

	Positioning

	Seed value settings

	Document modification policy settings

	Signing functionality
	General API design

	A simple example

	Signature appearance generation

	Timestamp handling

	Creating PAdES signatures

	Using aiohttp for network I/O

	Extending Signer

	The low-level PdfCMSEmbedder API

	Interrupted signing

	Generic data signing

	Validation functionality
	General API design

	Accessing signatures in a document

	Validating a PDF signature

	Long-term verifiability checking

	Incremental update analysis

	Probing different aspects of the validity of a signature

	The pdf-utils package
	Background and future perspectives

	PDF object model

	PDF content abstractions

	Advanced examples
	A custom Signer to use AWS KMS asynchronously

	API reference
	pyhanko package
	Subpackages

	Submodules

	Release history
	0.10.0
	Dependency changes

	New features and enhancements

	Bugs fixed

	0.9.0
	Dependency changes

	API-breaking changes

	New features and enhancements

	Bugs fixed

	0.8.0
	Dependency changes

	API-breaking changes

	New features and enhancements

	Bugs fixed

	0.7.0
	Dependency changes

	API-breaking changes

	New features and enhancements

	Bugs fixed

	0.6.1
	Dependency changes

	Bugs fixed

	0.6.0
	Dependency changes

	New features and enhancements

	Bugs fixed

	0.5.1
	Bugs fixed

	0.5.0
	Dependency changes

	New features and enhancements

	Bugs fixed

	0.4.0
	New features and enhancements

	Bugs fixed

	0.3.0
	New features and enhancements

	Bugs fixed

	0.2.0
	New features and enhancements

	Bugs fixed

	0.1.0

	Known issues

	Licenses
	pyHanko License

	Original PyPDF2 license

Indices and tables

	Index

	Module Index

	Search Page

CLI user’s guide

This guide offers a high-level overview of pyHanko as a command-line tool.

(Under construction)

If you installed pyHanko using pip, you should be able to invoke pyHanko
using the pyhanko command, like so:

pyhanko --help

If the pyhanko package is on your PYTHONPATH buth the pyhanko
executable isn’t on your PATH for whatever reason, you can also invoke the
CLI through

python -m pyhanko --help

This guide will adopt the former calling convention.

You can run pyhanko in verbose mode by passing the --verbose flag
before specifying the subcommand to invoke.

pyhanko --verbose <subcommand>

Note

The CLI portion of pyHanko was implemented using
Click [https://click.palletsprojects.com]. In particular, this means that
it comes with a built-in help function, which can be accessed through
pyhanko --help.

Caution

The pyHanko CLI makes heavy use of Click’s subcommand functionality.
Due to the way this works, the precise position of a command-line parameter
sometimes matters. In general, double-dash options (e.g. --option)
should appear after the subcommand to which they apply, but before the next
one.

Right now, the pyHanko CLI offers two subcommand groups, for
sign and stamp, respectively.
Additional configuration options are available in an optional YAML
config file.

CLI topics

	Signing PDF files
	Some background on PDF signatures

	Creating signature fields

	Creating simple signatures
	Signing a PDF file using key material on disk

	Signing a PDF file using a PKCS#11 token

	Signing a PDF file using a Belgian eID card

	Creating signatures with long lifetimes
	Background

	Timestamps in pyHanko

	Embedding revocation info with pyHanko

	Long-term archival (LTA) needs

	Customising signature appearances

	Validating PDF signatures
	Basic use

	Factors in play when validating a signature
	Cryptographic integrity

	Authenticity: trust settings

	Incremental updates: difference analysis

	Establishing the time of signing

	Evaluating seed value constraints

	Adding validation data to an existing signature

	Stamping PDF files

	Configuration options
	Config file location

	Configuration options
	Logging options

	Named validation contexts

	Time drift tolerance

	Allow revocation information to apply retroactively

	Named PKCS#11 setups

	Named setups for on-disk key material

	Key usage settings

	Styles for stamping and signature appearances

Warning

This guide assumes that pyHanko is installed with all optional dependencies, including
those required for PKCS#11 support and image support.

Signing PDF files

Signing PDF files using pyHanko can be very simple or somewhat complicated,
depending on the specific requirements of your use case.
PyHanko offers support for both visible and invisible signatures, several
baseline PAdES profiles, seed values, and creating signatures using PKCS#11
devices.

Some background on PDF signatures

In order to properly understand the way pyHanko operates, having some background
on the way PDF signatures work is useful.
The goal of this subsection is to provide a bird’s eye view, and covers only
the bare minimum. For further details, please refer to the relevant sections
of the ISO 32000 standard(s).

A PDF signature is always contained in a signature field in the PDF’s
form structure.
Freeware PDF readers that do not have form editing functionality will typically
not allow you to manipulate signature fields directly, but might allow you to
fill existing form fields with a signature, or create a signature together with
its corresponding form field.
Using pyHanko, you can both insert new (empty) signature fields, and fill in
existing ones.

Separate from the signature field containing it, a signature may or may not have
an appearance associated with it. Signatures without such an appearance are
referred to as invisible signatures.
Invisible signatures have the advantage of being comparatively simpler to
implement and configure, but when a PDF containing an invisible signature
is opened in a reader application without signature support, it may not
be visually obvious that the PDF file even contains a signature at all.

The signature object itself contains some PDF-specific metadata, such as

	the byte range of the file that it covers;

	the hash function used to compute the document hash to be signed;

	a modification policy that indicates the ways in which the file can still
be modified.

The actual cryptographic signature is embedded as a CMS object.
General CMS objects are defined in RFC 5652 [https://tools.ietf.org/html/rfc5652.html], but only a limited subset
is meaningful in PDF.
When creating a signature, the signer is authenticated using the private key
associated with an X.509 certificate, as issued by most common PKI authorities
nowadays.
The precise way this private key is provisioned is immaterial: it can be read
from a file on disk, or the signature can be generated by a hardware token;
this has no impact on the structure of the signature object in the file.

In a typical signed PDF file with only one signature, the signed byte range
covers the entire document, except for the area containing the actual
CMS data of the signature. However, there are a number of legitimate reasons
why this may not be the case:

	documents containing multiple signatures and/or timestamps;

	signatures that allow further modification, such as form filling
or annotation.

Generally speaking, the signer decides what modifications are still
permitted after a signature is made1.

The cryptographically informed reader might ask how it is at all possible to
modify a file without invalidating the signature.
After all, hash functions are supposed to prevent exactly this kind of thing.
The answer here lies in the incremental update feature of the PDF standard.
The specification allows for updating files by appending data to the end of the
file, keeping the original bytes in place.
These incremental update sections can create and modify existing objects in the
file, while still preserving the original version in some form.
Such changes are typically opaque to the user that views the file.
The byte range attached to the signature ensures that the document hash can
still be computed over the original data, and thus the integrity of the
signature can still be validated.

However, since incremental updates allow the final rendered document to be
modified in essentially arbitrary ways, the onus is on the validator to ensure
that all such incremental updates made after a signature was created actually
are “legitimate” changes. What precisely constitutes a “legitimate” change
depends on the signature’s modification policy, but is not rigorously defined
in the standard2.
It goes without saying that this has led to various
exploits [https://pdf-insecurity.org/] where PDF readers could be duped into
allowing illicit modifications to signed PDF files without raising suspicion.
As a consequence of this, some signature validation tools do not even bother
to do any such validation, and simply reject all signatures in documents that
have been modified through incremental updates.

See Validating PDF signatures for an overview of pyHanko’s signature validation
features.

Note

By default, pyHanko uses incremental updates for all operations,
regardless of the presence of earlier signatures in the file.

Creating signature fields

Adding new (empty) signature fields is done through the addfields subcommand
of pyhanko sign.
The CLI only allows you to specify the page and coordinates of the field, but
more advanced properties and metadata can be manipulated through the API.

The syntax of the addfields subcommand is as follows:

pyhanko sign addfields --field PAGE/X1,Y1,X2,Y2/NAME input.pdf output.pdf

The page numbering starts at 1, and the numbers specify the coordinates of two
opposing corners of the bounding box of the signature field.
The coordinates are Cartesian, i.e. the y-coordinate increases from bottom to
top.
Multiple signature fields may be created in one command, by passing the last
argument multiple times.

Note

You can specify page numbers “in reverse” by providing a negative number
for the PAGE entry. With this convention, page -1 refers to the last
page of the document, page -2 the second-to-last, etc.

Note

Creating empty signature fields ahead of time isn’t always necessary.
PyHanko’s signing functionality can also create them together with a
signature, and Adobe Reader offers similar conveniences.
As such, this feature is mainly useful to create fields for other
people to sign.

Creating simple signatures

All operations relating to digital signatures are performed using the
pyhanko sign subcommand.
The relevant command group for adding signatures is pyhanko sign addsig.

Warning

The commands explained in this subsection do not attempt to validate
the signer’s certificate by default.
You’ll have to take care of that yourself, either through your PDF reader
of choice, or the validation functionality in pyHanko.

Signing a PDF file using key material on disk

There are two ways to sign a PDF file using a key and a certificate stored
on disk. The signing is performed in the exact same way in either case, but
the format in which the key material is stored differs somewhat.

To sign a file with key material sourced from loose PEM or DER-encoded files,
the pemder subcommand is used.

pyhanko sign addsig --field Sig1 pemder \
 --key key.pem --cert cert.pem input.pdf output.pdf

This would create a signature in input.pdf in the signature field Sig1
(which will be created if it doesn’t exist), with a private key loaded from
key.pem, and a corresponding certificate loaded from cert.pem.
The result is then saved to output.pdf.
Note that the --field parameter is optional if the input file contains a
single unfilled signature field.

Note

The --field parameter also accepts parameters of the form passed to
addfields, see Creating signature fields.

You will be prompted for a passphrase to unlock the private key, which can be
read from another file using --passfile.

The same result can be obtained using data from a PKCS#12 file (these usually
have a .pfx or .p12 extension) as follows:

pyhanko sign addsig --field Sig1 pkcs12 \
 input.pdf output.pdf secrets.pfx

By default, these calls create invisible signature fields, but if the field
specified using the --field parameter exists and has a widget associated
with it, a simple default appearance will be generated
(see Fig. 1).

In many cases, you may want to embed extra certificates (e.g. for intermediate
certificate authorities) into your signature, to facilitate validation.
This can be accomplished using the --chain flag to either subcommand.
When using the pkcs12 subcommand, pyHanko will automatically embed any extra
certificates found in the PKCS#12 archive passed in.

[image: The default signature appearance.]

Fig. 1 The default appearance of a (visible) signature in pyHanko.

Signing a PDF file using a PKCS#11 token

PyHanko also supports creating signatures using PKCS#11 devices.
In order to do so, you’ll need the following information:

	The path to the PKCS#11 module, which is typically a shared object library (.so, .dll
or .dylib, depending on your operating system)

	The label of the PKCS#11 token you’re accessing.

	The PKCS#11 label(s) of the certificate and key you’re using, stored in the token.
If the key and certificate labels are the same, you can omit the key label.

Most of these settings can be stored in the configuration file as well, see
Named PKCS#11 setups.

With this information, producing a basic signature isn’t very hard:

pyhanko sign addsig pkcs11 --lib /path/to/module.so \
 --token-label testrsa --cert-label signer document.pdf output.pdf

Have a look at pyhanko sign addsig pkcs11 --help for a full list of options.

Signing a PDF file using a Belgian eID card

To sign a PDF file using your eID card, use the beid subcommand to
addsig, with the --lib parameter to tell pyHanko where to look for the
eID PKCS#11 library.

Note

Of course, you can also use the pkcs11 subcommand, but beid provides an extra layer
of convenience.

On Linux, it is named libbeidpkcs11.so and can usually be found under
/usr/lib or /usr/local/lib.
On macOS, it is named libbeidpkcs11.dylib, and can similarly be found under
/usr/local/lib.
The Windows version is typically installed to C:\Windows\System32 and is
called beidpkcs11.dll.

On Linux, this boils down to the following:

pyhanko sign addsig --field Sig1 beid \
 --lib /path/to/libbeidpkcs11.so input.pdf output.pdf

On all platforms, the eID middleware will prompt you to enter your PIN to create
the signature.

Warning

This command will produce a non-repudiable signature using the ‘Signature’
certificate on your eID card (as opposed to the ‘Authentication’
certificate). These signatures are legally equivalent to
a normal “wet” signature wherever they are allowed, so use them with care.

In particular, you should only allow software you trust3
to use the ‘Signature’ certificate!

Warning

You should also be aware that your national registry number
(rijksregisternummer, no. de registre national) is embedded into the
metadata of the signature certificate on your eID card4.
As such, it can also be read off from any digital signature you create.
While national registry numbers aren’t secret per se, they are nevertheless
often considered sensitive personal information, so you may want to be
careful where you send documents containing your eID signature or that
of someone else.

Creating signatures with long lifetimes

Background

A simple PDF signature—or any CMS signature for that matter—is only
cryptographically valid insofar as the certificate of the signer is valid.
In most common trust models, this means that the signature ceases to be
meaningful together with the expiration of the signer certificate, or the
latter’s revocation.

The principal reason for this is the fact that it is no longer practical to
verify whether a certificate was valid at the time of signing, if validation
happens after the certificate already expired or was revoked.
This, in turn, has to do with the fact that it is not always reasonable for
certificate authorities to publicly supply historical validity proofs for all
certificates they ever signed at all possible points in time.

Hence, in order for a signature to remain valid long after signing, the signer
needs to supply two additional pieces of data:

	a trusted timestamp signed by a time stamping authority (TSA), to prove the
time of signing to the validator;

	revocation information (relevant CRLs or OCSP responses) for all certificates
in the chain of trust of the signer’s certificate, and of the TSA.

For both of these, it is crucial that the relevant data is collected at the time
of signing and embedded into the signed document.
The revocation information in particular can be delicate, since the validator
needs to be able to verify the validity of not only the signer’s certificate,
but also that of all issuers in the chain of trust, the OCSP responder’s
certificates used to sign the embedded OCSP responses, etc.

Time stamp tokens are commonly obtained from TSA’s via the HTTP-based protocol
specified in RFC 3161 [https://tools.ietf.org/html/rfc3161.html].

Within the PDF standard, there are two broad categories of such long-lived
signatures.

	Signers can opt to embed revocation information into the CMS data structure
of the signature, as a signed attribute.

	In this case, the revocation info is a signed attribute,
protected from tampering by the signer’s own signature.

	This scheme uses Adobe-specific extensions to the CMS standard, which
are explicitly defined in the PDF specification, but may not be supported
by generic CMS tools that are unaware of PDF.

	Signers can opt to embed revocation information into the Document Security
Store (DSS).

	In this case the revocation info is (a priori) not protected by a
signature, although this is often remedied by appending a document time
stamp after updating the DSS (see also Long-term archival (LTA) needs).

	The above approach has the convenient side effect that it can be used to
‘fix’ non-LTV-enabled signatures by embedding the required revocation
information after the fact, together with a document timestamp.
Obviously, this is predicated on the certificate’s still being valid
when the revocation information is compiled.
This workflow is not guaranteed to be acceptable in all X.509 validation
models, but is supported in pyHanko through the ltvfix subcommand; see
Adding validation data to an existing signature.

	This approach is used in the PAdES baseline profiles B-LT and B-LTA
defined by ETSI, and the (mildly modified) versions subsumed into
ISO 32000-2 (PDF 2.0). As such, it is not part of ISO 32000-1 ‘proper’.

Note

The author generally prefers the DSS-based signature profiles over the
legacy approach based on CMS attributes, but both are supported in pyHanko.

Timestamps in pyHanko

Embedding a timestamp token into a signature using pyHanko is as simple as
passing the --timestamp-url parameter to addsig. The URL should
resolve to an endpoint that responds to the HTTP-based protocol described in
RFC 3161 [https://tools.ietf.org/html/rfc3161.html].

pyhanko sign addsig --field Sig1 --timestamp-url http://tsa.example.com \
 pemder --key key.pem --cert cert.pem input.pdf output.pdf

Warning

In the CLI, only public time stamping servers are supported right now
(i.e. those that do not require authentication). The API is more flexible.

Embedding revocation info with pyHanko

In order to embed validation info, use the --with-validation-info flag
to the addsig command.

pyhanko sign addsig --field Sig1 --timestamp-url http://tsa.example.com \
 --with-validation-info --use-pades pemder \
 --key key.pem --cert cert.pem input.pdf output.pdf

This will validate the signer’s signature, and embed the necessary revocation
information into the signature.
The resulting signature complies with the PAdES B-LT baseline profile.
If you want to embed the revocation data into the CMS object instead of
the document security store (see above), leave off the --use-pades flag.

Using the --trust, --trust-replace and --other-certs parameters, it
is possible to fine tune the validation context that will be used to embed
the validation data.
You can also predefine validation contexts in the configuration file, and select
them using the --validation-context parameter.
See Named validation contexts for further information.

Warning

By default, pyHanko requires signer certificates to have the non-repudiation key usage extension
bit set on signer certificates. If this is not suitable for your use case, take a look at
Key usage settings.

Long-term archival (LTA) needs

The observant reader may have noticed that embedding revocation information
together with a timestamp merely _shifts_ the validation problem: what if the
TSA certificate used to sign the timestamp token is already expired by the time
we try to validate the signature?

The PAdES B-LTA scheme provides a solution for this issue: by appending a new
document timestamp whenever the most recent one comes close to expiring, we can
produce a chain of timestamps that allows us to ensure the validity of both
the signatures and their corresponding revocation data essentially indefinitely.

This does, however, require ‘active’ maintenance of the document.
PyHanko provides for this through the ltaupdate subcommand of
pyhanko sign.

pyhanko sign ltaupdate --timestamp-url http://tsa.example.com input.pdf

Note that ltaupdate modifies files in-place. It is also unnecessary to
provide a field name for the new timestamp; the software will automatically
generate one using Python’s uuid module.

Warning

It is important to note that pyHanko only validates the outermost timestamp
when performing an LTA update. This means that the “garbage in, garbage out”
principle is in effect: if the timestamp chain was already broken elsewhere
in the input document, running ltaupdate will not detect that, let alone
fix it.

Note

The reader may also wonder what happens if the trust anchor that guaranteed
the signer’s certificate at the time of signing happens to expire.
Answering this question is technically beyond the specifications of the PKI
system, since root certificates are trusted by fiat, and (by definition) do
not have some higher authority backing them to enforce their validity
constraints.

Some hold the view that expiration dates on trust anchors should be taken
as mere suggestions rather than hard cutoffs.
Regardless of the merits of this view in general, for the purposes of
point-in-time validation, the only sensible answer seems to be to leave
this judgment call up to the discretion of the validator.

It is also useful to note that some certificate authorities implement key
rollover by cross-signing their new roots with their old roots and
vice-versa. Provided these cross-signed certificates are available to the
validator, these should allow older chains of trust to be validated
against the newer roots.

Customising signature appearances

To a limited degree, the appearance of a visible signature made with pyHanko
can be customised. You can specify a named style using the --style-name
parameter to addsig:

pyhanko sign addsig --field Sig1 --style-name mystyle pemder \
 --key key.pem --cert cert.pem input.pdf output.pdf

This assumes that a style named mystyle is available in the configuration
file. Defining styles works the same way as pyHanko’s stamping functionality;
see Stamping PDF files and Styles for stamping and signature appearances for details.

Footnotes

	1

	There are some legitimate modifications that cannot be prohibited by
any document modification policy, such as the addition of document
timestamps and updates to the document security store.

	2

	The author has it on good authority that a rigorous incremental update
validation specification is beyond the scope of the PDF standard itself.

	3

	This obviously also applies to pyHanko itself; be aware that pyHanko’s
license doesn’t make any fitness-for-purpose guarantees,
so making sure you know what you’re running is 100% your own responsibility.

	4

	The certificate’s serial number is in fact equal to the holder’s
national registry number.

Validating PDF signatures

Basic use

Validating signatures in a PDF file is done through the
validate subcommand of pyhanko sign.

A simple use case might look like this:

pyhanko sign validate --pretty-print document.pdf

This will print a human-readable overview of the validity status of the
signatures in document.pdf.
The trust setup can be configured using the
same command-line parameters
and configuration options
as for creating LTV signatures.

Warning

By default, pyHanko requires signer certificates to have the non-repudiation key usage extension
bit set on signer certificates. If this is not suitable for your use case, take a look at
Key usage settings.

Factors in play when validating a signature

In this subsection, we go over the various factors considered by pyHanko when
evaluating the validity of a PDF signature.

Cryptographic integrity

The most fundamental aspect of any digital signature: verify that the bytes
of the file covered by the signature produce the correct hash value, and that
the signature object is a valid signature of that hash.
By ‘valid’, we mean that the cryptographic signature should be verifiable using
the public key in the certificate that is marked as the signer’s in the
signature object.
In other words, we need to check that the purported signer’s certificate
actually produced the signature.

Authenticity: trust settings

Having verified that the signature was produced by the (claimed) signer’s
certificate, we next have to validate the binding between the certificate
and its owner.
That is to say, we have to convince ourselves that the entity whose name is on
the certificate is in control of the private key, i.e. that the signer is
who they claim to be.

Technically, this is done by establishing a chain of trust to a trust anchor,
which we rely on to judge the validity of cryptographic identity claims.
This is where the trust
settings mentioned above come into play.

Incremental updates: difference analysis

PDF files can be modified, even when signed, by appending data to the end of the
previous revision. These are incremental updates. In particular, this is how
forms with multiple signatures are implemented in PDF.
These incremental updates can essentially modify the original document in
arbitrary ways, which is a problem, since they are (by definition) not covered
by any earlier signatures.

In short, validators have two options: either reject all incremental updates
(and decline to support multiple-signer scenarios of any kind), or police
incremental updates by itself. The exact way in which this is supposed to be
done is not specified precisely in the PDF standard.

Warning

PyHanko attempts to run a difference analysis on incremental updates,
and processes modifications on a reject-by-default basis (i.e. all updates
that can’t be vetted as OK are considered suspect). However, this feature
is (very) experimental, and shouldn’t be relied on too much.

Establishing the time of signing

There are a number of ways to indicate when a signature was made.
These broadly fall into two categories:

	Self-reported timestamps: those are based on the signer’s word, and shouldn’t
necessarily be trusted as accurate.

	Trusted timestamps: these derive from timestamp tokens issued by a trusted
timestamping authority at the time of signing.

Especially in the context of long-term verifiability of signatures and
preventing things like backdating of documents, having an accurate measure
of when the timestamp was made can be of crucial importance.
PyHanko will tell you when a signature includes a timestamp token, and validate
it along with the signature.

Note

Strictly speaking, a timestamp token only provides proof that the signature
existed when the timestamp token was created. The signature itself may have
been generated long before that!

If you also need a “lower bound” on the signing time, you might want to
look into signed content timestamps (see
cades_signed_attr_spec
and timestamp_content).

Right now, pyHanko supports these when signing, but does not take them into
account in the validation process. They are also not available in the CLI
yet.

Evaluating seed value constraints

Finally, the document author can put certain restrictions on future signatures
when setting up the form fields. These are known as seed values in the PDF
standard. Not all seed values represent constraints (some are intended as
suggestions), but one especially useful use of them is to earmark signature
fields for use by specific signers.
When validating signatures, pyHanko will also report on whether (mandatory)
seed value constraints were respected.

Warning

Not all digital signing software is capable of processing seed values, so
some false positives are to be expected.

Obviously, seed value constraints are only truly reliable if the document
author secures the document with a certification signature before sending
it for signing. Otherwise, later signers can modify the seed values before
putting their signatures in place.
See here for other concerns to
keep in mind when relying on seed values.

Warning

PyHanko currently does not offer validation of structural PAdES profile
requirements, in the sense that it can’t tell you if a signature
complies with all the provisions required by a particular PAdES profile.
Note that these are requirements on the signature itself, and have no
bearing on possible later modifications to the document.

Adding validation data to an existing signature

Sometimes, the validation data on a signature that was meant to have
a long lifetime can be incomplete. This can have many causes, ranging
from implementation problems to simple, temporary network issues.

To remedy this problem, pyHanko can fetch and append current validation
information through the ltvfix command.

pyhanko sign ltvfix --field Sig1 document.pdf

The ltvfix command supports the same arguments as validate to select
a validation context and specify trust settings.

Warning

By default, pyHanko’s point-in-time validation requires OCSP responses
and CRLs to be valid at the time of signing. This is often problematic
when revocation information is added after the fact.

To emulate the default behaviour of Acrobat and other PDF viewers,
use the --retroactive-revinfo switch when validating.
This will cause pyHanko to treat CRLs and OCSP responses as valid
infinitely far back into the past.

Note: This will cause incorrect behaviour when validating signatures
backed by CAs that make use of certificate holds, but given that
content timestamps (i.e. timestamps proving that a signature was created
after some given time) aren’t accounted for in pyHanko’s trust model,
this is somewhat unavoidable for the time being.

Stamping PDF files

Besides signing, pyHanko can also apply its signature appearance styles as
stamps to a PDF file.
Essentially, this renders a small overlay on top of the existing PDF content,
without involving any of the signing logic.

Warning

The usefulness of this feature is currently rather limited,
since visual stamp styles are still quite primitive.
Additionally, the current version of pyHanko’s CLI doesn’t make it easy to
take advantage of the customisation features available in the API.

The basic syntax of a stamping command is the following:

pyhanko stamp --style-name some-style --page 2 input.pdf output.pdf 50 100

This will render a stamp in the named style some-style at coordinates
(50, 100) on the second page of input.pdf, and write the output to
output.pdf.
For details on how to define named styles, see Styles for stamping and signature appearances.

Note

In terms of rendering, there is one important difference between signatures
and stamps: stamps added through the CLI are rendered at their “natural”
size/aspect ratio, while signature appearances need to fit inside the
predefined box of their corresponding form field widget.
This may cause unexpected behaviour.

Configuration options

Config file location

PyHanko reads its configuration from a YAML file.
By default, if a file named pyhanko.yml exists in the current directory,
pyHanko will attempt to read and process it.
You can manually specify a configuration file location via the --config
parameter to pyhanko.

Note that a configuration file is usually not required, although some
of pyHanko’s behaviour cannot be fully customised using command line options.
In these cases, the configuration must be sourced from a config file.

Configuration options

Logging options

Under the logging key in the configuration file, you can set up the
configuration for Python’s logging module.
Here’s an example.

logging:
 root-level: ERROR
 root-output: stderr
 by-module:
 pyhanko_certvalidator:
 level: DEBUG
 output: pyhanko_certvalidator.log
 pyhanko.sign:
 level: DEBUG

The keys root-level and root-ouput allow you to set the log level
and the output stream (respectively) for the root logger.
The default log level is INFO, and the default output stream is stderr.
The keys under by-module allow you to specify more granular
per-module logging configuration. The level key is mandatory in this case.

Note

If pyhanko is invoked with --verbose, the root logger will have its
log level set to DEBUG, irrespective of the value specified
in the configuration.

Named validation contexts

Validation contexts can be configured under the validation-contexts
top-level key.
The example below defines two validation configs named default and
special-setup, respectively:

validation-contexts:
 default:
 other-certs: some-cert.pem.cert
 special-setup:
 trust: customca.pem.cert
 trust-replace: true
 other-certs: some-cert.pem.cert

The parameters are the same as those used to define validation contexts
in the CLI. This is how they are interpreted:

	trust: One or more paths to trust anchor(s) to be used.

	trust-replace: Flag indicating whether the trust setting should
override the system trust (default false).

	other-certs: One or more paths to other certificate(s) that may be needed
to validate an end entity certificate.

The certificates should be specified in DER or PEM-encoded form.
Currently, pyHanko can only read trust information from files on disk, not
from other sources.

Selecting a named validation context from the CLI can be done using the
--validation-context parameter.
Applied to the example from here, this is how
it works:

pyhanko sign addsig --field Sig1 --timestamp-url http://tsa.example.com \
 --with-validation-info --validation-context special-setup \
 --use-pades pemder --key key.pem --cert cert.pem input.pdf output.pdf

In general, you’re free to choose whichever names you like.
However, if a validation context named default exists in the configuration
file, it will be used implicitly if --validation-context is absent.
You can override the name of the default validation context using
the default-validation-context top-level key, like so:

default-validation-context: setup-a
validation-contexts:
 setup-a:
 trust: customca.pem.cert
 trust-replace: true
 other-certs: some-cert.pem.cert
 setup-b:
 trust: customca.pem.cert
 trust-replace: false

Time drift tolerance

Changed in version 0.5.0: Allow overriding the global value locally.

By default, pyHanko allows a drift of 10 seconds when comparing times.
This value can be overridden in two ways: using the top-level time-tolerance
configuration option, or by setting time-tolerance in a
named validation context.

Given the example config below, using setup-a would set the time drift
tolerance to 180 seconds. Since the global time-tolerance setting
is set to 30 seconds, this value would be used with setup-b, or with
any trust settings specified on the command line.

time-tolerance: 30
validation-contexts:
 setup-a:
 time-tolerance: 180
 trust: customca.pem.cert
 trust-replace: true
 other-certs: some-cert.pem.cert
 setup-b:
 trust: customca.pem.cert
 trust-replace: false

Allow revocation information to apply retroactively

New in version 0.5.0.

By default, pyhanko-certvalidator applies OCSP and CRL validity windows
very strictly. For an OCSP response or a CRL to be considered valid,
the validation time must fall within this window. In other words, with the
default settings, an OCSP response fetched at some later date does not count
for the purposes of establishing the revocation status of a certificate used
with an earlier signature.
However, pyHanko’s conservative default position is often more strict than
what’s practically useful, so this behaviour can be overridden with a
configuration setting (or the --retroactive-revinfo command line flag).

In the example config below, retroactive-revinfo is set to true
globally, but to false in setup-a specifically.
In either case, the --retroactive-revinfo flag can override this setting.

retroactive-revinfo: true
validation-contexts:
 setup-a:
 retroactive-revinfo: false
 trust: customca.pem.cert
 trust-replace: true
 other-certs: some-cert.pem.cert
 setup-b:
 trust: customca.pem.cert
 trust-replace: false

Named PKCS#11 setups

New in version 0.7.0.

Since the CLI parameters for signing files with a PKCS#11 token can get quite verbose, you might
want to put the parameters in the configuration file. You can declare named PKCS#11 setups under the
pkcs11-setups top-level key in pyHanko’s configuration. Here’s a minimal example:

pkcs11-setups:
 test-setup:
 module-path: /usr/lib/libsofthsm2.so
 token-label: testrsa
 cert-label: signer

If you need to, you can also put the user PIN right in the configuration:

pkcs11-setups:
 test-setup:
 module-path: /usr/lib/libsofthsm2.so
 token-label: testrsa
 cert-label: signer
 user-pin: 1234

Danger

If you do this, you should obviously take care to keep your configuration file in a safe place.

To use a named PKCS#11 configuration from the command line, invoke pyHanko like this:

pyhanko sign addsig pkcs11 --p11-setup test-setup input.pdf output.pdf

For a full overview of the parameters you can set on a PKCS#11 configuration, see the API reference
documentation for PKCS11SignatureConfig.

Note

Using the --p11-setup argument to pkcs11 will cause pyHanko to ignore all other
parameters to the pkcs11 subcommand. In other words, you have to put everything in the
configuration.

Named setups for on-disk key material

New in version 0.8.0.

Starting from version 0.8.0, you can also put parameters for on-disk key material into the
configuration file in much the same way as for PKCS#11 tokens (see Named PKCS#11 setups above).
This is done using the pkcs12-setups and pemder-setups top-level keys, depending on whether
the key material is made available as a PKCS#12 file, or as individual PEM/DER-encoded files.

Here are some examples.

pkcs12-setups:
 foo:
 pfx-file: path/to/signer.pfx
 other-certs: path/to/more/certs.chain.pem
pemder-setups:
 bar:
 key-file: path/to/signer.key.pem
 cert-file: path/to/signer.cert.pem
 other-certs: path/to/more/certs.chain.pem

For non-interactive use, you can also put the passphrase into the configuration file (again, take
care to set up your file access permissions correctly).

pkcs12-setups:
 foo:
 pfx-file: path/to/signer.pfx
 other-certs: path/to/more/certs.chain.pem
 pfx-passphrase: secret
pemder-setups:
 bar:
 key-file: path/to/signer.key.pem
 cert-file: path/to/signer.cert.pem
 other-certs: path/to/more/certs.chain.pem
 key-passphrase: secret

On the command line, you can use these named setups like this:

pyhanko sign addsig pkcs12 --p12-setup foo input.pdf output.pdf
pyhanko sign addsig pemder --pemder-setup bar input.pdf output.pdf

For a full overview of the parameters you can set in these configuration dictionaries,
see the API reference documentation for PKCS12SignatureConfig and
PemDerSignatureConfig.

Key usage settings

New in version 0.5.0.

There are two additional keys that can be added to a named validation context: signer-key-usage
and signer-extd-key-usage. Both either take a string argument, or an array of strings.
These define the necessary key usage (resp. extended key usage) extensions that need to be present
in signer certificates.
For signer-key-usage, the possible values are as follows:

	digital_signature

	non_repudiation

	key_encipherment

	data_encipherment

	key_agreement

	key_cert_sign

	crl_sign

	encipher_only

	decipher_only

We refer to § 4.2.1.3 in RFC 5280 [https://tools.ietf.org/html/rfc5280.html] for an explanation of what these values mean. By default,
pyHanko requires signer certificates to have at least the non_repudiation extension, but you may
want to change that depending on your requirements.

Values for extended key usage extensions can be specified as human-readable names, or as OIDs.
The human-readable names are derived from the names in asn1crypto.x509.KeyPurposeId in
asn1crypto. If you need a key usage extension that doesn’t appear in the list, you can specify
it as a dotted OID value instead. By default, pyHanko does not require any specific extended key
usage extensions to be present on the signer’s certificate.

This is an example showcasing key usage settings for a validation context named setup-a:

validation-contexts:
 setup-a:
 trust: customca.pem.cert
 trust-replace: true
 other-certs: some-cert.pem.cert
 signer-key-usage: ["digital_signature", "non_repudiation"]
 signer-extd-key-usage: ["code_signing", "2.999"]

Note

These key usage settings are mainly intended for use with validation, but are also checked when
signing with an active validation context.

Styles for stamping and signature appearances

In order to use a style other than the default for a PDF stamp or (visible)
signature, you’ll have to write some configuration.
New styles can be defined under the stamp-styles top-level key.
Here are some examples:

stamp-styles:
 default:
 type: text
 background: __stamp__
 stamp-text: "Signed by %(signer)s\nTimestamp: %(ts)s"
 text-box-style:
 font: NotoSerif-Regular.otf
 noto-qr:
 type: qr
 background: background.png
 stamp-text: "Signed by %(signer)s\nTimestamp: %(ts)s\n%(url)s"
 text-box-style:
 font: NotoSerif-Regular.otf
 leading: 13

To select a named style at runtime, pass the --style-name parameter to
addsig (when signing) or stamp (when stamping).
As was the case for validation contexts, the style named default will be
chosen if the --style-name parameter is absent.
Similarly, the default style’s name can be overridden using the
default-stamp-style top-level key.

Let us now briefly go over the configuration parameters in the above example.
All parameters have sane defaults.

	type: This can be either text or qr, for a simple text box
or a stamp with a QR code, respectively. The default is text.
Note that QR stamps require the --stamp-url parameter on the command line.

	background: Here, you can specify any of the following:

	a path to a bitmap image;

	a path to a PDF file (the first page will be used as the stamp background);

	the special value __stamp__, which will render a simplified version of the
pyHanko logo in the background of the stamp (using PDF graphics operators
directly).

When using bitmap images, any file format natively supported by
Pillow [https://pillow.readthedocs.io] should be OK. If not specified, the stamp will not have
a background.

	stamp-text: A template string that will be used to render the text inside
the stamp’s text box. Currently, the following variables can be used:

	signer: the signer’s name (only for signatures);

	ts: the time of signing/stamping;

	url: the URL associated with the stamp (only for QR stamps).

	text-box-style: With this parameter, you can fine-tune the text box’s
style parameters. The most important one is font, which allows you to
specify an OTF font that will be used to render the text.
If not specified, pyHanko will use a standard monospaced Courier font.
See TextBoxStyle in the API reference for
other customisable parameters.

Library (SDK) user’s guide

This guide offers a high-level overview of pyHanko as a Python library.
For the API reference docs generated from the source, see the
API reference.

The pyHanko library roughly consists of the following components.

	The pyhanko.pdf_utils package, which is essentially a (gutted and
heavily modified) fork of PyPDF2, with various additions to support the kind
of low-level operations that pyHanko needs to support its various signing
and validation workflows.

	The pyhanko.sign package, which implements the general
signature API supplied by pyHanko.

	The pyhanko.stamp module, which implements the signature appearance
rendering & stamping functionality.

	Support modules to handle CLI and configuration: pyhanko.config and
pyhanko.cli. These mostly consist of very thin wrappers around library
functionality, and shouldn’t really be considered public API.

pyHanko library topics

	Reading and writing PDF files
	Reading files

	Modifying files

	Signature fields
	General API design

	Positioning

	Seed value settings

	Document modification policy settings

	Signing functionality
	General API design

	A simple example

	Signature appearance generation
	Text-based stamps

	QR code stamps

	Static content stamps

	Timestamp handling

	Creating PAdES signatures

	Using aiohttp for network I/O

	Extending Signer

	The low-level PdfCMSEmbedder API

	Interrupted signing

	Generic data signing

	Validation functionality
	General API design

	Accessing signatures in a document

	Validating a PDF signature

	Long-term verifiability checking

	Incremental update analysis

	Probing different aspects of the validity of a signature

	The pdf-utils package
	Background and future perspectives

	PDF object model

	PDF content abstractions
	Images

	Text & layout

	Advanced examples
	A custom Signer to use AWS KMS asynchronously

Reading and writing PDF files

Note

This page only describes the read/write functionality of the
pdf_utils package. See The pdf-utils package for further
information.

Reading files

Opening PDF files for reading and writing in pyHanko is easy.

For example, to instantiate a PdfFileReader
reading from document.pdf, it suffices to do the following.

from pyhanko.pdf_utils.reader import PdfFileReader

with open('document.pdf', 'rb') as doc:
 r = PdfFileReader(doc)
 # ... do stuff ...

In-memory data can be read in a similar way: if buf is a bytes
object containing data from a PDF file, you can use it in a
PdfFileReader as follows.

from pyhanko.pdf_utils.reader import PdfFileReader
from io import BytesIO

buf = b'<PDF file data goes here>'
doc = BytesIO(buf)
r = PdfFileReader(doc)
... do stuff ...

Modifying files

If you want to modify a PDF file, use
IncrementalPdfFileWriter,
like so.

from pyhanko.pdf_utils.incremental_writer import IncrementalPdfFileWriter

with open('document.pdf', 'rb+') as doc:
 w = IncrementalPdfFileWriter(doc)
 # ... do stuff ...
 w.write_in_place()

Using
write_in_place()
will cause the generated update to be appended to the same stream as the input
stream; this is why we open the file with 'rb+'.
If you want the output to be written to a different file or buffer, use
write()
instead.
Obviously, opening the input file with 'rb' is sufficient in this case.

Note

Due to the way PDF signing works, pyHanko’s signing API will usually
take care of calling write or write_in_place as appropriate,
and do its own processing of the results.
In most standard use cases, you probably don’t need to worry about explicit
writes too much.

Any
IncrementalPdfFileWriter
objects used in a signing operation should be discarded afterwards.
If you want to continue appending updates to a signed document, create
a new
IncrementalPdfFileWriter
on top of the output.

This should suffice to get you started with pyHanko’s signing and validation
functionality, but the reader/writer classes can do a lot more.
To learn more about the inner workings of the low-level PDF
manipulation layer of the library, take a look at The pdf-utils package or
the API reference.

Warning

While the pyhanko.pdf_utils module is very powerful in that
it allows you to modify objects in the PDF file in essentially arbitrary
ways, and with a lot of control over the output, actually using it in this
way requires some degree of familiarity with the PDF standard.

As things are now, pyHanko does not offer any facilities to help you
format documents neatly, or to do any kind of layout work beyond the most
basic operations.
This may or may not change in the future. In the meantime, you’re probably
better off using typesetting software or a HTML to PDF converter for your
more complex layout needs, and let pyHanko handle the signing step at
the end.

Signature fields

The creation of signature fields—that is to say, containers for
(future) signatures—is handled by the pyhanko.sign.fields module.
Depending on your requirements, you may not need to call the functions in this
module explicitly; in many simple cases, pyHanko’s
signing functionality takes care of that for you.

However, if you want more control, or you need some of the more advanced
functionality (such as seed value support or field locking) that the
PDF standard offers, you might want to read on.

General API design

In general terms, a signature field is described by a SigFieldSpec object,
which is passed to the append_signature_field()
function for inclusion in a PDF file.

As the name suggests, a SigFieldSpec is a
specification for a new signature field.
These objects are designed to be immutable and stateless.
A SigFieldSpec object is instantiated by
calling SigFieldSpec() with the following keyword
parameters.

	sig_field_name:
the field’s name. This is the only mandatory parameter;
it must not contain any period (.) characters.

	on_page and
box:
determine the position and page at which the
signature field’s widget should be put (see Positioning).

	seed_value_dict:
specify the seed value settings for the signature field
(see Seed value settings).

	field_mdp_spec and
doc_mdp_update_value:
specify a template for the modification and field locking policy that the
signer should apply (see Document modification policy settings).

Hence, to create a signature field specification for an invisible signature
field named Sig1, and add it to a file document.pdf, you would proceed
as follows.

from pyhanko.sign.fields import SigFieldSpec, append_signature_field
from pyhanko.pdf_utils.incremental_writer import IncrementalPdfFileWriter

with open('document.pdf', 'rb+') as doc:
 w = IncrementalPdfFileWriter(doc)
 append_signature_field(w, SigFieldSpec(sig_field_name="Sig1"))
 w.write_in_place()

Positioning

The position of a signature field is essentially only relevant for visible
signatures.
The following SigFieldSpec parameters determine where a signature widget will
end up:

	on_page:
index of the page on which the signature field should appear (default: 0);

	box:
bounding box of the signature field, represented as a 4-tuple
(x1, y1, x2, y2) in Cartesian coordinates (i.e. the vertical axis runs
bottom to top).

Caution

In contrast with the CLI, pages are zero-indexed in the API.

Seed value settings

The PDF standard provides a way for document authors to provide so-called “seed
values” for signature fields.
These instruct the signer about the possible values for certain signature
properties and metadata. They can be purely informative, but can also be used to
restrict the signer in various ways.

Below is a non-exhaustive list of things that seed values can do.

	Put restrictions on the signer’s certificate, including

	the issuer,

	the subject’s distinguished name,

	key usage extensions.

	Force the signer to embed a timestamp (together with a suggested time stamping
server URL).

	Offer the signer a list of choices to choose from when selecting a reason for
signing.

	Instruct the signer to use a particular signature (sub-)handler (e.g. tell
the signer to produce PAdES-style signatures).

Most of these recommendations can be marked as mandatory using flags.
In this case, they also introduce a validation burden.

Caution

Before deciding whether seed values are right for your use case, please
consider the following factors.

	Seed values are a (relatively) obscure feature of the PDF specification,
and not all PDF software offers support for it.
Using mandatory seed values is therefore probably only viable in a
closed, controlled environment with well-defined document workflows.
When using seed values in an advisory manner, you may want to provide
alternative hints, perhaps in the form of written instructions in the
document, or in the form of other metadata.

	At this time, pyHanko only supports a subset of the seed value
specification in the standard, but this should be resolved in due time.
The extent of what is supported is recorded in the API reference for
SigSeedValFlags.

	Since incremental updates can modify documents in arbitrary ways,
mandatory seed values can only be (reliably) enforced if the author
includes a certification signature, to prevent later signers from
surreptitiously changing the rules.

If this is not an option for whatever reason, then you’ll have to make
sure that the entity validating the signatures is aware of the
restrictions the author intended through out-of-band means.

	Consider whether using signatures with explicitly identified signature
policies would be more appropriate (see e.g. RFC 5126 [https://tools.ietf.org/html/rfc5126.html], § 5.8).
Processing signature policies requires more specialised validation tools,
but they are standardised much more rigorously than seed values in PDF.
In particular, it is the superior choice when working with signatures in
an AdES context. However, pyHanko’s support for these workflows is currently
limited1.

Seed values for a new signature field are configured through the
seed_value_dict attribute
of SigFieldSpec. This attribute takes a SigSeedValueSpec object, containing
the desired seed value configuration.
For a detailed overview of the seed values that can be specified, follow the
links to the API reference; we only discuss the most important points below.

The mandatory seed values are indicated by the
flags attribute, which takes a
SigSeedValFlags object as its value.
This is a subclass of Flag, so you can combine different flags using
bitwise operations.

Restrictions and suggestions pertaining to the signer’s certificate deserve
special mention, since they’re a bit special.
These are encoded the cert
attribute of SigSeedValueSpec, in the form of a SigCertConstraints object.
This class has a flags
attribute of its own, indicating which of the SigCertConstraints are to be
enforced.
Its value is a SigCertConstraintFlags object.
In other words, the enforceability of certificate constraints is not
controlled by the flags
attribute of SigSeedValueSpec, but by the
flags attribute of the
SigCertConstraints object inside the
cert attribute.
This mirrors the way in which these restrictions are defined in the PDF
specification.

Since this is all rather abstract, let’s discuss a concrete example.
The code below shows how you might instantiate a signature field specification
for a ballot form of sorts, subject to the following requirements.

	Only people with voting rights should be able to sign the ballot.
This is enforced by requiring that the certificates be issued by
a specific certificate authority.

	The signer can either vote for or against the proposed measure, or abstain.
For the sake of the example, let’s encode that by one of three possible
reasons for signing.

	Since we want to avoid cast ballots being modified after the fact, we require
a strong hash function to be used (at least sha256).

from pyhanko.sign import fields
from pyhanko.sign.general import load_cert_from_pemder

franchising_ca = load_cert_from_pemder('path/to/certfile')
sv = fields.SigSeedValueSpec(
 reasons=[
 'I vote in favour of the proposed measure',
 'I vote against the proposed measure',
 'I formally abstain from voting on the proposed measure'
],
 cert=fields.SigCertConstraints(
 issuers=[franchising_ca],
 flags=fields.SigCertConstraintFlags.ISSUER
),
 digest_methods=['sha256', 'sha384', 'sha512'],
 flags=fields.SigSeedValFlags.REASONS | fields.SigSeedValFlags.DIGEST_METHOD
)

sp = fields.SigFieldSpec('BallotSignature', seed_value_dict=sv)

Note the use of the bitwise-or operator | to combine multiple flags.

Document modification policy settings

Broadly speaking, the PDF specification outlines two ways to specify the degree
to which a document may be modified after a signature is applied, without
these modifications affecting the validity of the signature.

	The document modification detection policy (DocMDP) is an integer between
one and three, indicating on a document-wide level which classes of
modification are permissible. The three levels are defined as follows:

	level 1: no modifications are allowed;

	level 2: form filling and signing are allowed;

	level 3: form filling, signing and commenting are allowed.

The default value is 2.

	The field modification detection policy (FieldMDP), as the name suggests,
specifies the form fields that can be modified after signing.
FieldMDPs can be inclusive or exclusive, and as such allow fairly granular
control.

When creating a signature field, the document author can suggest policies that
the signer should apply in the signature object.

Warning

There are a number of caveats that apply to MDP settings in general; see
Some background on PDF signatures.

Traditionally, the DocMDP settings are exclusive to certification signatures
(i.e. the first, specially marked signature included by the document author),
but in PDF 2.0 it is possible for approval (counter)signatures to set the DocMDP
level to a stricter value than the one already in force—although this
uses a setting in the field’s locking dictionary rather than an explicit DocMDP
dictionary on the signature itself.

In pyHanko, these settings are controlled by the
field_mdp_spec and
doc_mdp_update_value parameters
of SigFieldSpec.
The example below specifies a field with instructions for the signer to
lock a field called SomeTextField, and set the DocMDP value for that
signature to FORM_FILLING (i.e. level 2).
PyHanko will respect these settings when signing, but other software might not.

from pyhanko.sign import fields

fields.SigFieldSpec(
 'Sig1', box=(10, 74, 140, 134),
 field_mdp_spec=fields.FieldMDPSpec(
 fields.FieldMDPAction.INCLUDE, fields=['SomeTextField']
),
 doc_mdp_update_value=fields.MDPPerm.FORM_FILLING
)

The doc_mdp_update_value value is
more or less self-explanatory, since it’s little more than a numerical constant.
The value passed to field_mdp_spec
is an instance of FieldMDPSpec.
FieldMDPSpec objects take two parameters:

	fields:
The fields that are subject to the policy, which can be specified exclusively
or inclusively, depending on the value of
action (see below).

	action:
This is an instance of the enum FieldMDPAction.
The possible values are as follows.

	ALL: all fields should be
locked after signing. In this case, the value of the
fields parameter is irrelevant.

	INCLUDE: all fields specified
in fields should be locked, while
the others remain unlocked (in the absence of other more restrictive policies).

	EXCLUDE: all fields except
the ones specified in fields
should be locked.

Footnotes

	1

	Currently, pyHanko doesn’t yet support automatic enforcement of signature policies
(to the extent that they can be machine-verified in the first place, obviously).
This goes for both the signer and the validator.
However, you can still declare signature policies by extending your favourite
Signer subclass and adding the relevant
signed attributes.
Validators that do not support signature policy processing will typically ignore
the policy setting altogether.

Signing functionality

This page describes pyHanko’s signing API.

Note

Before continuing, you may want to take a look at the
background on PDF signatures in the CLI
documentation.

General API design

The value entry (/V) of a signature field in a PDF file is given by a PDF
dictionary: the “signature object”.
This signature object in turn contains a /Contents key (a byte string)
with a DER-encoded rendition of the CMS object (see RFC 5652 [https://tools.ietf.org/html/rfc5652.html]) containing the
actual cryptographic signature.
To avoid confusion, the latter will be referred to as the “signature CMS object”,
and we’ll reserve the term “signature object” for the PDF dictionary that is the
value of the signature field.

The signature object contains a /ByteRange key outlining the bytes of the
document that should be hashed to validate the signature.
As a general rule, the hash of the PDF file used in the signature is computed
over all bytes in the file, except those under the /Contents key.
In particular, the /ByteRange key of the signature object is actually
part of the signed data, which implies that the size of the signature
CMS object needs to be estimated ahead of time. As we’ll see soon, this has
some minor implications for the API design (see
this subsection in particular).

The pyHanko signing API is spread across several modules in the
pyhanko.sign package. Broadly speaking, it has three aspects:

	PdfSignatureMetadata specifies high-level metadata & structural requirements
for the signature object and (to a lesser degree) the signature CMS object.

	Signer and its subclasses are responsible for the construction of the
signature CMS object, but are in principle “PDF-agnostic”.

	PdfSigner is the “steering” class that invokes the Signer on an
IncrementalPdfFileWriter
and takes care of formatting the resulting signature object according
to the specifications of a PdfSignatureMetadata object.

This summary, while a bit of an oversimplification, provides a
decent enough picture of the separation of concerns in the signing API.
In particular, the fact that construction of the CMS object is delegated to
another class that doesn’t need to bother with any of the PDF-specific
minutiae makes it relatively easy to support other signing technology
(e.g. particular HSMs).

A simple example

Changed in version 0.9.0: New async-first API.

Virtually all parameters of PdfSignatureMetadata have sane defaults.
The only exception is the one specifying the signature field to contain the
signature—this parameter is always mandatory if the number of empty
signature fields in the document isn’t exactly one.

In simple cases, signing a document can therefore be as easy as this:

from pyhanko.sign import signers
from pyhanko.pdf_utils.incremental_writer import IncrementalPdfFileWriter

cms_signer = signers.SimpleSigner.load(
 'path/to/signer/key.pem', 'path/to/signer/cert.pem',
 ca_chain_files=('path/to/relevant/certs.pem',),
 key_passphrase=b'secret'
)

with open('document.pdf', 'rb') as doc:
 w = IncrementalPdfFileWriter(doc)
 out = signers.sign_pdf(
 w, signers.PdfSignatureMetadata(field_name='Signature1'),
 signer=cms_signer,
)

 # do stuff with 'out'
 # ...

The sign_pdf() function is a thin convenience
wrapper around PdfSigner’s sign_pdf()
method, with essentially the same API.
The following code is more or less equivalent.

from pyhanko.sign import signers
from pyhanko.pdf_utils.incremental_writer import IncrementalPdfFileWriter

cms_signer = signers.SimpleSigner.load(
 'path/to/signer/key.pem', 'path/to/signer/cert.pem',
 ca_chain_files=('path/to/relevant/certs.pem',),
 key_passphrase=b'secret'
)

with open('document.pdf', 'rb') as doc:
 w = IncrementalPdfFileWriter(doc)
 out = signers.PdfSigner(
 signers.PdfSignatureMetadata(field_name='Signature1'),
 signer=cms_signer,
).sign_pdf(w)

 # do stuff with 'out'
 # ...

The advantages of instantiating the PdfSigner object yourself include
reusability and more granular control over the signature’s appearance.

In the above examples, out ends up containing a byte buffer
(io.BytesIO object) with the signed output.
You can control the output stream using the output or in_place
parameters; see the documentation for
sign_pdf().

Danger

Any IncrementalPdfFileWriter
used in the creation of a signature should be discarded afterwards.
Further modifications would simply invalidate the signature anyway.

For a full description of the optional parameters, see the API reference
documentation for PdfSignatureMetadata and PdfSigner.

Warning

If there is no signature field with the name specified in the
field_name parameter
of PdfSignatureMetadata, pyHanko will (by default) create an invisible
signature field to contain the signature.
This behaviour can be turned off using the existing_fields_only parameter
to sign_pdf(), or you can supply
a custom field spec when initialising the PdfSigner.

For more details on signature fields and how to create them, take a look at
Signature fields.

Note that, from version 0.9.0 onwards, pyHanko can also be called asynchronously.
In fact, this is now the preferred mode of invocation for most lower-level functionality.
Anyway, the example from this section could have been written asynchronously as follows.

import asyncio
from pyhanko.sign import signers
from pyhanko.pdf_utils.incremental_writer import IncrementalPdfFileWriter

async def async_demo(signer, fname):
 with open(fname, 'rb') as doc:
 w = IncrementalPdfFileWriter(doc)
 out = await signers.async_sign_pdf(
 w, signers.PdfSignatureMetadata(field_name='Signature1'),
 signer=signer,
)

 return out

cms_signer = signers.SimpleSigner.load(
 'path/to/signer/key.pem', 'path/to/signer/cert.pem',
 ca_chain_files=('path/to/relevant/certs.pem',),
 key_passphrase=b'secret'
)
asyncio.run(async_demo(cms_signer, 'document.pdf'))

For a signing process with SimpleSigner that doesn’t perform
any certificate validation, pyHanko’s move towards a more async-focused API probably doesn’t buy
you all that much.
However, using an asynchronous calling conventions allow for more efficient I/O when the signing
code needs to access resources over a network.
This typically becomes relevant when

	the cryptographic operations are performed by a remote signing service, or

	revocation info for the chain of trust needs to be embedded.

While you don’t strictly need to use the new asynchronous APIs to reap all the benefits of this
move, there are quite a few scenarios where it makes a lot of sense to do so, especially if your
project is already structured around nonblocking/concurrent I/O operations.

Signature appearance generation

See also

Styles for stamping and signature appearances in the CLI documentation for the CLI equivalent, and
Signature fields for information on how to create signature fields in general.

When creating visible signatures, you can control the visual appearance to a degree, using different
stamp types. This can be done in one of several ways.

Text-based stamps

PyHanko’s standard stamp type is the text stamp. At its core, a text stamp appearance is simply
some text in a box, possibly with interpolated parameters. Text stamps can use TrueType and OpenType
fonts (or fall back to a generic monospaced font by default). Additionally, text stamps can also
have backgrounds.

Text stamp styles are (unsurprisingly) described by a TextStampStyle
object. Here’s a code sample demonstrating basic usage, with some custom text using a TrueType font,
and a bitmap background.

from pyhanko import stamp
from pyhanko.pdf_utils import text, images
from pyhanko.pdf_utils.font import opentype
from pyhanko.pdf_utils.incremental_writer import IncrementalPdfFileWriter
from pyhanko.sign import signers

signer = signers.SimpleSigner.load(...)
with open('document.pdf', 'rb') as inf:
 w = IncrementalPdfFileWriter(inf)
 fields.append_signature_field(
 w, sig_field_spec=fields.SigFieldSpec(
 'Signature', box=(200, 600, 400, 660)
)
)

 meta = signers.PdfSignatureMetadata(field_name='Signature')
 pdf_signer = signers.PdfSigner(
 meta, signer=signer, stamp_style=stamp.TextStampStyle(
 # the 'signer' and 'ts' parameters will be interpolated by pyHanko, if present
 stamp_text='This is custom text!\nSigned by: %(signer)s\nTime: %(ts)s',
 text_box_style=text.TextBoxStyle(
 font=opentype.GlyphAccumulatorFactory('path/to/NotoSans-Regular.ttf')
),
 background=images.PdfImage('stamp.png')
),
)
 with open('document-signed.pdf', 'wb') as outf:
 pdf_signer.sign_pdf(w, output=outf)

Fig. 2 shows what the result might look like. Obviously, the final result will
depend on the size of the bounding box, font properties, background size etc.

[image: A text stamp in Noto Sans Regular with an image background.]

Fig. 2 A text stamp in Noto Sans Regular with an image background.

The layout of a text stamp can be tweaked to some degree, see
TextStampStyle.

Note

You can define values for your own custom interpolation parameters using the
appearance_text_params argument to
sign_pdf().

QR code stamps

Besides text stamps, pyHanko also supports signature appearances with a QR code embedded in them.
Here’s a variation of the previous example that leaves out the background, but includes a QR code
in the end result.

from pyhanko import stamp
from pyhanko.pdf_utils import text
from pyhanko.pdf_utils.font import opentype
from pyhanko.pdf_utils.incremental_writer import IncrementalPdfFileWriter
from pyhanko.sign import signers

signer = signers.SimpleSigner.load(...)
with open('document.pdf', 'rb') as inf:
 w = IncrementalPdfFileWriter(inf)
 fields.append_signature_field(
 w, sig_field_spec=fields.SigFieldSpec(
 'Signature', box=(200, 600, 400, 660)
)
)

 meta = signers.PdfSignatureMetadata(field_name='Signature')
 pdf_signer = signers.PdfSigner(
 meta, signer=signer, stamp_style=stamp.QRStampStyle(
 # Let's include the URL in the stamp text as well
 stamp_text='Signed by: %(signer)s\nTime: %(ts)s\nURL: %(url)s',
 text_box_style=text.TextBoxStyle(
 font=opentype.GlyphAccumulatorFactory('path/to/NotoSans-Regular.ttf')
),
),
)
 with open('document-signed.pdf', 'wb') as outf:
 # with QR stamps, the 'url' text parameter is special-cased and mandatory, even if it
 # doesn't occur in the stamp text: this is because the value of the 'url' parameter is
 # also used to render the QR code.
 pdf_signer.sign_pdf(
 w, output=outf,
 appearance_text_params={'url': 'https://example.com'}
)

Fig. 3 shows some possible output obtained with these settings.

[image: A QR stamp in Noto Sans Regular, pointing to example.com.]

Fig. 3 A QR stamp in Noto Sans Regular, pointing to https://example.com

Static content stamps

PyHanko is mainly a signing library, and as such, its appearance generation code is fairly
primitive. If you want to go beyond pyHanko’s default signature appearances, you have the option
to import an entire page from an external PDF file to use as the appearance, without anything else
overlaid on top. Here’s how that works.

from pyhanko import stamp
from pyhanko.pdf_utils.incremental_writer import IncrementalPdfFileWriter
from pyhanko.sign import signers

signer = signers.SimpleSigner.load(...)
with open('document.pdf', 'rb') as inf:
 w = IncrementalPdfFileWriter(inf)
 fields.append_signature_field(
 w, sig_field_spec=fields.SigFieldSpec(
 'Signature', box=(200, 600, 400, 660)
)
)

 meta = signers.PdfSignatureMetadata(field_name='Signature')
 pdf_signer = signers.PdfSigner(
 meta, signer=signer,
 stamp_style=stamp.StaticStampStyle.from_pdf_file('my-fancy-appearance.pdf')
)
 with open('document-signed.pdf', 'wb') as outf:
 pdf_signer.sign_pdf(w, output=outf)

The result of this snippet with a file from pyHanko’s test suite is shown in
Fig. 4. Essentially, this way of working allows you to use whatever tools
you like to generate the signature appearance, and use the result with pyHanko’s signing tools.
The bounding box of the content is derived from the imported page’s MediaBox (i.e. the principal
page bounding box), so take that into account when designing your own appearances.

Note

The external PDF content is imported “natively”: all vector operations will remain vector
operations, embedded fonts are copied over, etc. There is no rasterisation involved.

[image: A stamp imported from a PDF.]

Fig. 4 Example of a signature appearance using a stamp imported from an external PDF file.

Timestamp handling

Cryptographic timestamps (specified by RFC 3161 [https://tools.ietf.org/html/rfc3161.html]) play a role in PDF
signatures in two different ways.

	They can be used as part of a PDF signature (embedded into the signature
CMS object) to establish a (verifiable) record of the time of signing.

	They can also be used in a stand-alone way to provide document timestamps
(PDF 2.0).

From a PDF syntax point of view, standalone document timestamps are formally
very similar to PDF signatures.
PyHanko implements these using the
timestamp_pdf() method of
PdfTimeStamper.

Timestamp tokens (TST) embedded into PDF signatures are arguably the more common
occurrence. These function as countersignatures to the signer’s signature,
proving that a signature existed at a certain point in time.
This is a necessary condition for (most) long-term verifiability schemes.

Typically, such timestamp tokens are provided over HTTP, from a trusted time
stamping authority (TSA), using the protocol specified in RFC 3161 [https://tools.ietf.org/html/rfc3161.html].
PyHanko provides a client for this protocol; see
HTTPTimeStamper.

A PdfSigner can specify a default TimeStamper to procure timestamp tokens
from some TSA, but sometimes pyHanko can infer a TSA endpoint from the signature
field’s seed values.

The example from the previous section doesn’t need to be modified by a lot
to include a trusted timestamp in the signature.

from pyhanko.sign import signers, timestamps
from pyhanko.pdf_utils.incremental_writer import IncrementalPdfFileWriter

cms_signer = signers.SimpleSigner.load(
 'path/to/signer/key.pem', 'path/to/signer/cert.pem',
 ca_chain_files=('path/to/relevant/certs.pem',),
 key_passphrase=b'secret'
)

tst_client = timestamps.HTTPTimeStamper('http://example.com/tsa')

with open('document.pdf', 'rb') as doc:
 w = IncrementalPdfFileWriter(doc)
 out = signers.sign_pdf(
 w, signers.PdfSignatureMetadata(field_name='Signature1'),
 signer=cms_signer, timestamper=tst_client
)

 # do stuff with 'out'
 # ...

As a general rule, pyHanko will attempt to obtain a timestamp token whenever
a TimeStamper is available, but you may sometimes see more TST requests
go over the wire than the number of signatures you’re creating.
This is normal: since the timestamps are to be embedded into the signature CMS
object of the signature, pyHanko needs a sample token to estimate the CMS
object’s size2.
These “dummy tokens” are cached on the TimeStamper, so you
can cut down on the number of such unnecessary requests by reusing the same
TimeStamper for many signatures.

Creating PAdES signatures

Creating signatures conforming to various PAdES baseline profiles is also
fairly straightforward using the pyHanko API.

To create a PAdES B-LTA signature, you can follow the template of the example
below. This is the most advanced PAdES baseline profile. For other PAdES
baseline profiles, tweak the parameters of the PdfSignatureMetadata object
accordingly.

from pyhanko.pdf_utils.incremental_writer import IncrementalPdfFileWriter
from pyhanko.sign import signers, timestamps
from pyhanko.sign.fields import SigSeedSubFilter
from pyhanko_certvalidator import ValidationContext

Load signer key material from PKCS#12 file
This assumes that any relevant intermediate certs are also included
in the PKCS#12 file.
signer = signers.SimpleSigner.load_pkcs12(
 pfx_file='signer.pfx', passphrase=b'secret'
)

Set up a timestamping client to fetch timestamps tokens
timestamper = timestamps.HTTPTimeStamper(
 url='http://tsa.example.com/timestampService'
)

Settings for PAdES-LTA
signature_meta = signers.PdfSignatureMetadata(
 field_name='Signature', md_algorithm='sha256',
 # Mark the signature as a PAdES signature
 subfilter=SigSeedSubFilter.PADES,
 # We'll also need a validation context
 # to fetch & embed revocation info.
 validation_context=ValidationContext(allow_fetching=True),
 # Embed relevant OCSP responses / CRLs (PAdES-LT)
 embed_validation_info=True,
 # Tell pyHanko to put in an extra DocumentTimeStamp
 # to kick off the PAdES-LTA timestamp chain.
 use_pades_lta=True
)

with open('input.pdf', 'rb') as inf:
 w = IncrementalPdfFileWriter(inf)
 with open('output.pdf', 'wb') as outf:
 signers.sign_pdf(
 w, signature_meta=signature_meta, signer=signer,
 timestamper=timestamper, output=outf
)

Using aiohttp for network I/O

New in version 0.9.0.

In version 0.9.0, pyHanko’s lower-level APIs were reworked from an
“async-first” perspective. For backwards compatibility reasons, the default
implementation pyHanko’s network I/O code (for fetching revocation info,
timestamps, etc.) still uses the requests library with some crude
asyncio plumbing around it.
However, to take maximal advantage of the new asyncio facilities,
you need to use a networking library that actually supports asynchronous I/O
natively. In principle, nothing stops you from plugging in an async-friendly
library of your choosing, but pyHanko(and its dependency
pyhanko-certvalidator) can already be used with aiohttp without much
additional effort—aiohttp is a widely-used
library for asynchronous HTTP [https://github.com/aio-libs/aiohttp].

Note

The reason why the aiohttp backend isn’t the default one is simple:
using aiohttp requires the caller to manage a connection pool, which
was impossible to properly retrofit into pyHanko without causing major
breakage in the higher-level APIs as well.

Also note that aiohttp is an optional dependency.

Here’s an example demonstrating how you could use aiohttp-based networking
in pyHanko to create a PAdES-B-LTA signature.

import aiohttp
from pyhanko.pdf_utils.incremental_writer import IncrementalPdfFileWriter
from pyhanko.sign import signers
from pyhanko.sign.fields import SigSeedSubFilter
from pyhanko.sign.timestamps.aiohttp_client import AIOHttpTimeStamper
from pyhanko_certvalidator import ValidationContext
from pyhanko_certvalidator.fetchers.aiohttp_fetchers \
 import AIOHttpFetcherBackend

Load signer key material from PKCS#12 file
(see earlier examples)
signer = signers.SimpleSigner.load_pkcs12(
 pfx_file='signer.pfx', passphrase=b'secret'
)

This demo async function takes an aiohttp session, an input
file name and an output file name.
async def sign_doc_demo(session, input_file, output_file):
 # Use the aiohttp fetcher backend provided by pyhanko-certvalidator,
 # and tell it to use our client session.
 validation_context = ValidationContext(
 fetcher_backend=AIOHttpFetcherBackend(session),
 allow_fetching=True
)

 # Similarly, we choose an RFC 3161 client implementation
 # that uses AIOHttp under the hood
 timestamper = AIOHttpTimeStamper(
 'http://tsa.example.com/timestampService',
 session=session
)

 # The signing config is otherwise the same
 settings = signers.PdfSignatureMetadata(
 field_name='AsyncSignatureExample',
 validation_context=validation_context,
 subfilter=SigSeedSubFilter.PADES,
 embed_validation_info=True
)

 with open(input_file, 'rb') as inf:
 w = IncrementalPdfFileWriter(inf)
 with open(output_file, 'wb') as outf:
 await signers.async_sign_pdf(
 w, settings, signer=signer, timestamper=timestamper,
 output=outf
)

async def demo():
 # Set up our aiohttp session
 async with aiohttp.ClientSession() as session:
 await sign_doc_demo(session, 'input.pdf', 'output.pdf')

Note

Best practices for managing aiohttp sessions are beyond the scope of
this guide. Have a look at
the documentation [https://docs.aiohttp.org/en/stable/client_quickstart.html]
for more information on how to use the aiohttp library effectively.

Extending Signer

Changed in version 0.9.0: New async-first API.

Providing detailed guidance on how to implement your own Signer subclass
is beyond the scope of this guide—the implementations
of SimpleSigner and
PKCS11Signer should help.
You might also want to take a look at the AWS KMS example
on the advanced examples page.
This subsection merely highlights some of the issues you should keep in mind.

First, if all you want to do is implement a signing device or technique that’s
not supported by pyHanko, it should be sufficient to implement
async_sign_raw().
This method computes the raw cryptographic signature of some data (typically
a document hash) with the appropriate key material.
It also takes a dry_run flag, signifying that the returned object should
merely have the correct size, but the content doesn’t matter1.

If your requirements necessitate further modifications to the structure of the
CMS object, you’ll most likely have to override
async_sign(), which is responsible for the
construction of the CMS object itself.

The low-level PdfCMSEmbedder API

New in version 0.3.0.

Changed in version 0.7.0: Digest wrapped in
PreparedByteRangeDigest
in step 3; output returned in step 3 instead of step 4.

If even extending Signer doesn’t cover your use case (e.g. because you want
to take the construction of the signature CMS object out of pyHanko’s hands
entirely), all is not lost.
The lowest-level “managed” API offered by pyHanko is the one provided by
PdfCMSEmbedder. This class offers a coroutine-based interface
that takes care of all PDF-specific operations, but otherwise gives you full
control over what data ends up in the signature object’s /Contents entry.

Note

PdfSigner uses PdfCMSEmbedder under the hood, so you’re still mostly
using the same code paths with this API.

Danger

Some advanced features aren’t available this deep in the API (mainly seed
value checking). Additionally, PdfCMSEmbedder doesn’t really do any
input validation; you’re on your own in that regard.
See also Interrupted signing for a more middle-of-the-road solution.

Here is an example demonstrating its use, sourced more or less directly from
the test suite. For details, take a look at the API docs for PdfCMSEmbedder.

from datetime import datetime
from pyhanko.sign import signers
from pyhanko.sign.signers import cms_embedder
from pyhanko.pdf_utils.incremental_writer import IncrementalPdfFileWriter

from io import BytesIO

input_buf = BytesIO(b'<input file goes here>')
w = IncrementalPdfFileWriter(input_buf)

Phase 1: coroutine sets up the form field, and returns a reference
cms_writer = cms_embedder.PdfCMSEmbedder().write_cms(
 field_name='Signature', writer=w
)
sig_field_ref = next(cms_writer)

just for kicks, let's check
assert sig_field_ref.get_object()['/T'] == 'Signature'

Phase 2: make a placeholder signature object,
wrap it up together with the MDP config we want, and send that
on to cms_writer
timestamp = datetime.now(tz=tzlocal.get_localzone())
sig_obj = signers.SignatureObject(timestamp=timestamp, bytes_reserved=8192)

md_algorithm = 'sha256'
for demonstration purposes, let's do a certification signature instead
of a plain old approval signature here
cms_writer.send(
 cms_embedder.SigObjSetup(
 sig_placeholder=sig_obj,
 mdp_setup=cms_embedder.SigMDPSetup(
 md_algorithm=md_algorithm, certify=True,
 docmdp_perms=fields.MDPPerm.NO_CHANGES
)
)
)

Phase 3: write & hash the document (with placeholder)
prep_digest, output = cms_writer.send(
 cms_embedder.SigIOSetup(md_algorithm=md_algorithm, in_place=True)
)
The `output` variable is a handle to the stream that contains
the document to be signed, with a placeholder allocated to hold
the actual signature contents.

Phase 4: construct the CMS object, and pass it on to cms_writer

NOTE: I'm using a regular SimpleSigner here, but you can substitute
whatever CMS supplier you want.

signer: signers.SimpleSigner = FROM_CA
let's supply the CMS object as a raw bytestring
cms_bytes = signer.sign(
 data_digest=prep_digest.document_digest,
 digest_algorithm=md_algorithm, timestamp=timestamp
).dump()
sig_contents = cms_writer.send(cms_bytes)

The (signed) output document is in `output` now.
`sig_contents` holds the content of the signature container
in the PDF file, including any padding.

Interrupted signing

New in version 0.7.0.

Changed in version 0.9.0: The new async-first API requires some changes to the workflow at this (relatively low)
level of abstraction.

There are use cases where trying to run the entire signing process in one go isn’t feasible.
Think of a remote signing scenario with pyHanko running on a server, and calling an external signing
service to perform the cryptographic operations, or a case where pyHanko needs to wait for
interactive user input to proceed with signing.

In cases like this, there are several points where you can interrupt the signing process partway
through, save the state, and pick up where you left off some time later—this conserves
valuable resources in some scenarios.
We refer to pyhanko.sign.signers.pdf_signer for a full overview of what’s possible; below, we
describe the most common use case: a scenario where pyHanko prepares a document for signing,
computes the digest, sends it off to somewhere else for signing, and finishes the signing process
once the response comes in (potentially in an entirely different thread).

In the example scenario, we use ExternalSigner to format the
signed attributes and the final CMS object, but the same principle applies (mutatis mutandis) to
remote signers that supply complete CMS objects.

from pyhanko.sign import signers, fields, timestamps
from pyhanko.sign.signers.pdf_signer import PdfTBSDocument
from pyhanko_certvalidator import ValidationContext
from pyhanko.pdf_utils.writer import BasePdfFileWriter

Skeleton code for an interrupted PAdES signature

async def prep_document(w: BasePdfFileWriter):
 vc = ValidationContext(...)
 pdf_signer = signers.PdfSigner(
 signers.PdfSignatureMetadata(
 field_name='SigNew', embed_validation_info=True, use_pades_lta=True,
 subfilter=fields.SigSeedSubFilter.PADES,
 validation_context=vc,
 md_algorithm='sha256'
),
 # note: this signer will not perform any cryptographic operations,
 # it's just there to bundle certificates with the generated CMS
 # object and to provide size estimates
 signer=signers.ExternalSigner(
 signing_cert=..., ...,
 # placeholder value, appropriate for a 2048-bit RSA key
 # (for example's sake)
 signature_value=bytes(256),
),
 timestamper=timestamps.HTTPTimeStamper('http://tsa.example.com')
)
 prep_digest, tbs_document, output = \
 await pdf_signer.async_digest_doc_for_signing(w)
 md_algorithm = tbs_document.md_algorithm
 psi = tbs_document.post_sign_instructions

 signed_attrs = await ext_signer.signed_attrs(
 prep_digest.document_digest, 'sha256', use_pades=True
)
 psi = tbs_document.post_sign_instructions
 return prep_digest, signed_attrs, psi, output

After prep_document finishes, you can serialise the contents
of prep_digest, signed_attrs and psi somewhere.
The output stream can also be stored in a temporary file, for example.
You could now call the remote signing service, and once the response
comes back, proceed with finish_signing() after deserialising
all the intermediate outputs from the previous step.

async def finish_signing(sig_value: bytes, prep_digest, signed_attrs,
 psi, output_handle):
 # Here, assume sig_value is the signed digest of the signed_attrs
 # bytes, obtained from some remote signing service

 # use ExternalSigner to format the CMS given the signed value
 # we obtained from the remote signing service
 ext_signer = instantiate_external_signer(sig_value)
 sig_cms = await ext_signer.async_sign_prescribed_attributes(
 'sha256', signed_attrs=signed_attrs,
 timestamper=DUMMY_HTTP_TS
)

 validation_context = ValidationContext(...)
 await PdfTBSDocument.async_finish_signing(
 output_handle, prepared_digest=prep_digest,
 signature_cms=sig_cms,
 post_sign_instr=psi,
 validation_context=validation_context
)

The above example below also showcases how to apply proper post-signature processing in an
interrupted PAdES signature. This is only necessary for PAdES-LT and PAdES-LTA signatures.
In other scenarios, you can replace the async_finish_signing call with the following one-liner:

prep_digest.fill_with_cms(output_handle, sig_cms)

In particular, you don’t have to bother with
PostSignInstructions at all.

Generic data signing

New in version 0.7.0.

Changed in version 0.9.0: New async-first API.

If you need to produce CMS signatures that are not intended to be consumed as traditional PDF
signatures (for whatever reason), the Signer classes in pyHanko expose a more flexible
API that you can use.

The Signer class’s async_sign_general_data() method is
a fairly thin wrapper around async_sign() that performs
some of the bookkeeping operations on the payload being signed.
It outputs a CMS object with essentially the same set of attributes that would be expected in a
typical PDF signature, but the actual payload can be arbitrary data.

It can take either an IO-type object, or simply a bytes payload. For advanced uses (e.g.
those requiring a custom-set contentType), passing in a cms.ContentInfo
(or cms.EncapsulatedContentInfo object) also works.
This has a number of caveats; carefully review the API documentation for
async_sign_general_data() and section 5.1 of
RFC 5652 [https://tools.ietf.org/html/rfc5652.html] first.

The signer can operate in “detached” or “encapsulating” mode. In the former case, the payload being
signed is not encoded as part of the resulting CMS object.
When in doubt, use detached mode—it’s the default.

Here is an example showcasing a typical invocation, combined with a call to
embed_payload_with_cms() to embed the resulting payload as
a signed attachment in a PDF file.

from pyhanko.sign.signers.pdf_cms import SimpleSigner
from pyhanko.sign.signers.functions import embed_payload_with_cms
from pyhanko.pdf_utils import embed, writer

async def demo():
 data = b'Hello world!'
 # instantiate a SimpleSigner
 sgn = SimpleSigner(...)
 # Sign some data
 signature = \
 await sign.async_sign_general_data(data, 'sha256', detached=False)

 # Embed the payload into a PDF file, with the signature
 # object as a related file.
 w = writer.PdfFileWriter() # fresh writer, for demonstration's sake
 embed_payload_with_cms(
 w, file_spec_string='attachment.txt',
 file_name='attachment.txt',
 payload=embed.EmbeddedFileObject.from_file_data(
 w, data=data, mime_type='text/plain',
),
 cms_obj=signature,
 file_spec_kwargs={'description': "Signed attachment test"}
)

Warning

This way of signing attachments is not standard, and chances are that your PDF reader won’t
process the signature at all. This snippet is simply a demonstration of the general principle
behind CMS signing, and doesn’t really represent any particular PDF feature.

Footnotes

	1

	The dry_run flag is used in the estimation of the CMS object’s size.
With key material held in memory it doesn’t really matter all that much,
but if the signature is provided by a HSM, or requires additional input
on the user’s end (such as a PIN), you typically don’t want to use the “real”
signing method in dry-run mode.

	2

	The size of a timestamp token is difficult to predict ahead of time, since it
depends on many unknown factors, including the number & form of the various
certificates that might come embedded within them.

Validation functionality

Note

Before reading this, you may want to take a look at
Factors in play when validating a signature for some background on the validation process.

Danger

In addition to the caveats outlined in Validating PDF signatures,
you should be aware that the validation API is still very much in flux,
and likely to change by the time pyHanko reaches its beta stage.

General API design

PyHanko’s validation functionality resides in the
validation module.
Its most important components are

	the EmbeddedPdfSignature class (responsible for modelling existing
signatures in PDF documents);

	the various subclasses of SignatureStatus (encoding the validity status
of signatures and timestamps);

	validate_pdf_signature() and
validate_pdf_ltv_signature(), for running
the actual validation logic.

	the DocumentSecurityStore class and surrounding auxiliary classes
(responsible for handling DSS updates in documents).

While you probably won’t need to interface with DocumentSecurityStore directly,
knowing a little about EmbeddedPdfSignature and SignatureStatus is useful.

Accessing signatures in a document

There is a convenience property on
PdfFileReader, aptly named
embedded_signatures.
This property produces an array of EmbeddedPdfSignature objects, in the order
that they were applied to the document. The result is cached on the reader
object.

These objects can be used to inspect the signature manually, if necessary,
but they are mainly intended to be used as input for
validate_pdf_signature() and
validate_pdf_ltv_signature().

Validating a PDF signature

All validation in pyHanko is done with respect to a certain validation context
(an object of type pyhanko_certvalidator.ValidationContext).
This object tells pyHanko what the trusted certificates are, and transparently
provides mechanisms to request and keep track of revocation data.
For LTV validation purposes, a ValidationContext can also specify a point in
time at which the validation should be carried out.

Warning

PyHanko currently uses a forked version of the certvalidator library,
registered as pyhanko-certvalidator on PyPI. The changes in the forked
version are minor, and the API is intended to be backwards-compatible with
the “mainline” version.

The principal purpose of the ValidationContext is to let the user explicitly
specify their own trust settings.
However, it may be necessary to juggle several different validation contexts
over the course of a validation operation. For example, when performing LTV
validation, pyHanko will first validate the signature’s timestamp against the
user-specified validation context, and then build a new validation context
relative to the signing time specified in the timestamp.

Here’s a simple example to illustrate the process of validating a PDF signature
w.r.t. a specific trust root.

from pyhanko.sign.general import load_cert_from_pemder
from pyhanko_certvalidator import ValidationContext
from pyhanko.pdf_utils.reader import PdfFileReader
from pyhanko.sign.validation import validate_pdf_signature

root_cert = load_cert_from_pemder('path/to/certfile')
vc = ValidationContext(trust_roots=[root_cert])

with open('document.pdf', 'rb') as doc:
 r = PdfFileReader(doc)
 sig = r.embedded_signatures[0]
 status = validate_pdf_signature(sig, vc)
 print(status.pretty_print_details())

Long-term verifiability checking

As explained here and
here in the CLI documentation, making sure that PDF
signatures remain verifiable over long time scales requires special care.
Signatures that have this property are often called “LTV enabled”, where LTV
is short for long-term verifiable.

To verify a LTV-enabled signature, you should use
validate_pdf_ltv_signature() instead of
validate_pdf_signature().
The API is essentially the same, but
validate_pdf_ltv_signature() takes
a required validation_type parameter. The validation_type is an instance
of the enum pyhanko.sign.validation.RevocationInfoValidationType that
tells pyHanko where to find and how to process the revocation data for the
signature(s) involved1.
See the documentation for pyhanko.sign.validation.RevocationInfoValidationType
for more information on the available profiles.

In the initial ValidationContext passed to
validate_pdf_ltv_signature() via
bootstrap_validation_context, you typically want to leave moment
unset (i.e. verify the signature at the current time).

This is the validation context that will be used to establish the time of
signing. When this step is done, pyHanko will construct a new validation
context pointed towards that point in time.
You can specify keyword arguments to the ValidationContext constructor using
the validation_context_kwargs parameter of
validate_pdf_ltv_signature().
In typical situations, you can leave the bootstrap_validation_context
parameter off entirely, and let pyHanko construct an initial validation context
using validation_context_kwargs as input.

The PAdES B-LTA validation example below should clarify that.

from pyhanko.sign.general import load_cert_from_pemder
from pyhanko.pdf_utils.reader import PdfFileReader
from pyhanko.sign.validation import (
 validate_pdf_ltv_signature, RevocationInfoValidationType
)

root_cert = load_cert_from_pemder('path/to/certfile')

with open('document.pdf', 'rb') as doc:
 r = PdfFileReader(doc)
 sig = r.embedded_signatures[0]
 status = validate_pdf_ltv_signature(
 sig, RevocationInfoValidationType.PADES_LTA,
 validation_context_kwargs={'trust_roots': [root_cert]}
)
 print(status.pretty_print_details())

Notice how, rather than passing a ValidationContext object directly, the
example code only supplies validation_context_kwargs. These keyword arguments
will be used both to construct an initial validation context (at the current time),
and to construct any subsequent validation contexts for point-of-time validation
once the signing time is known.

In the example, the validation_context_kwargs parameter
ensures that all validation will happen w.r.t. one specific
trust root.

If all this sounds confusing, that’s because it is. You may want to take a look
at the source of validate_pdf_ltv_signature()
and its tests, and/or play around a little.

Warning

Even outside the LTV context, pyHanko always distinguishes between
validation of the signing time and validation of the signature itself.
In fact, validate_pdf_signature() reports both
(see the docs for
timestamp_validity).

However, since the LTV adjudication process is entirely moot without a trusted record
of the signing time, validate_pdf_ltv_signature()
will raise a SignatureValidationError
if the timestamp token (or timestamp chain) fails to validate.
Otherwise, validate_pdf_ltv_signature()
returns a PdfSignatureStatus as usual.

Incremental update analysis

Changed in version 0.2.0: The initial ad-hoc approach was replaced by a more extensible and
maintainable rule-based validation system. See
pyhanko.sign.diff_analysis.

As explained in the CLI documentation,
the PDF standard has provisions that allow files to be updated by appending
so-called “incremental updates”. This also works for signed documents, since
appending data does not destroy the cryptographic integrity of the signed data.

That being said, since incremental updates can change essentially any aspect of
the resulting document, validators need to be careful to evaluate whether
these updates were added for a legitimate reason.
Examples of such legitimate reasons could include the following:

	adding a second signature,

	adding comments,

	filling in (part of) a form,

	updating document metadata,

	performing cryptographic “bookkeeping work” such as appending fresh document
timestamps and/or revocation information to ensure the long-term verifiability
of a signature.

Not all of these reasons are necessarily always valid: the signer can tell
the validator which modifications they allow to go ahead without invalidating
their signature. This can either be done through the “DocMDP” setting (see
MDPPerm), or for form fields, more granularly
using FieldMDP settings (see FieldMDPSpec).

That being said, the standard does not specify a concrete procedure for
validating any of this. PyHanko takes a reject-by-default approach: the
difference analysis tool uses rules to compare document revisions, and judge
which object updating operations are legitimate (at a given
MDPPerm level). Any modifications for which
there is no justification invalidate the signature.

The default diff policy is defined in
DEFAULT_DIFF_POLICY, but you can define
your own, either by implementing your own subclass of
DiffPolicy, or by defining your own rules
and passing those to an instance of StandardDiffPolicy.
StandardDiffPolicy takes care of some
boilerplate for you, and is the mechanism backing
DEFAULT_DIFF_POLICY.
Explaining precisely how to implement custom diff rules is beyond the scope
of this guide, but you can take a look at the source of
the diff_analysis module for more information.

To actually use a custom diff policy, you can proceed as follows.

from pyhanko.sign.general import load_cert_from_pemder
from pyhanko_certvalidator import ValidationContext
from pyhanko.pdf_utils.reader import PdfFileReader
from pyhanko.sign.validation import validate_pdf_signature

from my_awesome_module import CustomDiffPolicy

root_cert = load_cert_from_pemder('path/to/certfile')
vc = ValidationContext(trust_roots=[root_cert])

with open('document.pdf', 'rb') as doc:
 r = PdfFileReader(doc)
 sig = r.embedded_signatures[0]
 status = validate_pdf_signature(sig, vc, diff_policy=CustomDiffPolicy())
 print(status.pretty_print_details())

The modification_level
and docmdp_ok attributes
on PdfSignatureStatus will tell you to what degree the signed file has been
modified after signing (according to the diff policy used).

Warning

The most lenient MDP level,
ANNOTATE, is currently not
supported by the default diff policy.

Danger

Due to the lack of standardisation when it comes to signature validation,
correctly adjudicating incremental updates is inherently somewhat risky
and ill-defined, so until pyHanko matures, you probably shouldn’t rely
on its judgments too heavily.

Should you run into unexpected results, by all means file an issue.
All information helps!

If necessary, you can opt to turn off difference analysis altogether.
This is sometimes a very reasonable thing to do, e.g. in the following cases:

	you don’t trust pyHanko to correctly evaluate the changes;

	the (sometimes rather large) performance cost of doing the diff analysis
is not worth the benefits;

	you need validate only one signature, after which the document shouldn’t
change at all.

In these cases, you might want to rely on the
coverage property
of PdfSignatureStatus instead. This property describes the degree to which
a given signature covers a file, and is much cheaper/easier to compute.

Anyhow, to disable diff analysis completely, it suffices to pass the
skip_diff parameter to
validate_pdf_signature().

from pyhanko.sign.general import load_cert_from_pemder
from pyhanko_certvalidator import ValidationContext
from pyhanko.pdf_utils.reader import PdfFileReader
from pyhanko.sign.validation import validate_pdf_signature

root_cert = load_cert_from_pemder('path/to/certfile')
vc = ValidationContext(trust_roots=[root_cert])

with open('document.pdf', 'rb') as doc:
 r = PdfFileReader(doc)
 sig = r.embedded_signatures[0]
 status = validate_pdf_signature(sig, vc, skip_diff=True)
 print(status.pretty_print_details())

Probing different aspects of the validity of a signature

The PdfSignatureStatus objects returned by
validate_pdf_signature() and
validate_pdf_ltv_signature() provide a fairly
granular account of the validity of the signature.

You can print a human-readable validity report by calling
pretty_print_details(), and
if all you’re interested in is a yes/no judgment, use the the
bottom_line property.

Should you ever need to know more, a PdfSignatureStatus object also
includes information on things like

	the certificates making up the chain of trust,

	the validity of the embedded timestamp token (if present),

	the invasiveness of incremental updates applied after signing,

	seed value constraint compliance.

For more information, take a look at PdfSignatureStatus in the API reference.

Footnotes

	1

	Currently, pyHanko can’t figure out by itself which LTV strategy is being
used, so the caller has to specify it explicitly.

The pdf-utils package

The pdf_utils package is the part of pyHanko that implements
the logic for reading & writing PDF files.

Background and future perspectives

The core of the pdf_utils package is based on code from PyPDF2.
I forked/vendored PyPDF2 because it was the Python PDF library that would
be the easiest to adapt to the low-level needs of a digital signing tool
like pyHanko.

The “inherited” parts mostly consist of the PDF parsing logic, filter
implementations (though they’ve been heavily rewritten) and RC4 cryptography
support. I stripped out most of the functionality that I considered “fluff”
for the purposes of designing a DigSig tool, for several reasons:

	When I started working on pyHanko, the PyPDF2 project was all but dead,
the codebase largely untested and the internet was rife with complaints about
all kinds of bugs. Removing code that I didn’t need served primarily as a way
to reduce my maintenance burden, and to avoid attaching my name to potential
bugs that I wasn’t willing to fix myself.

	PyPDF2 included a lot of compatibility logic to deal with Python 2. I never
had any interest in supporting Python versions prior to 3.7, so I ditched all
that.

	Stripping out unnecessary code left me with greater freedom to deviate from
the PyPDF2 API where I considered it necessary to do so.

I may or may not split off the pdf_utils package into a
fully-fledged Python PDF library at some point, but for now, it merely
serves as pyHanko’s PDF toolbox.
That said, if you need bare-bones access to PDF structures outside pyHanko’s
digital signing context, you might find some use for it even in its current
state.

This page is intended as a companion to the API reference for
pyhanko.pdf_utils, rather than a detailed standalone guide.

Danger

For the reasons specified above, most of pyhanko.pdf_utils
should be considered private API.

The internal data model for PDF objects isn’t particularly likely to change,
but the text handling and layout code is rather primitive and immature,
so I’m not willing to commit to freezing that API (yet).

Danger

There are a number of stream encoding schemes (or “filters”) that aren’t
supported (yet), most notably the LZW compression scheme.
Additionally, we don’t have support for all PNG predictors in the Flate
decoder/encoder.

PDF object model

The pyhanko.pdf_utils.generic module maps PDF data structures to
Python objects.
PDF arrays, dictionaries and strings are largely interoperable with their native
Python counterparts, and can (usually) be interfaced with in the same manner.

When dealing with indirect references, the package distinguishes between the
following two kinds:

	IndirectObject: this represents an
indirect reference as embedded into another PDF object (e.g. a dictionary
value given by an indirect object);

	Reference: this class represents an
indirect reference by itself, i.e. not as a PDF object.

This distinction is rarely relevant, but the fact that
IndirectObject inherits from
PdfObject means that it supports the
container_ref API, which is
meaningless for “bare” Reference objects.

As a general rule, use Reference whenever
you’re using indirect objects as keys in a Python dictionary or collecting them
into a set, but use IndirectObject if
you’re writing indirect objects into PDF output.

PDF content abstractions

The pyhanko.pdf_utils.content module provides a fairly bare-bones
abstraction for handling content that “compiles down” to PDF graphics operators,
namely the PdfContent class.
Among other things, it takes care of some of the PDF resource management
boilerplate.
It also allows you to easily encapsulate content into form XObjects when
necessary.

Below, we briefly go over the uses of
PdfContent within the library itself.
These also serve as a template for implementing your own
PdfContent subclasses.

Images

PyHanko relies on Pillow for image support.
In particular, we currently support pretty much all RGB bitmap types that
Pillow can handle. Other colour spaces are not (yet) available.
Additionally, we currently don’t take advantage of PDF’s native JPEG support, or
some of its more clever image compression techniques.

The pyhanko.pdf_utils.images module provides a
PdfContent subclass
(aptly named pyhanko.pdf_utils.images.PdfImage) as a convenience.

Text & layout

The layout code in pyHanko is currently very, very primitive, fragile and likely
to change significantly going forward.
That said, pyHanko can do some basic text box rendering, and is capable
of embedding CID-keyed OTF fonts for use with CJK text, for example.
Given the (for now) volatile state of the API, I won’t document it here,
but you can take a look
at pyhanko.pdf_utils.text and pyhanko.pdf_utils.font,
or the code in pyhanko.stamp.

Advanced examples

A custom Signer to use AWS KMS asynchronously

New in version 0.9.0.

This example demonstrates how to use aioboto3 to set up a custom Signer
implementation that invokes the AWS KMS [https://aws.amazon.com/kms/]
API to sign documents, and does so in an asynchronous manner.

The example implementation is relatively minimal, but it should be sufficient
to get an idea of what’s possible.
Further information on aioboto3 is available
from the project’s GitHub page [https://github.com/terrycain/aioboto3].

The ideas in this snippet can be combined with other async-native components
to set up an asynchronous signing workflow.
For example, if you’re looking for a way to fetch & embed revocation information
asynchronously, have a look at
this section in the signing docs to learn more
about aiohttp usage and resource management.

import asyncio

import aioboto3

from asn1crypto import x509, algos
from cryptography.hazmat.primitives import hashes

from pyhanko.pdf_utils.incremental_writer import IncrementalPdfFileWriter
from pyhanko.sign import Signer, signers
from pyhanko.sign.general import get_pyca_cryptography_hash, \
 load_cert_from_pemder
from pyhanko_certvalidator.registry import SimpleCertificateStore

class AsyncKMSSigner(Signer):

 def __init__(self, session: aioboto3.session, key_id: str,
 signing_cert: x509.Certificate,
 signature_mechanism: algos.SignedDigestAlgorithm,
 # this can be derived from the above, obviously
 signature_mechanism_aws_id: str,
 other_certs=()):
 self.session = session
 self.signing_cert = signing_cert
 self.key_id = key_id
 self.signature_mechanism = signature_mechanism
 self.signature_mechanism_aws_id = signature_mechanism_aws_id
 self.cert_registry = cr = SimpleCertificateStore()
 cr.register_multiple(other_certs)
 super().__init__()

 async def async_sign_raw(self, data: bytes,
 digest_algorithm: str, dry_run=False) -> bytes:
 if dry_run:
 return bytes(256)

 # Send hash to server instead of raw data
 hash_spec = get_pyca_cryptography_hash(
 self.signature_mechanism.hash_algo
)
 md = hashes.Hash(hash_spec)
 md.update(data)

 async with self.session.client('kms') as kms_client:
 result = await kms_client.sign(
 KeyId=self.key_id,
 Message=md.finalize(),
 MessageType='DIGEST',
 SigningAlgorithm=self.signature_mechanism_aws_id
)
 signature = result['Signature']
 assert isinstance(signature, bytes)
 return signature

async def run():

 # Load relevant certificates
 # Note: the AWS KMS does not provide certificates by itself,
 # so the details of how certificates are provisioned are beyond
 # the scope of this example.
 cert = load_cert_from_pemder('path/to/your/signing-cert.pem')
 chain = list(load_certs_from_pemder('path/to/chain.pem'))

 # AWS credentials
 kms_key_id = "KEY_ID_GOES_HERE"
 aws_access_key_id = "ACCESS_KEY_GOES_HERE"
 aws_secret_access_key = "SECRET_GOES_HERE"

 # Set up aioboto3 session with provided credentials & region
 session = aioboto3.Session(
 aws_access_key_id=aws_access_key_id,
 aws_secret_access_key=aws_secret_access_key,
 # substitute your region here
 region_name='eu-central-1'
)

 # Set up our signer
 signer = AsyncKMSSigner(
 session=session, key_id=kms_key_id,
 signing_cert=cert, other_certs=chain,
 # change the signature mechanism according to your key type
 # I'm using an ECDSA key over the NIST-P384 (secp384r1) curve here.
 signature_mechanism=algos.SignedDigestAlgorithm(
 {'algorithm': 'sha384_ecdsa'}
),
 signature_mechanism_aws_id='ECDSA_SHA_384'
)

 with open('input.pdf', 'rb') as inf:
 w = IncrementalPdfFileWriter(inf)
 meta = signers.PdfSignatureMetadata(
 field_name='AWSKMSExampleSig'
)
 with open('output.pdf', 'wb') as outf:
 await signers.async_sign_pdf(
 w, meta, signer=signer,output=outf
)

if __name__ == '__main__':
 loop = asyncio.get_event_loop()
 loop.run_until_complete(run())

API reference

This is the API reference for pyHanko, compiled from the docstrings present in
the Python source files. For a more high-level overview, see the
library user guide.
If you are interested in using pyHanko as a command-line application, please
refer to the CLI user guide.

Warning

Any function, class or method that is not covered by this documentation
is considered private API by definition.

Until pyHanko goes into beta, any part of the API is subject to
change without notice, but this applies doubly to the undocumented parts.
Tread with caution.

	pyhanko package
	Subpackages
	pyhanko.pdf_utils package
	pyhanko.pdf_utils.barcodes module

	pyhanko.pdf_utils.config_utils module

	pyhanko.pdf_utils.content module

	pyhanko.pdf_utils.crypt module

	pyhanko.pdf_utils.embed module

	pyhanko.pdf_utils.filters module

	pyhanko.pdf_utils.font package

	pyhanko.pdf_utils.generic module

	pyhanko.pdf_utils.images module

	pyhanko.pdf_utils.incremental_writer module

	pyhanko.pdf_utils.layout module

	pyhanko.pdf_utils.misc module

	pyhanko.pdf_utils.reader module

	pyhanko.pdf_utils.rw_common module

	pyhanko.pdf_utils.text module

	pyhanko.pdf_utils.writer module

	pyhanko.sign package
	pyhanko.sign.ades package

	pyhanko.sign.beid module

	pyhanko.sign.diff_analysis module

	pyhanko.sign.fields module

	pyhanko.sign.general module

	pyhanko.sign.pkcs11 module

	pyhanko.sign.signers package

	pyhanko.sign.timestamps package

	pyhanko.sign.validation module

	Submodules
	pyhanko.config module

	pyhanko.stamp module

pyhanko package

Subpackages

	pyhanko.pdf_utils package
	pyhanko.pdf_utils.barcodes module

	pyhanko.pdf_utils.config_utils module

	pyhanko.pdf_utils.content module

	pyhanko.pdf_utils.crypt module
	About crypt filters

	pyhanko.pdf_utils.embed module

	pyhanko.pdf_utils.filters module

	pyhanko.pdf_utils.font package
	pyhanko.pdf_utils.font.api module

	pyhanko.pdf_utils.font.basic module

	pyhanko.pdf_utils.font.opentype module

	pyhanko.pdf_utils.generic module

	pyhanko.pdf_utils.images module

	pyhanko.pdf_utils.incremental_writer module

	pyhanko.pdf_utils.layout module

	pyhanko.pdf_utils.misc module

	pyhanko.pdf_utils.reader module

	pyhanko.pdf_utils.rw_common module

	pyhanko.pdf_utils.text module

	pyhanko.pdf_utils.writer module

	pyhanko.sign package
	pyhanko.sign.ades package
	pyhanko.sign.ades.api module

	pyhanko.sign.ades.cades_asn1 module

	pyhanko.sign.ades.asn1_util module

	pyhanko.sign.beid module

	pyhanko.sign.diff_analysis module
	Guidelines for developing rules for use with StandardDiffPolicy

	pyhanko.sign.fields module

	pyhanko.sign.general module

	pyhanko.sign.pkcs11 module

	pyhanko.sign.signers package
	pyhanko.sign.signers.cms_embedder module

	pyhanko.sign.signers.csc_signer module
	Usage notes

	pyhanko.sign.signers.constants module

	pyhanko.sign.signers.functions module

	pyhanko.sign.signers.pdf_byterange module

	pyhanko.sign.signers.pdf_cms module

	pyhanko.sign.signers.pdf_signer module

	pyhanko.sign.timestamps package
	pyhanko.sign.timestamps.api module

	pyhanko.sign.timestamps.aiohttp_client module

	pyhanko.sign.timestamps.requests_client module

	pyhanko.sign.timestamps.dummy_client module

	pyhanko.sign.timestamps.common_utils module

	pyhanko.sign.validation module

Submodules

	pyhanko.config module

	pyhanko.stamp module

pyhanko.pdf_utils package

	pyhanko.pdf_utils.barcodes module

	pyhanko.pdf_utils.config_utils module

	pyhanko.pdf_utils.content module

	pyhanko.pdf_utils.crypt module
	About crypt filters

	pyhanko.pdf_utils.embed module

	pyhanko.pdf_utils.filters module

	pyhanko.pdf_utils.font package
	pyhanko.pdf_utils.font.api module

	pyhanko.pdf_utils.font.basic module

	pyhanko.pdf_utils.font.opentype module

	pyhanko.pdf_utils.generic module

	pyhanko.pdf_utils.images module

	pyhanko.pdf_utils.incremental_writer module

	pyhanko.pdf_utils.layout module

	pyhanko.pdf_utils.misc module

	pyhanko.pdf_utils.reader module

	pyhanko.pdf_utils.rw_common module

	pyhanko.pdf_utils.text module

	pyhanko.pdf_utils.writer module

pyhanko.pdf_utils.barcodes module

	
class pyhanko.pdf_utils.barcodes.BarcodeBox(barcode_type, code)

	Bases: pyhanko.pdf_utils.content.PdfContent

Thin wrapper around python-barcode functionality.

This will render a barcode of the specified type as PDF graphics operators.

	
render() → bytes

	Compile the content to graphics operators.

	
class pyhanko.pdf_utils.barcodes.PdfStreamBarcodeWriter

	Bases: barcode.writer.BaseWriter

Implementation of writer class for the python-barcode library to output
PDF graphics operators.
Note: _paint_text is intentionally dummied out.
Please use the functionality implemented in pyhanko.pdf_utils.text instead.

	
property command_stream: bytes

	

	
write(content, fp)

	

	
save(filename, output)

	Saves the rendered output to filename.

	Parameters

	
	filenameString
	Filename without extension.

	outputString
	The rendered output.

	Returns

	The full filename with extension.

	Return type

	String

pyhanko.pdf_utils.config_utils module

This module contains utilities for allowing dataclasses to be populated by
user-provided configuration (e.g. from a Yaml file).

Note

On naming conventions: this module converts hyphens in key names to
underscores as a matter of course.

	
exception pyhanko.pdf_utils.config_utils.ConfigurationError

	Bases: ValueError

Signal configuration errors.

	
class pyhanko.pdf_utils.config_utils.ConfigurableMixin

	Bases: object

General configuration mixin for dataclasses

	
classmethod process_entries(config_dict)

	Hook method that can modify the configuration dictionary
to overwrite or tweak some of their values (e.g. to convert string
parameters into more complex Python objects)

Subclasses that override this method should call
super().process_entries(), and leave keys that they do not
recognise untouched.

	Parameters

	config_dict – A dictionary containing configuration values.

	Raises

	ConfigurationError – when there is a problem processing a relevant entry.

	
classmethod from_config(config_dict)

	Attempt to instantiate an object of the class on which it is called,
by means of the configuration settings passed in.

First, we check that the keys supplied in the dictionary correspond
to data fields on the current class.
Then, the dictionary is processed using the process_entries()
method. The resulting dictionary is passed to the initialiser
of the current class as a kwargs dict.

	Parameters

	config_dict – A dictionary containing configuration values.

	Returns

	An instance of the class on which it is called.

	Raises

	ConfigurationError – when an unexpected configuration key is encountered or left
unfilled, or when there is a problem processing one of the config
values.

	
pyhanko.pdf_utils.config_utils.check_config_keys(config_name, expected_keys, config_dict)

	

	
pyhanko.pdf_utils.config_utils.process_oid(asn1crypto_class: Type[asn1crypto.core.ObjectIdentifier], id_string, param_name)

	

	
pyhanko.pdf_utils.config_utils.process_oids(asn1crypto_class: Type[asn1crypto.core.ObjectIdentifier], strings, param_name)

	

	
pyhanko.pdf_utils.config_utils.process_bit_string_flags(asn1crypto_class: Type[asn1crypto.core.BitString], strings, param_name)

	

pyhanko.pdf_utils.content module

	
class pyhanko.pdf_utils.content.ResourceType(value)

	Bases: enum.Enum

Enum listing resources that can be used as keys in a resource dictionary.

See ISO 32000-1, § 7.8.3 Table 34.

	
EXT_G_STATE = '/ExtGState'

	External graphics state specifications.
See ISO 32000-1, § 8.4.5.

	
COLOR_SPACE = '/ColorSpace'

	Colour space definitions.
See ISO 32000-1, § 8.6.

	
PATTERN = '/Pattern'

	Pattern definitions.
See ISO 32000-1, § 8.7.

	
SHADING = '/Shading'

	Shading definitions.
See ISO 32000-1, § 8.7.4.3.

	
XOBJECT = '/XObject'

	External object definitions (images and form XObjects).
See ISO 32000-1, § 8.8.

	
FONT = '/Font'

	Font specifications.
See ISO 32000-1, § 9.

	
PROPERTIES = '/Properties'

	Marked content properties.
See ISO 32000-1, § 14.6.2.

	
exception pyhanko.pdf_utils.content.ResourceManagementError

	Bases: ValueError

Used to signal problems with resource dictionaries.

	
class pyhanko.pdf_utils.content.PdfResources

	Bases: object

Representation of a PDF resource dictionary.

This class implements __getitem__() with ResourceType keys
for dynamic access to its attributes.
To merge two instances of PdfResources into one another,
the class overrides __iadd__(), so you can write.

res1 += res2

Note: Merging two resource dictionaries with conflicting resource names
will produce a ResourceManagementError.

Note: This class is currently only used for new resource dictionaries.

	
as_pdf_object() → pyhanko.pdf_utils.generic.DictionaryObject

	Render this instance of PdfResources to an actual resource
dictionary.

	
class pyhanko.pdf_utils.content.PdfContent(resources: Optional[pyhanko.pdf_utils.content.PdfResources] = None, box: Optional[pyhanko.pdf_utils.layout.BoxConstraints] = None, writer=None)

	Bases: object

Abstract representation of part of a PDF content stream.

Warning

Whether PdfContent instances can be reused or not
is left up to the subclasses.

	
writer = None

	The __init__() method comes with an optional writer
parameter that can be used to let subclasses register external resources
with the writer by themselves.

It can also be set after the fact by calling set_writer().

	
set_resource(category: pyhanko.pdf_utils.content.ResourceType, name: pyhanko.pdf_utils.generic.NameObject, value: pyhanko.pdf_utils.generic.PdfObject)

	Set a value in the resource dictionary associated with this content
fragment.

	Parameters

	
	category – The resource category to which the resource belongs.

	name – The resource’s (internal) name.

	value – The resource’s value.

	
import_resources(resources: pyhanko.pdf_utils.content.PdfResources)

	Import resources from another resource dictionary.

	Parameters

	resources – An instance of PdfResources.

	Raises

	ResourceManagementError – Raised when there is a resource name conflict.

	
property resources: pyhanko.pdf_utils.content.PdfResources

	
	Returns

	The PdfResources instance associated with this
content fragment.

	
render() → bytes

	Compile the content to graphics operators.

	
as_form_xobject() → pyhanko.pdf_utils.generic.StreamObject

	Render the object to a form XObject to be referenced by another
content stream. See ISO 32000-1, § 8.8.

Note: Even if writer is set, the resulting form XObject will
not be registered. This is left up to the caller.

	Returns

	A StreamObject instance representing
the resulting form XObject.

	
set_writer(writer)

	Override the currently registered writer object.

	Parameters

	writer – An instance of BasePdfFileWriter.

	
class pyhanko.pdf_utils.content.RawContent(data: bytes, resources: Optional[pyhanko.pdf_utils.content.PdfResources] = None, box: Optional[pyhanko.pdf_utils.layout.BoxConstraints] = None)

	Bases: pyhanko.pdf_utils.content.PdfContent

Raw byte sequence to be used as PDF content.

	
render() → bytes

	Compile the content to graphics operators.

	
class pyhanko.pdf_utils.content.ImportedPdfPage(file_name, page_ix=0)

	Bases: pyhanko.pdf_utils.content.PdfContent

Import a page from another PDF file (lazily)

	
render() → bytes

	Compile the content to graphics operators.

pyhanko.pdf_utils.crypt module

Changed in version 0.3.0: Added support for PDF 2.0 encryption standards and crypt filters.

Utilities for PDF encryption. This module covers all methods outlined in the
standard:

	Legacy RC4-based encryption (based on PyPDF2 code).

	AES-128 encryption with legacy key derivation (partly based on PyPDF2 code).

	PDF 2.0 AES-256 encryption.

	Public key encryption backed by any of the above.

Following the language in the standard, encryption operations are backed by
subclasses of the SecurityHandler class, which provides a more or less
generic API.

Danger

The members of this module are all considered internal API, and are
therefore subject to change without notice.

Danger

One should also be aware that the legacy encryption scheme implemented
here is (very) weak, and we only support it for compatibility reasons.
Under no circumstances should it still be used to encrypt new files.

About crypt filters

Crypt filters are objects that handle encryption and decryption of streams and
strings, either for all of them, or for a specific subset (e.g. streams
representing embedded files). In the context of the PDF standard, crypt filters
are a notion that only makes sense for security handlers of version 4 and up.
In pyHanko, however, all encryption and decryption operations pass through
crypt filters, and the serialisation/deserialisation logic in
SecurityHandler and its subclasses transparently deals with staying
backwards compatible with earlier revisions.

Internally, pyHanko loosely distinguishes between implicit and explicit
uses of crypt filters:

	Explicit crypt filters are used by directly referring to them from the
/Filter entry of a stream dictionary. These are invoked in the usual
stream decoding process.

	Implicit crypt filters are set by the /StmF and /StrF entries
in the security handler’s crypt filter configuration, and are invoked by the
object reading/writing procedures as necessary. These filters are invisble
to the stream encoding/decoding process: the
encoded_data attribute of
an “implicitly encrypted” stream will therefore contain decrypted data ready
to be decoded in the usual way.

As long as you don’t require access to encoded object data and/or raw encrypted
object data, this distiction should be irrelevant to you as an API user.

	
class pyhanko.pdf_utils.crypt.SecurityHandler(version: pyhanko.pdf_utils.crypt.SecurityHandlerVersion, legacy_keylen, crypt_filter_config: pyhanko.pdf_utils.crypt.CryptFilterConfiguration, encrypt_metadata=True, compat_entries=True)

	Bases: object

Generic PDF security handler interface.

This class contains relatively little actual functionality, except for
some common initialisation logic and bookkeeping machinery to register
security handler implementations.

	Parameters

	
	version – Indicates the version of the security handler to use, as described
in the specification. See SecurityHandlerVersion.

	legacy_keylen – Key length in bytes (only relevant for legacy encryption handlers).

	crypt_filter_config – The crypt filter configuration for the security handler, in the
form of a CryptFilterConfiguration object.

Note

PyHanko implements legacy security handlers (which, according to
the standard, aren’t crypt filter-aware) using crypt filters
as well, even though they aren’t serialised to the output file.

	encrypt_metadata – Flag indicating whether document (XMP) metadata is to be encrypted.

Warning

Currently, PyHanko does not manage metadata streams, so until
that changes, it is the responsibility of the API user to mark
metadata streams using the /Identity crypt filter as required.

Nonetheless, the value of this flag is required in key derivation
computations, so the security handler needs to know about it.

	compat_entries – Write deprecated but technically unnecessary configuration settings for
compatibility with certain implementations.

	
static register(cls: Type[pyhanko.pdf_utils.crypt.SecurityHandler])

	Register a security handler class.
Intended to be used as a decorator on subclasses.

See build() for further information.

	Parameters

	cls – A subclass of SecurityHandler.

	
static build(encrypt_dict: pyhanko.pdf_utils.generic.DictionaryObject) → pyhanko.pdf_utils.crypt.SecurityHandler

	Instantiate an appropriate SecurityHandler from a PDF
document’s encryption dictionary.

PyHanko will search the registry for a security handler with
a name matching the /Filter entry. Failing that, a security
handler implementing the protocol designated by the
/SubFilter entry (see support_generic_subfilters()) will be
chosen.

Once an appropriate SecurityHandler subclass has been
selected, pyHanko will invoke the subclass’s
instantiate_from_pdf_object() method with the original encryption
dictionary as its argument.

	Parameters

	encrypt_dict – A PDF encryption dictionary.

	Returns

	

	
classmethod get_name() → str

	Retrieves the name of this security handler.

	Returns

	The name of this security handler.

	
classmethod support_generic_subfilters() → Set[str]

	Indicates the generic /SubFilter values that this security handler
supports.

	Returns

	A set of generic protocols (indicated in the /SubFilter entry
of an encryption dictionary) that this SecurityHandler
class implements. Defaults to the empty set.

	
classmethod instantiate_from_pdf_object(encrypt_dict: pyhanko.pdf_utils.generic.DictionaryObject)

	Instantiate an object of this class using a PDF encryption dictionary
as input.

	Parameters

	encrypt_dict – A PDF encryption dictionary.

	Returns

	

	
as_pdf_object() → pyhanko.pdf_utils.generic.DictionaryObject

	Serialise this security handler to a PDF encryption dictionary.

	Returns

	A PDF encryption dictionary.

	
authenticate(credential, id1=None) → pyhanko.pdf_utils.crypt.AuthResult

	Authenticate a credential holder with this security handler.

	Parameters

	
	credential – A credential.
The type of the credential is left up to the subclasses.

	id1 – The first part of the document ID of the document being accessed.

	Returns

	An AuthResult object indicating the level of access
obtained.

	
get_string_filter() → pyhanko.pdf_utils.crypt.CryptFilter

	
	Returns

	The crypt filter responsible for decrypting strings
for this security handler.

	
get_stream_filter(name=None) → pyhanko.pdf_utils.crypt.CryptFilter

	
	Parameters

	name – Optionally specify a crypt filter by name.

	Returns

	The default crypt filter responsible for decrypting streams
for this security handler, or the crypt filter named name,
if not None.

	
get_embedded_file_filter()

	
	Returns

	The crypt filter responsible for decrypting embedded files
for this security handler.

	
get_file_encryption_key() → bytes

	

	
classmethod read_cf_dictionary(cfdict: pyhanko.pdf_utils.generic.DictionaryObject, acts_as_default: bool) → Optional[pyhanko.pdf_utils.crypt.CryptFilter]

	Interpret a crypt filter dictionary for this type of security handler.

	Parameters

	
	cfdict – A crypt filter dictionary.

	acts_as_default – Indicates whether this filter is intended to be used in
/StrF or /StmF.

	Returns

	An appropriate CryptFilter object, or None
if the crypt filter uses the /None method.

	Raises

	NotImplementedError – Raised when the crypt filter’s /CFM entry indicates an unknown
crypt filter method.

	
classmethod process_crypt_filters(encrypt_dict: pyhanko.pdf_utils.generic.DictionaryObject) → Optional[pyhanko.pdf_utils.crypt.CryptFilterConfiguration]

	

	
classmethod register_crypt_filter(method: pyhanko.pdf_utils.generic.NameObject, factory: Callable[[pyhanko.pdf_utils.generic.DictionaryObject, bool], pyhanko.pdf_utils.crypt.CryptFilter])

	

	
class pyhanko.pdf_utils.crypt.StandardSecurityHandler(version: pyhanko.pdf_utils.crypt.SecurityHandlerVersion, revision: pyhanko.pdf_utils.crypt.StandardSecuritySettingsRevision, legacy_keylen, perm_flags: int, odata, udata, oeseed=None, ueseed=None, encrypted_perms=None, encrypt_metadata=True, crypt_filter_config: Optional[pyhanko.pdf_utils.crypt.CryptFilterConfiguration] = None, compat_entries=True)

	Bases: pyhanko.pdf_utils.crypt.SecurityHandler

Implementation of the standard (password-based) security handler.

You shouldn’t have to instantiate StandardSecurityHandler objects
yourself. For encrypting new documents, use build_from_pw()
or build_from_pw_legacy().

For decrypting existing documents, pyHanko will take care of instantiating
security handlers through SecurityHandler.build().

	
classmethod get_name() → str

	Retrieves the name of this security handler.

	Returns

	The name of this security handler.

	
classmethod build_from_pw_legacy(rev: pyhanko.pdf_utils.crypt.StandardSecuritySettingsRevision, id1, desired_owner_pass, desired_user_pass=None, keylen_bytes=16, use_aes128=True, perms: int = - 4, crypt_filter_config=None, **kwargs)

	Initialise a legacy password-based security handler, to attach to a
PdfFileWriter.
Any remaining keyword arguments will be passed to the constructor.

Danger

The functionality implemented by this handler is deprecated in the
PDF standard. We only provide it for testing purposes, and to
interface with legacy systems.

	Parameters

	
	rev – Security handler revision to use, see
StandardSecuritySettingsRevision.

	id1 – The first part of the document ID.

	desired_owner_pass – Desired owner password.

	desired_user_pass – Desired user password.

	keylen_bytes – Length of the key (in bytes).

	use_aes128 – Use AES-128 instead of RC4 (default: True).

	perms – Permission bits to set (defined as an integer)

	crypt_filter_config – Custom crypt filter configuration. PyHanko will supply a reasonable
default if none is specified.

	Returns

	A StandardSecurityHandler instance.

	
classmethod build_from_pw(desired_owner_pass, desired_user_pass=None, perms=- 4, encrypt_metadata=True, **kwargs)

	Initialise a password-based security handler backed by AES-256,
to attach to a PdfFileWriter.
This handler will use the new PDF 2.0 encryption scheme.

Any remaining keyword arguments will be passed to the constructor.

	Parameters

	
	desired_owner_pass – Desired owner password.

	desired_user_pass – Desired user password.

	perms – Desired usage permissions.

	encrypt_metadata – Whether to set up the security handler for encrypting metadata
as well.

	Returns

	A StandardSecurityHandler instance.

	
classmethod gather_encryption_metadata(encrypt_dict: pyhanko.pdf_utils.generic.DictionaryObject) → dict

	Gather and preprocess the “easy” metadata values in an encryption
dictionary, and turn them into constructor kwargs.

This function processes /Length, /P, /Perms, /O, /U,
/OE, /UE and /EncryptMetadata.

	
classmethod instantiate_from_pdf_object(encrypt_dict: pyhanko.pdf_utils.generic.DictionaryObject)

	Instantiate an object of this class using a PDF encryption dictionary
as input.

	Parameters

	encrypt_dict – A PDF encryption dictionary.

	Returns

	

	
as_pdf_object()

	Serialise this security handler to a PDF encryption dictionary.

	Returns

	A PDF encryption dictionary.

	
authenticate(credential, id1: Optional[bytes] = None) → pyhanko.pdf_utils.crypt.AuthResult

	Authenticate a user to this security handler.

	Parameters

	
	credential – The credential to use (a password in this case).

	id1 – First part of the document ID. This is mandatory for legacy
encryption handlers, but meaningless otherwise.

	Returns

	An AuthResult object indicating the level of access
obtained.

	
get_file_encryption_key() → bytes

	Retrieve the (global) file encryption key for this security handler.

	Returns

	The file encryption key as a bytes object.

	Raises

	misc.PdfReadError – Raised if this security handler was instantiated from an encryption
dictionary and no credential is available.

	
class pyhanko.pdf_utils.crypt.PubKeySecurityHandler(version: pyhanko.pdf_utils.crypt.SecurityHandlerVersion, pubkey_handler_subfilter: pyhanko.pdf_utils.crypt.PubKeyAdbeSubFilter, legacy_keylen, encrypt_metadata=True, crypt_filter_config: Optional[pyhanko.pdf_utils.crypt.CryptFilterConfiguration] = None, recipient_objs: Optional[list] = None, compat_entries=True)

	Bases: pyhanko.pdf_utils.crypt.SecurityHandler

Security handler for public key encryption in PDF.

As with the standard security handler, you essentially shouldn’t ever
have to instantiate these yourself (see build_from_certs()).

	
classmethod build_from_certs(certs: List[asn1crypto.x509.Certificate], keylen_bytes=16, version=SecurityHandlerVersion.AES256, use_aes=True, use_crypt_filters=True, perms: int = - 4, encrypt_metadata=True, ignore_key_usage=False, **kwargs) → pyhanko.pdf_utils.crypt.PubKeySecurityHandler

	Create a new public key security handler.

This method takes many parameters, but only certs is mandatory.
The default behaviour is to create a public key encryption handler
where the underlying symmetric encryption is provided by AES-256.
Any remaining keyword arguments will be passed to the constructor.

	Parameters

	
	certs – The recipients’ certificates.

	keylen_bytes – The key length (in bytes). This is only relevant for legacy
security handlers.

	version – The security handler version to use.

	use_aes – Use AES-128 instead of RC4 (only meaningful if the version
parameter is RC4_OR_AES128).

	use_crypt_filters – Whether to use crypt filters. This is mandatory for security
handlers of version RC4_OR_AES128
or higher.

	perms – Permission flags (as a 4-byte signed integer).

	encrypt_metadata – Whether to encrypt document metadata.

Warning

See SecurityHandler for some background on the
way pyHanko interprets this value.

	ignore_key_usage – If False, the keyEncipherment key usage extension is required.

	Returns

	An instance of PubKeySecurityHandler.

	
classmethod get_name() → str

	Retrieves the name of this security handler.

	Returns

	The name of this security handler.

	
classmethod support_generic_subfilters() → Set[str]

	Indicates the generic /SubFilter values that this security handler
supports.

	Returns

	A set of generic protocols (indicated in the /SubFilter entry
of an encryption dictionary) that this SecurityHandler
class implements. Defaults to the empty set.

	
classmethod read_cf_dictionary(cfdict: pyhanko.pdf_utils.generic.DictionaryObject, acts_as_default: bool) → pyhanko.pdf_utils.crypt.CryptFilter

	Interpret a crypt filter dictionary for this type of security handler.

	Parameters

	
	cfdict – A crypt filter dictionary.

	acts_as_default – Indicates whether this filter is intended to be used in
/StrF or /StmF.

	Returns

	An appropriate CryptFilter object, or None
if the crypt filter uses the /None method.

	Raises

	NotImplementedError – Raised when the crypt filter’s /CFM entry indicates an unknown
crypt filter method.

	
classmethod process_crypt_filters(encrypt_dict: pyhanko.pdf_utils.generic.DictionaryObject) → Optional[pyhanko.pdf_utils.crypt.CryptFilterConfiguration]

	

	
classmethod gather_pub_key_metadata(encrypt_dict: pyhanko.pdf_utils.generic.DictionaryObject)

	

	
classmethod instantiate_from_pdf_object(encrypt_dict: pyhanko.pdf_utils.generic.DictionaryObject)

	Instantiate an object of this class using a PDF encryption dictionary
as input.

	Parameters

	encrypt_dict – A PDF encryption dictionary.

	Returns

	

	
as_pdf_object()

	Serialise this security handler to a PDF encryption dictionary.

	Returns

	A PDF encryption dictionary.

	
add_recipients(certs: List[asn1crypto.x509.Certificate], perms=- 4, ignore_key_usage=False)

	

	
authenticate(credential: pyhanko.pdf_utils.crypt.EnvelopeKeyDecrypter, id1=None) → pyhanko.pdf_utils.crypt.AuthResult

	Authenticate a user to this security handler.

	Parameters

	
	credential – The credential to use (an instance of EnvelopeKeyDecrypter
in this case).

	id1 – First part of the document ID.
Public key encryption handlers ignore this key.

	Returns

	An AuthResult object indicating the level of access
obtained.

	
get_file_encryption_key() → bytes

	

	
class pyhanko.pdf_utils.crypt.AuthResult(status: pyhanko.pdf_utils.crypt.AuthStatus, permission_flags: Optional[int] = None)

	Bases: object

Describes the result of an authentication attempt.

	
status: pyhanko.pdf_utils.crypt.AuthStatus

	Authentication status after the authentication attempt.

	
permission_flags: Optional[int] = None

	Granular permission flags. The precise meaning depends on the security
handler.

	
class pyhanko.pdf_utils.crypt.AuthStatus(value)

	Bases: pyhanko.pdf_utils.misc.OrderedEnum

Describes the status after an authentication attempt.

	
FAILED = 0

	

	
USER = 1

	

	
OWNER = 2

	

	
class pyhanko.pdf_utils.crypt.SecurityHandlerVersion(value)

	Bases: pyhanko.pdf_utils.misc.VersionEnum

Indicates the security handler’s version.

The enum constants are named more or less in accordance with the
cryptographic algorithms they permit.

	
RC4_40 = 1

	

	
RC4_LONGER_KEYS = 2

	

	
RC4_OR_AES128 = 4

	

	
AES256 = 5

	

	
OTHER = None

	Placeholder value for custom security handlers.

	
as_pdf_object() → pyhanko.pdf_utils.generic.PdfObject

	

	
classmethod from_number(value) → pyhanko.pdf_utils.crypt.SecurityHandlerVersion

	

	
check_key_length(key_length: int) → int

	

	
class pyhanko.pdf_utils.crypt.StandardSecuritySettingsRevision(value)

	Bases: pyhanko.pdf_utils.misc.VersionEnum

Indicate the standard security handler revision to emulate.

	
RC4_BASIC = 2

	

	
RC4_EXTENDED = 3

	

	
RC4_OR_AES128 = 4

	

	
AES256 = 6

	

	
OTHER = None

	Placeholder value for custom security handlers.

	
as_pdf_object() → pyhanko.pdf_utils.generic.PdfObject

	

	
classmethod from_number(value) → pyhanko.pdf_utils.crypt.StandardSecuritySettingsRevision

	

	
class pyhanko.pdf_utils.crypt.PubKeyAdbeSubFilter(value)

	Bases: enum.Enum

Enum describing the different subfilters that can be used for public key
encryption in the PDF specification.

	
S3 = '/adbe.pkcs7.s3'

	

	
S4 = '/adbe.pkcs7.s4'

	

	
S5 = '/adbe.pkcs7.s5'

	

	
class pyhanko.pdf_utils.crypt.CryptFilterConfiguration(crypt_filters: Optional[Dict[str, pyhanko.pdf_utils.crypt.CryptFilter]] = None, default_stream_filter='/Identity', default_string_filter='/Identity', default_file_filter=None)

	Bases: object

Crypt filter store attached to a security handler.

Instances of this class are not designed to be reusable.

	Parameters

	
	crypt_filters – A dictionary mapping names to their corresponding crypt filters.

	default_stream_filter – Name of the default crypt filter to use for streams.

	default_stream_filter – Name of the default crypt filter to use for strings.

	default_file_filter – Name of the default crypt filter to use for embedded files.

Note

PyHanko currently is not aware of embedded files, so managing these
is the API user’s responsibility.

	
filters()

	Enumerate all crypt filters in this configuration.

	
set_security_handler(handler: pyhanko.pdf_utils.crypt.SecurityHandler)

	Set the security handler on all crypt filters in this configuration.

	Parameters

	handler – A SecurityHandler instance.

	
get_for_stream()

	Retrieve the default crypt filter to use with streams.

	Returns

	A CryptFilter instance.

	
get_for_string()

	Retrieve the default crypt filter to use with strings.

	Returns

	A CryptFilter instance.

	
get_for_embedded_file()

	Retrieve the default crypt filter to use with embedded files.

	Returns

	A CryptFilter instance.

	
property stream_filter_name: pyhanko.pdf_utils.generic.NameObject

	The name of the default crypt filter to use with streams.

	
property string_filter_name: pyhanko.pdf_utils.generic.NameObject

	The name of the default crypt filter to use with streams.

	
property embedded_file_filter_name: pyhanko.pdf_utils.generic.NameObject

	Retrieve the name of the default crypt filter to use with embedded
files.

	
as_pdf_object()

	Serialise this crypt filter configuration to a dictionary object,
including all its subordinate crypt filters (with the exception of
the identity filter, if relevant).

	
standard_filters()

	Return the “standard” filters associated with this crypt filter
configuration, i.e. those registered as the defaults for strings,
streams and embedded files, respectively.

These sometimes require special treatment (as per the specification).

	Returns

	A set with one, two or three elements.

	
class pyhanko.pdf_utils.crypt.CryptFilter

	Bases: object

Generic abstract crypt filter class.

The superclass only handles the binding with the security handler, and
offers some default implementations for serialisation routines that may
be overridden in subclasses.

There is generally no requirement for crypt filters to be compatible with
any security handler (the leaf classes in this module aren’t), but
the API supports mixin usage so code can be shared.

	
property method: pyhanko.pdf_utils.generic.NameObject

	
	Returns

	The method name (/CFM entry) associated with this crypt filter.

	
property keylen: int

	
	Returns

	The keylength (in bytes) of the key associated with this crypt
filter.

	
encrypt(key, plaintext: bytes, params=None) → bytes

	Encrypt plaintext with the specified key.

	Parameters

	
	key – The current local key, which may or may not be equal to this
crypt filter’s global key.

	plaintext – Plaintext to encrypt.

	params – Optional parameters private to the crypt filter,
specified as a PDF dictionary. These can only be used for
explicit crypt filters; the parameters are then sourced from
the corresponding entry in /DecodeParms.

	Returns

	The resulting ciphertext.

	
decrypt(key, ciphertext: bytes, params=None) → bytes

	Decrypt ciphertext with the specified key.

	Parameters

	
	key – The current local key, which may or may not be equal to this
crypt filter’s global key.

	ciphertext – Ciphertext to decrypt.

	params – Optional parameters private to the crypt filter,
specified as a PDF dictionary. These can only be used for
explicit crypt filters; the parameters are then sourced from
the corresponding entry in /DecodeParms.

	Returns

	The resulting plaintext.

	
as_pdf_object() → pyhanko.pdf_utils.generic.DictionaryObject

	Serialise this crypt filter to a PDF crypt filter dictionary.

Note

Implementations are encouraged to use a cooperative inheritance
model, where subclasses first call super().as_pdf_object()
and add the keys they need before returning the result.

This makes it easy to write crypt filter mixins that can provide
functionality to multiple handlers.

	Returns

	A PDF crypt filter dictionary.

	
derive_shared_encryption_key() → bytes

	Compute the (global) file encryption key for this crypt filter.

	Returns

	The key, as a bytes object.

	Raises

	misc.PdfError – Raised if the data needed to derive the key is not present (e.g.
because the caller hasn’t authenticated yet).

	
derive_object_key(idnum, generation) → bytes

	Derive the encryption key for a specific object, based on the shared
file encryption key.

	Parameters

	
	idnum – ID of the object being encrypted.

	generation – Generation number of the object being encrypted.

	Returns

	The local key to use for this object.

	
set_embedded_only()

	

	
property shared_key: bytes

	Return the shared file encryption key for this crypt filter, or
attempt to compute it using derive_shared_encryption_key()
if not available.

	
class pyhanko.pdf_utils.crypt.StandardCryptFilter

	Bases: pyhanko.pdf_utils.crypt.CryptFilter, abc.ABC

Crypt filter for use with the standard security handler.

	
derive_shared_encryption_key() → bytes

	Compute the (global) file encryption key for this crypt filter.

	Returns

	The key, as a bytes object.

	Raises

	misc.PdfError – Raised if the data needed to derive the key is not present (e.g.
because the caller hasn’t authenticated yet).

	
as_pdf_object()

	Serialise this crypt filter to a PDF crypt filter dictionary.

Note

Implementations are encouraged to use a cooperative inheritance
model, where subclasses first call super().as_pdf_object()
and add the keys they need before returning the result.

This makes it easy to write crypt filter mixins that can provide
functionality to multiple handlers.

	Returns

	A PDF crypt filter dictionary.

	
class pyhanko.pdf_utils.crypt.PubKeyCryptFilter(*, recipients=None, acts_as_default=False, encrypt_metadata=True, **kwargs)

	Bases: pyhanko.pdf_utils.crypt.CryptFilter, abc.ABC

Crypt filter for use with public key security handler.
These are a little more independent than their counterparts for
the standard security handlers, since different crypt filters
can cater to different sets of recipients.

	Parameters

	
	recipients – List of CMS objects encoding recipient information for this crypt
filters.

	acts_as_default – Indicates whether this filter is intended to be used in
/StrF or /StmF.

	encrypt_metadata – Whether this crypt filter should encrypt document-level metadata.

Warning

See SecurityHandler for some background on the
way pyHanko interprets this value.

	
add_recipients(certs: List[asn1crypto.x509.Certificate], perms=- 4, ignore_key_usage=False)

	Add recipients to this crypt filter.
This always adds one full CMS object to the Recipients array

	Parameters

	
	certs – A list of recipient certificates.

	perms – The permission bits to assign to the listed recipients.

	ignore_key_usage – If False, the keyEncipherment key usage extension is required.

	
authenticate(credential) → pyhanko.pdf_utils.crypt.AuthResult

	Authenticate to this crypt filter in particular.
If used in /StmF or /StrF, you don’t need to worry about
calling this method directly.

	Parameters

	credential – The EnvelopeKeyDecrypter to authenticate with.

	Returns

	An AuthResult object indicating the level of access
obtained.

	
derive_shared_encryption_key() → bytes

	Compute the (global) file encryption key for this crypt filter.

	Returns

	The key, as a bytes object.

	Raises

	misc.PdfError – Raised if the data needed to derive the key is not present (e.g.
because the caller hasn’t authenticated yet).

	
as_pdf_object()

	Serialise this crypt filter to a PDF crypt filter dictionary.

Note

Implementations are encouraged to use a cooperative inheritance
model, where subclasses first call super().as_pdf_object()
and add the keys they need before returning the result.

This makes it easy to write crypt filter mixins that can provide
functionality to multiple handlers.

	Returns

	A PDF crypt filter dictionary.

	
class pyhanko.pdf_utils.crypt.IdentityCryptFilter

	Bases: pyhanko.pdf_utils.crypt.CryptFilter

Class implementing the trivial crypt filter.

This is a singleton class, so all its instances are identical.
Additionally, some of the CryptFilter API is nonfunctional.
In particular, as_pdf_object() always raises an error, since the
/Identity filter cannot be serialised.

	
method = '/None'

	

	
keylen = 0

	

	
derive_shared_encryption_key() → bytes

	Always returns an empty byte string.

	
derive_object_key(idnum, generation) → bytes

	Always returns an empty byte string.

	Parameters

	
	idnum – Ignored.

	generation – Ignored.

	Returns

	

	
as_pdf_object()

	Not implemented for this crypt filter.

	Raises

	misc.PdfError – Always.

	
encrypt(key, plaintext: bytes, params=None) → bytes

	Identity function.

	Parameters

	
	key – Ignored.

	plaintext – Returned as-is.

	params – Ignored.

	Returns

	The original plaintext.

	
decrypt(key, ciphertext: bytes, params=None) → bytes

	Identity function.

	Parameters

	
	key – Ignored.

	ciphertext – Returned as-is.

	params – Ignored.

	Returns

	The original ciphertext.

	
class pyhanko.pdf_utils.crypt.RC4CryptFilterMixin(*, keylen=5, **kwargs)

	Bases: pyhanko.pdf_utils.crypt.CryptFilter, abc.ABC

Mixin for RC4-based crypt filters.

	Parameters

	keylen – Key length, in bytes. Defaults to 5.

	
method = '/V2'

	

	
keylen = None

	

	
encrypt(key, plaintext: bytes, params=None) → bytes

	Encrypt data using RC4.

	Parameters

	
	key – Local encryption key.

	plaintext – Plaintext to encrypt.

	params – Ignored.

	Returns

	Ciphertext.

	
decrypt(key, ciphertext: bytes, params=None) → bytes

	Decrypt data using RC4.

	Parameters

	
	key – Local encryption key.

	ciphertext – Ciphertext to decrypt.

	params – Ignored.

	Returns

	Plaintext.

	
derive_object_key(idnum, generation) → bytes

	Derive the local key for the given object ID and generation number,
by calling legacy_derive_object_key().

	Parameters

	
	idnum – ID of the object being encrypted.

	generation – Generation number of the object being encrypted.

	Returns

	The local key.

	
class pyhanko.pdf_utils.crypt.AESCryptFilterMixin(*, keylen, **kwargs)

	Bases: pyhanko.pdf_utils.crypt.CryptFilter, abc.ABC

Mixin for AES-based crypt filters.

	
keylen = None

	

	
method = None

	

	
encrypt(key, plaintext: bytes, params=None)

	Encrypt data using AES in CBC mode, with PKCS#7 padding.

	Parameters

	
	key – The key to use.

	plaintext – The plaintext to be encrypted.

	params – Ignored.

	Returns

	The resulting ciphertext, prepended with a 16-byte initialisation
vector.

	
decrypt(key, ciphertext: bytes, params=None) → bytes

	Decrypt data using AES in CBC mode, with PKCS#7 padding.

	Parameters

	
	key – The key to use.

	ciphertext – The ciphertext to be decrypted, prepended with a 16-byte
initialisation vector.

	params – Ignored.

	Returns

	The resulting plaintext.

	
derive_object_key(idnum, generation) → bytes

	Derive the local key for the given object ID and generation number.

If the associated handler is of version
SecurityHandlerVersion.AES256 or greater, this method
simply returns the global key as-is.
If not, the computation is carried out by
legacy_derive_object_key().

	Parameters

	
	idnum – ID of the object being encrypted.

	generation – Generation number of the object being encrypted.

	Returns

	The local key.

	
class pyhanko.pdf_utils.crypt.StandardAESCryptFilter(*, keylen, **kwargs)

	Bases: pyhanko.pdf_utils.crypt.StandardCryptFilter, pyhanko.pdf_utils.crypt.AESCryptFilterMixin

AES crypt filter for the standard security handler.

	
class pyhanko.pdf_utils.crypt.StandardRC4CryptFilter(*, keylen=5, **kwargs)

	Bases: pyhanko.pdf_utils.crypt.StandardCryptFilter, pyhanko.pdf_utils.crypt.RC4CryptFilterMixin

RC4 crypt filter for the standard security handler.

	
class pyhanko.pdf_utils.crypt.PubKeyAESCryptFilter(*, recipients=None, acts_as_default=False, encrypt_metadata=True, **kwargs)

	Bases: pyhanko.pdf_utils.crypt.PubKeyCryptFilter, pyhanko.pdf_utils.crypt.AESCryptFilterMixin

AES crypt filter for public key security handlers.

	
class pyhanko.pdf_utils.crypt.PubKeyRC4CryptFilter(*, recipients=None, acts_as_default=False, encrypt_metadata=True, **kwargs)

	Bases: pyhanko.pdf_utils.crypt.PubKeyCryptFilter, pyhanko.pdf_utils.crypt.RC4CryptFilterMixin

RC4 crypt filter for public key security handlers.

	
class pyhanko.pdf_utils.crypt.EnvelopeKeyDecrypter(cert: asn1crypto.x509.Certificate)

	Bases: object

General credential class for use with public key security handlers.

This allows the key decryption process to happen offline, e.g. on a smart
card.

	Parameters

	cert – The recipient’s certificate.

	
decrypt(encrypted_key: bytes, algo_params: asn1crypto.cms.KeyEncryptionAlgorithm) → bytes

	Invoke the actual key decryption algorithm.

	Parameters

	
	encrypted_key – Payload to decrypt.

	algo_params – Specification of the encryption algorithm as a CMS object.

	Returns

	The decrypted payload.

	
class pyhanko.pdf_utils.crypt.SimpleEnvelopeKeyDecrypter(cert: asn1crypto.x509.Certificate, private_key: asn1crypto.keys.PrivateKeyInfo)

	Bases: pyhanko.pdf_utils.crypt.EnvelopeKeyDecrypter

Implementation of EnvelopeKeyDecrypter where the private key
is an RSA key residing in memory.

	Parameters

	
	cert – The recipient’s certificate.

	private_key – The recipient’s private key.

	
static load(key_file, cert_file, key_passphrase=None)

	Load a key decrypter using key material from files on disk.

	Parameters

	
	key_file – File containing the recipient’s private key.

	cert_file – File containing the recipient’s certificate.

	key_passphrase – Passphrase for the key file, if applicable.

	Returns

	An instance of SimpleEnvelopeKeyDecrypter.

	
classmethod load_pkcs12(pfx_file, passphrase=None)

	Load a key decrypter using key material from a PKCS#12 file on disk.

	Parameters

	
	pfx_file – Path to the PKCS#12 file containing the key material.

	passphrase – Passphrase for the private key, if applicable.

	Returns

	An instance of SimpleEnvelopeKeyDecrypter.

	
decrypt(encrypted_key: bytes, algo_params: asn1crypto.cms.KeyEncryptionAlgorithm) → bytes

	Decrypt the payload using RSA with PKCS#1 v1.5 padding.
Other schemes are not (currently) supported by this implementation.

	Parameters

	
	encrypted_key – Payload to decrypt.

	algo_params – Specification of the encryption algorithm as a CMS object.
Must use rsaes_pkcs1v15.

	Returns

	The decrypted payload.

	
pyhanko.pdf_utils.crypt.STD_CF = '/StdCF'

	Default name to use for the default crypt filter in the standard security
handler.

	
pyhanko.pdf_utils.crypt.DEFAULT_CRYPT_FILTER = '/DefaultCryptFilter'

	Default name to use for the default crypt filter in public key security
handlers.

	
pyhanko.pdf_utils.crypt.IDENTITY = '/Identity'

	Name of the identity crypt filter.

	
pyhanko.pdf_utils.crypt.legacy_derive_object_key(shared_key: bytes, idnum: int, generation: int, use_aes=False) → bytes

	Function that does the key derivation for PDF’s legacy security handlers.

	Parameters

	
	shared_key – Global file encryption key.

	idnum – ID of the object being written.

	generation – Generation number of the object being written.

	use_aes – Boolean indicating whether the security handler uses RC4 or AES(-128).

	Returns

	

	
pyhanko.pdf_utils.crypt.CryptFilterBuilder

	Type alias for a callable that produces a crypt filter from a dictionary.

alias of Callable[[pyhanko.pdf_utils.generic.DictionaryObject, bool], pyhanko.pdf_utils.crypt.CryptFilter]

	
pyhanko.pdf_utils.crypt.build_crypt_filter(reg: Dict[pyhanko.pdf_utils.generic.NameObject, Callable[[pyhanko.pdf_utils.generic.DictionaryObject, bool], pyhanko.pdf_utils.crypt.CryptFilter]], cfdict: pyhanko.pdf_utils.generic.DictionaryObject, acts_as_default: bool) → Optional[pyhanko.pdf_utils.crypt.CryptFilter]

	Interpret a crypt filter dictionary for a security handler.

	Parameters

	
	reg – A registry of named crypt filters.

	cfdict – A crypt filter dictionary.

	acts_as_default – Indicates whether this filter is intended to be used in
/StrF or /StmF.

	Returns

	An appropriate CryptFilter object, or None
if the crypt filter uses the /None method.

	Raises

	NotImplementedError – Raised when the crypt filter’s /CFM entry indicates an unknown
crypt filter method.

pyhanko.pdf_utils.embed module

Utility classes for handling embedded files in PDFs.

New in version 0.7.0.

	
pyhanko.pdf_utils.embed.embed_file(pdf_writer: pyhanko.pdf_utils.writer.BasePdfFileWriter, spec: pyhanko.pdf_utils.embed.FileSpec)

	Embed a file in the document-wide embedded file registry of a PDF writer.

	Parameters

	
	pdf_writer – PDF writer to house the embedded file.

	spec – File spec describing the embedded file.

	Returns

	

	
class pyhanko.pdf_utils.embed.EmbeddedFileObject(pdf_writer: pyhanko.pdf_utils.writer.BasePdfFileWriter, dict_data=None, stream_data=None, encoded_data=None, params: Optional[pyhanko.pdf_utils.embed.EmbeddedFileParams] = None, mime_type: Optional[str] = None)

	Bases: pyhanko.pdf_utils.generic.StreamObject

	
classmethod from_file_data(pdf_writer: pyhanko.pdf_utils.writer.BasePdfFileWriter, data: bytes, compress=True, params: Optional[pyhanko.pdf_utils.embed.EmbeddedFileParams] = None, mime_type: Optional[str] = None) → pyhanko.pdf_utils.embed.EmbeddedFileObject

	Construct an embedded file object from file data.

This is a very thin wrapper around the constructor, with a slightly
less intimidating API.

Note

This method will not register the embedded file into the document’s
embedded file namespace, see embed_file().

	Parameters

	
	pdf_writer – PDF writer to use.

	data – File contents, as a bytes object.

	compress – Whether to compress the embedded file’s contents.

	params – Optional embedded file parameters.

	mime_type – Optional MIME type string.

	Returns

	An embedded file object.

	
write_to_stream(stream, handler=None, container_ref=None)

	Abstract method to render this object to an output stream.

	Parameters

	
	stream – An output stream.

	container_ref – Local encryption key.

	handler – Security handler

	
class pyhanko.pdf_utils.embed.EmbeddedFileParams(embed_size: bool = True, embed_checksum: bool = True, creation_date: Union[datetime.datetime, NoneType] = None, modification_date: Union[datetime.datetime, NoneType] = None)

	Bases: object

	
embed_size: bool = True

	If true, record the file size of the embedded file.

Note

This value is computed over the file content before PDF filters
are applied. This may have performance implications in cases where the
file stream contents are presented in pre-encoded form.

	
embed_checksum: bool = True

	If true, add an MD5 checksum of the file contents.

Note

This value is computed over the file content before PDF filters
are applied. This may have performance implications in cases where the
file stream contents are presented in pre-encoded form.

	
creation_date: Optional[datetime.datetime] = None

	Record the creation date of the embedded file.

	
modification_date: Optional[datetime.datetime] = None

	Record the modification date of the embedded file.

	
class pyhanko.pdf_utils.embed.FileSpec(file_spec_string: str, file_name: Optional[str] = None, embedded_data: Optional[pyhanko.pdf_utils.embed.EmbeddedFileObject] = None, description: Optional[str] = None, af_relationship: Optional[pyhanko.pdf_utils.generic.NameObject] = None, f_related_files: Optional[List[pyhanko.pdf_utils.embed.RelatedFileSpec]] = None, uf_related_files: Optional[List[pyhanko.pdf_utils.embed.RelatedFileSpec]] = None)

	Bases: object

Dataclass modelling an embedded file description in a PDF.

	
file_spec_string: str

	A path-like file specification string, or URL.

Note

For backwards compatibility, this string should be encodable in
PDFDocEncoding. For names that require general Unicode support, refer
to file_name.

	
file_name: Optional[str] = None

	A path-like Unicode file name.

	
embedded_data: Optional[pyhanko.pdf_utils.embed.EmbeddedFileObject] = None

	Reference to a stream object containing the file’s data, as embedded
in the PDF file.

	
description: Optional[str] = None

	Textual description of the file.

	
af_relationship: Optional[pyhanko.pdf_utils.generic.NameObject] = None

	Associated file relationship specifier.

	
f_related_files: List[pyhanko.pdf_utils.embed.RelatedFileSpec] = None

	Related files with PDFDocEncoded names.

	
uf_related_files: List[pyhanko.pdf_utils.embed.RelatedFileSpec] = None

	Related files with Unicode-encoded names.

	
as_pdf_object() → pyhanko.pdf_utils.generic.DictionaryObject

	Represent the file spec as a PDF dictionary.

	
class pyhanko.pdf_utils.embed.RelatedFileSpec(name: str, embedded_data: pyhanko.pdf_utils.embed.EmbeddedFileObject)

	Bases: object

Dataclass modelling a RelatedFile construct in PDF.

	
name: str

	Name of the related file.

Note

The encoding requirements of this field depend on whether the related
file is included via the /F or /UF key.

	
embedded_data: pyhanko.pdf_utils.embed.EmbeddedFileObject

	Reference to a stream object containing the file’s data, as embedded
in the PDF file.

	
classmethod fmt_related_files(lst: List[pyhanko.pdf_utils.embed.RelatedFileSpec])

	

	
pyhanko.pdf_utils.embed.wrap_encrypted_payload(plaintext_payload: bytes, *, password: Optional[str] = None, certs: Optional[List[asn1crypto.x509.Certificate]] = None, security_handler: Optional[pyhanko.pdf_utils.crypt.SecurityHandler] = None, file_spec_string: str = 'attachment.pdf', params: Optional[pyhanko.pdf_utils.embed.EmbeddedFileParams] = None, file_name: Optional[str] = None, description='Wrapped document', include_explanation_page=True) → pyhanko.pdf_utils.writer.PdfFileWriter

	Include a PDF document as an encrypted attachment in a wrapper document.

This function sets certain flags in the wrapper document’s collection
dictionary to instruct compliant PDF viewers to display the attachment
instead of the wrapping document. Viewers that do not fully support
PDF collections will display a landing page instead, explaining
how to open the attachment manually.

Using this method mitigates some weaknesses in the PDF standard’s encryption
provisions, and makes it harder to manipulate the encrypted attachment
without knowing the encryption key.

Danger

Until PDF supports authenticated encryption mechanisms, this is
a mitigation strategy, not a foolproof defence mechanism.

Warning

While users of viewers that do not support PDF collections can still
open the attached file manually, the viewer still has to support
PDF files where only the attachments are encrypted.

Note

This is not quite the same as the “unencrypted wrapper document”
pattern discussed in the PDF 2.0 specification. The latter is intended
to support nonstandard security handlers. This function uses a standard
security handler on the wrapping document to encrypt the attachment
as a binary blob.
Moreover, the functionality in this function is available in PDF 1.7
viewers as well.

	Parameters

	
	plaintext_payload – The plaintext payload (a binary representation of a PDF document).

	security_handler – The security handler to use on the wrapper document.
If None, a security handler will be constructed based on the
password or certs parameter.

	password – Password to encrypt the attachment with.
Will be ignored if security_handler is provided.

	certs – Encrypt the file using PDF public-key encryption, targeting the
keys in the provided certificates.
Will be ignored if security_handler is provided.

	file_spec_string – PDFDocEncoded file spec string for the attachment.

	params – Embedded file parameters to use.

	file_name – Unicode file name for the attachment.

	description – Description for the attachment

	include_explanation_page – If False, do not generate an explanation page in the wrapper
document. This setting could be useful if you want to customise the
wrapper document’s behaviour yourself.

	Returns

	A PdfFileWriter representing the wrapper document.

pyhanko.pdf_utils.filters module

Implementation of stream filters for PDF.

Taken from PyPDF2 with modifications. See here
for the original license of the PyPDF2 project.

Note that not all decoders specified in the standard are supported.
In particular /Crypt and /LZWDecode are missing.

	
class pyhanko.pdf_utils.filters.Decoder

	Bases: object

General filter/decoder interface.

	
decode(data: bytes, decode_params: dict) → bytes

	Decode a stream.

	Parameters

	
	data – Data to decode.

	decode_params – Decoder parameters, sourced from the /DecoderParams entry
associated with this filter.

	Returns

	Decoded data.

	
encode(data: bytes, decode_params: dict) → bytes

	Encode a stream.

	Parameters

	
	data – Data to encode.

	decode_params – Encoder parameters, sourced from the /DecoderParams entry
associated with this filter.

	Returns

	Encoded data.

	
class pyhanko.pdf_utils.filters.ASCII85Decode

	Bases: pyhanko.pdf_utils.filters.Decoder

Implementation of the base 85 encoding scheme specified in ISO 32000-1.

	
encode(data: bytes, decode_params=None) → bytes

	Encode a stream.

	Parameters

	
	data – Data to encode.

	decode_params – Encoder parameters, sourced from the /DecoderParams entry
associated with this filter.

	Returns

	Encoded data.

	
decode(data, decode_params=None)

	Decode a stream.

	Parameters

	
	data – Data to decode.

	decode_params – Decoder parameters, sourced from the /DecoderParams entry
associated with this filter.

	Returns

	Decoded data.

	
class pyhanko.pdf_utils.filters.ASCIIHexDecode

	Bases: pyhanko.pdf_utils.filters.Decoder

Wrapper around binascii.hexlify() that implements the
Decoder interface.

	
encode(data: bytes, decode_params=None) → bytes

	Encode a stream.

	Parameters

	
	data – Data to encode.

	decode_params – Encoder parameters, sourced from the /DecoderParams entry
associated with this filter.

	Returns

	Encoded data.

	
decode(data, decode_params=None)

	Decode a stream.

	Parameters

	
	data – Data to decode.

	decode_params – Decoder parameters, sourced from the /DecoderParams entry
associated with this filter.

	Returns

	Decoded data.

	
class pyhanko.pdf_utils.filters.FlateDecode

	Bases: pyhanko.pdf_utils.filters.Decoder

Implementation of the /FlateDecode filter.

Warning

Currently not all predictor values are supported. This may cause
problems when extracting image data from PDF files.

	
decode(data: bytes, decode_params)

	Decode a stream.

	Parameters

	
	data – Data to decode.

	decode_params – Decoder parameters, sourced from the /DecoderParams entry
associated with this filter.

	Returns

	Decoded data.

	
encode(data, decode_params=None)

	Encode a stream.

	Parameters

	
	data – Data to encode.

	decode_params – Encoder parameters, sourced from the /DecoderParams entry
associated with this filter.

	Returns

	Encoded data.

	
pyhanko.pdf_utils.filters.get_generic_decoder(name: str) → pyhanko.pdf_utils.filters.Decoder

	Instantiate a specific stream filter decoder type by (PDF) name.

The following names are recognised:

	
	/FlateDecode or /Fl for the decoder implementing Flate
	compression.

	/ASCIIHexDecode or /AHx for the decoder that converts bytes to
their hexadecimal representations.

	/ASCII85Decode or /A85 for the decoder that converts byte strings
to a base-85 textual representation.

Warning

/Crypt is a special case because it requires access to the
document’s security handler.

Warning

LZW compression is currently unsupported, as are most compression
methods that are used specifically for image data.

	Parameters

	name – Name of the decoder to instantiate.

pyhanko.pdf_utils.font package

	pyhanko.pdf_utils.font.api module

	pyhanko.pdf_utils.font.basic module

	pyhanko.pdf_utils.font.opentype module

pyhanko.pdf_utils.font.api module

	
class pyhanko.pdf_utils.font.api.ShapeResult(graphics_ops: bytes, x_advance: float, y_advance: float)

	Bases: object

Result of shaping a Unicode string.

	
graphics_ops: bytes

	PDF graphics operators to render the glyphs.

	
x_advance: float

	Total horizontal advance in em units.

	
y_advance: float

	Total vertical advance in em units.

	
class pyhanko.pdf_utils.font.api.FontEngine(writer: pyhanko.pdf_utils.writer.BasePdfFileWriter, base_postscript_name: str, embedded_subset: bool, obj_stream=None)

	Bases: object

General interface for text shaping and font metrics.

	
property uses_complex_positioning

	If True, this font engine expects the line matrix to always be equal
to the text matrix when exiting and entering shape().
In other words, the current text position is where 0 0 Td would
move to.

If False, this method does not use any text positioning operators,
and therefore uses the PDF standard’s ‘natural’ positioning rules
for text showing operators.

The default is True unless overridden.

	
shape(txt: str) → pyhanko.pdf_utils.font.api.ShapeResult

	Render a string to a format suitable for inclusion in a content
stream and measure its total cursor advancement vector in em units.

	Parameters

	txt – String to shape.

	Returns

	A shaping result.

	
as_resource() → pyhanko.pdf_utils.generic.PdfObject

	Convert a FontEngine to a PDF object suitable for embedding
inside a resource dictionary.

Note

If the PDF object is an indirect reference, the caller must not
attempt to dereference it. In other words, implementations can
use preallocated references to delay subsetting until the last
possible moment (this is even encouraged, see
prepare_write()).

	Returns

	A PDF dictionary.

	
prepare_write()

	Called by the writer that manages this font resource before the PDF
content is written to a stream.

Subsetting operations and the like should be carried out as part of
this method.

	
class pyhanko.pdf_utils.font.api.FontSubsetCollection(base_postscript_name: str, subsets: Dict[Union[str, NoneType], ForwardRef('FontEngine')] = <factory>)

	Bases: object

	
base_postscript_name: str

	Base postscript name of the font.

	
subsets: Dict[Optional[str], pyhanko.pdf_utils.font.api.FontEngine]

	Dictionary mapping prefixes to subsets. None represents the full font.

	
add_subset() → str

	

	
class pyhanko.pdf_utils.font.api.FontEngineFactory

	Bases: object

	
create_font_engine(writer: pyhanko.pdf_utils.writer.BasePdfFileWriter, obj_stream=None) → pyhanko.pdf_utils.font.api.FontEngine

	

pyhanko.pdf_utils.font.basic module

	
class pyhanko.pdf_utils.font.basic.SimpleFontEngine(writer, name, avg_width)

	Bases: pyhanko.pdf_utils.font.api.FontEngine

Simplistic font engine that effectively only works with PDF standard fonts,
and does not care about font metrics. Best used with monospaced fonts such
as Courier.

	
property uses_complex_positioning

	If True, this font engine expects the line matrix to always be equal
to the text matrix when exiting and entering shape().
In other words, the current text position is where 0 0 Td would
move to.

If False, this method does not use any text positioning operators,
and therefore uses the PDF standard’s ‘natural’ positioning rules
for text showing operators.

The default is True unless overridden.

	
shape(txt) → pyhanko.pdf_utils.font.api.ShapeResult

	Render a string to a format suitable for inclusion in a content
stream and measure its total cursor advancement vector in em units.

	Parameters

	txt – String to shape.

	Returns

	A shaping result.

	
as_resource()

	Convert a FontEngine to a PDF object suitable for embedding
inside a resource dictionary.

Note

If the PDF object is an indirect reference, the caller must not
attempt to dereference it. In other words, implementations can
use preallocated references to delay subsetting until the last
possible moment (this is even encouraged, see
prepare_write()).

	Returns

	A PDF dictionary.

	
class pyhanko.pdf_utils.font.basic.SimpleFontEngineFactory(name, avg_width)

	Bases: pyhanko.pdf_utils.font.api.FontEngineFactory

	
create_font_engine(writer: pyhanko.pdf_utils.writer.BasePdfFileWriter, obj_stream=None)

	

	
static default_factory()

	
	Returns

	A FontEngineFactory instance representing the Courier
standard font.

pyhanko.pdf_utils.font.opentype module

Basic support for OpenType/TrueType font handling & subsetting.

This module relies on fontTools [https://pypi.org/project/fonttools/] for
OTF parsing and subsetting, and on HarfBuzz (via uharfbuzz) for shaping.

	
class pyhanko.pdf_utils.font.opentype.GlyphAccumulator(writer: pyhanko.pdf_utils.writer.BasePdfFileWriter, font_handle, font_size, features=None, ot_language_tag=None, ot_script_tag=None, writing_direction=None, bcp47_lang_code=None, obj_stream=None)

	Bases: pyhanko.pdf_utils.font.api.FontEngine

Utility to collect & measure glyphs from OpenType/TrueType fonts.

	Parameters

	
	writer – A PDF writer.

	font_handle – File-like object

	font_size – Font size in pt units.

Note

This is only relevant for some positioning intricacies (or hacks,
depending on your perspective) that may not matter for your use
case.

	features – Features to use. If None, use HarfBuzz defaults.

	ot_script_tag – OpenType script tag to use. Will be guessed by HarfBuzz if not
specified.

	ot_language_tag – OpenType language tag to use. Defaults to the default language system
for the current script.

	writing_direction – Writing direction, one of ‘ltr’, ‘rtl’, ‘ttb’ or ‘btt’.
Will be guessed by HarfBuzz if not specified.

	bcp47_lang_code – BCP 47 language code. Used to mark the text’s language in the PDF
content stream, if specified.

	obj_stream – Try to put font-related objects into a particular object stream, if
specified.

	
marked_content_property_list(txt) → pyhanko.pdf_utils.generic.DictionaryObject

	

	
shape(txt: str, with_actual_text: bool = True) → pyhanko.pdf_utils.font.api.ShapeResult

	Render a string to a format suitable for inclusion in a content
stream and measure its total cursor advancement vector in em units.

	Parameters

	txt – String to shape.

	Returns

	A shaping result.

	
prepare_write()

	This implementation of prepare_write will embed a subset of this
glyph accumulator’s font into the PDF writer it belongs to.
Said subset will include all glyphs necessary to render the
strings provided to the accumulator via feed_string().

Danger

Due to the way fontTools handles subsetting, this is a
destructive operation. The in-memory representation of the original
font will be overwritten by the generated subset.

	
as_resource() → pyhanko.pdf_utils.generic.IndirectObject

	Convert a FontEngine to a PDF object suitable for embedding
inside a resource dictionary.

Note

If the PDF object is an indirect reference, the caller must not
attempt to dereference it. In other words, implementations can
use preallocated references to delay subsetting until the last
possible moment (this is even encouraged, see
prepare_write()).

	Returns

	A PDF dictionary.

	
class pyhanko.pdf_utils.font.opentype.GlyphAccumulatorFactory(font_file: str, font_size: int = 10, ot_script_tag: Optional[str] = None, ot_language_tag: Optional[str] = None, writing_direction: Optional[str] = None, create_objstream_if_needed: bool = True)

	Bases: pyhanko.pdf_utils.font.api.FontEngineFactory

Stateless callable helper class to instantiate GlyphAccumulator
objects.

	
font_file: str

	Path to the OTF/TTF font to load.

	
font_size: int = 10

	Font size.

	
ot_script_tag: str = None

	OpenType script tag to use. Will be guessed by HarfBuzz if not
specified.

	
ot_language_tag: str = None

	OpenType language tag to use. Defaults to the default language system
for the current script.

	
writing_direction: str = None

	Writing direction, one of ‘ltr’, ‘rtl’, ‘ttb’ or ‘btt’.
Will be guessed by HarfBuzz if not specified.

	
create_objstream_if_needed: bool = True

	Create an object stream to hold this glyph accumulator’s assets if no
object stream is passed in, and the writer supports object streams.

	
create_font_engine(writer: pyhanko.pdf_utils.writer.BasePdfFileWriter, obj_stream=None) → pyhanko.pdf_utils.font.opentype.GlyphAccumulator

	

pyhanko.pdf_utils.generic module

Implementation of PDF object types and other generic functionality.
The internals were imported from PyPDF2, with modifications.

See here for the original license
of the PyPDF2 project.

	
class pyhanko.pdf_utils.generic.Dereferenceable

	Bases: object

Represents an opaque reference to a PDF object associated with
a PDF Handler (see PdfHandler).

This can either be a reference to an object with an object ID
(see Reference) or a reference to the trailer of a PDF document
(see TrailerReference).

	
get_object() → pyhanko.pdf_utils.generic.PdfObject

	Retrieve the PDF object backing this dereferenceable.

	Returns

	A PdfObject.

	
get_pdf_handler()

	Return the PDF handler associated with this dereferenceable.

	Returns

	a PdfHandler.

	
class pyhanko.pdf_utils.generic.Reference(idnum: int, generation: int = 0, pdf: Optional[object] = None)

	Bases: pyhanko.pdf_utils.generic.Dereferenceable

A reference to an object with a certain ID and generation number, with
a PDF handler attached to it.

Warning

Contrary to what one might expect, the generation number does not
indicate the document revision in which the object was modified. In fact,
nonzero generation numbers are exceedingly rare these days; in most
real-world PDF files, objects are simply overridden without ever
increasing the generation number.

Except in very specific circumstances, dereferencing a
Reference will return the most recent version of the object
with the stated object ID and generation number.

	
idnum: int

	The object’s ID.

	
generation: int = 0

	The object’s generation number (usually 0)

	
pdf: object = None

	The PDF handler associated with this reference, an instance of
PdfHandler.

Warning

This field is ignored when hashing or comparing Reference
objects, so it is the API user’s responsibility to not mix up
references originating from unrelated PDF handlers.

	
get_object() → pyhanko.pdf_utils.generic.PdfObject

	Retrieve the PDF object backing this dereferenceable.

	Returns

	A PdfObject.

	
get_pdf_handler()

	Return the PDF handler associated with this dereferenceable.

	Returns

	a PdfHandler.

	
class pyhanko.pdf_utils.generic.TrailerReference(reader)

	Bases: pyhanko.pdf_utils.generic.Dereferenceable

A reference to the trailer of a PDF document.

Warning

Since the trailer does not have a well-defined object ID in files with
“classical” cross-reference tables (as opposed to cross-reference
streams), this is not a subclass of Reference.

	
get_object() → pyhanko.pdf_utils.generic.PdfObject

	Retrieve the PDF object backing this dereferenceable.

	Returns

	A PdfObject.

	
get_pdf_handler()

	Return the PDF handler associated with this dereferenceable.

	Returns

	a PdfHandler.

	
class pyhanko.pdf_utils.generic.PdfObject

	Bases: object

Superclass for all PDF objects.

	
container_ref: pyhanko.pdf_utils.generic.Dereferenceable = None

	For objects read from a file, container_ref points to the unique
addressable object containing this object.

Note

Consider the following object definition in a PDF file:

4 0 obj
<< /Foo (Bar) >>

This declares a dictionary with ID 4, but the values /Foo and
(Bar) are also PDF objects (a name and a string, respectively).
All of these will have container_ref given by a Reference
with object ID 4 and generation number 0.

If an object is part of the trailer of a PDF file, container_ref will be
a TrailerReference.
For newly created objects (i.e. those not read from a file), container_ref
is always None.

	
get_container_ref() → pyhanko.pdf_utils.generic.Dereferenceable

	Return a reference to the closest parent object containing this object.
Raises an error if no such reference can be found.

	
get_object()

	Resolves indirect references.

	Returns

	self, unless an instance of IndirectObject.

	
write_to_stream(stream, handler=None, container_ref: Optional[pyhanko.pdf_utils.generic.Reference] = None)

	Abstract method to render this object to an output stream.

	Parameters

	
	stream – An output stream.

	container_ref – Local encryption key.

	handler – Security handler

	
class pyhanko.pdf_utils.generic.IndirectObject(idnum, generation, pdf)

	Bases: pyhanko.pdf_utils.generic.PdfObject, pyhanko.pdf_utils.generic.Dereferenceable

Thin wrapper around a Reference, implementing both the
Dereferenceable and PdfObject interfaces.

Warning

For many purposes, this class is functionally interchangeable with
Reference, with one important exception:
IndirectObject instances pointing to the same reference
but occurring at different locations in the file may have distinct
container_ref values.

	
get_object()

	
	Returns

	The PDF object this reference points to.

	
get_pdf_handler()

	Return the PDF handler associated with this dereferenceable.

	Returns

	a PdfHandler.

	
property idnum: int

	
	Returns

	the object ID of this reference.

	
property generation

	
	Returns

	the generation number of this reference.

	
write_to_stream(stream, handler=None, container_ref=None)

	Abstract method to render this object to an output stream.

	Parameters

	
	stream – An output stream.

	container_ref – Local encryption key.

	handler – Security handler

	
static read_from_stream(stream, container_ref: pyhanko.pdf_utils.generic.Dereferenceable)

	

	
class pyhanko.pdf_utils.generic.NullObject

	Bases: pyhanko.pdf_utils.generic.PdfObject

PDF null object.

All instances are treated as equal and falsy.

	
write_to_stream(stream, handler=None, container_ref=None)

	Abstract method to render this object to an output stream.

	Parameters

	
	stream – An output stream.

	container_ref – Local encryption key.

	handler – Security handler

	
static read_from_stream(stream)

	

	
class pyhanko.pdf_utils.generic.BooleanObject(value)

	Bases: pyhanko.pdf_utils.generic.PdfObject

PDF boolean value.

	
write_to_stream(stream, handler=None, container_ref=None)

	Abstract method to render this object to an output stream.

	Parameters

	
	stream – An output stream.

	container_ref – Local encryption key.

	handler – Security handler

	
static read_from_stream(stream)

	

	
class pyhanko.pdf_utils.generic.FloatObject(value='0', context=None)

	Bases: decimal.Decimal, pyhanko.pdf_utils.generic.PdfObject

PDF Float object.

Internally, these are treated as decimals (and therefore actually
fixed-point objects, to be precise).

	
as_numeric()

	
	Returns

	a Python float value for this object.

	
write_to_stream(stream, handler=None, container_ref=None)

	Abstract method to render this object to an output stream.

	Parameters

	
	stream – An output stream.

	container_ref – Local encryption key.

	handler – Security handler

	
class pyhanko.pdf_utils.generic.NumberObject(value)

	Bases: int, pyhanko.pdf_utils.generic.PdfObject

PDF number object. This is the PDF type for integer values.

	
NumberPattern = re.compile(b'[^+-.0-9]')

	

	
ByteDot = b'.'

	

	
as_numeric()

	
	Returns

	a Python int value for this object.

	
write_to_stream(stream, handler=None, container_ref=None)

	Abstract method to render this object to an output stream.

	Parameters

	
	stream – An output stream.

	container_ref – Local encryption key.

	handler – Security handler

	
static read_from_stream(stream)

	

	
class pyhanko.pdf_utils.generic.ByteStringObject

	Bases: bytes, pyhanko.pdf_utils.generic.PdfObject

PDF bytestring class.

	
property original_bytes

	For compatibility with TextStringObject.original_bytes

	
write_to_stream(stream, handler=None, container_ref=None)

	Abstract method to render this object to an output stream.

	Parameters

	
	stream – An output stream.

	container_ref – Local encryption key.

	handler – Security handler

	
class pyhanko.pdf_utils.generic.TextStringObject

	Bases: str, pyhanko.pdf_utils.generic.PdfObject

PDF text string object.

	
autodetect_pdfdocencoding = False

	If True, this string was determined to be encoded in PDFDoc encoding.

	
autodetect_utf16 = False

	If True, this string was determined to be encoded in UTF16-BE encoding.

	
property original_bytes

	Retrieve the original bytes of the string as specified in the
source file.

This may be necessary if this string was misidentified as a text string.

	
write_to_stream(stream, handler=None, container_ref=None)

	Abstract method to render this object to an output stream.

	Parameters

	
	stream – An output stream.

	container_ref – Local encryption key.

	handler – Security handler

	
class pyhanko.pdf_utils.generic.NameObject

	Bases: str, pyhanko.pdf_utils.generic.PdfObject

PDF name object. These are valid Python strings, but names and strings
are treated differently in the PDF specification, so proper care is
required.

	
DELIMITER_PATTERN = re.compile(b'\\s+|[\\(\\)<>\\[\\]{}/%]')

	

	
write_to_stream(stream, handler=None, container_ref=None)

	Abstract method to render this object to an output stream.

	Parameters

	
	stream – An output stream.

	container_ref – Local encryption key.

	handler – Security handler

	
static read_from_stream(stream)

	

	
class pyhanko.pdf_utils.generic.ArrayObject(iterable=(), /)

	Bases: list, pyhanko.pdf_utils.generic.PdfObject

PDF array object. This class extends from Python’s list class,
and supports its interface.

Warning

Contrary to the case of dictionary objects, PyPDF2 does not
transparently dereference array entries when accessed using
__getitem__().
For usability & consistency reasons, I decided to depart from that
and dereference automatically.
This makes the behaviour of ArrayObject consistent with
DictionaryObject.

That said, some vestiges of the old PyPDF2 behaviour may linger in
the codebase. I’ll fix those as I get to them.

	
raw_get(index, decrypt=True)

	Get a value from an array without dereferencing.
In other words, if the value corresponding to the given key is of type
IndirectObject, the indirect reference will not be resolved.

	Parameters

	
	index – Key to look up in the dictionary.

	decrypt – If False, instances of DecryptedObjectProxy will
be returned as-is. If True, they will be decrypted.
Default True.

	Returns

	A PdfObject.

	
write_to_stream(stream, handler=None, container_ref=None)

	Abstract method to render this object to an output stream.

	Parameters

	
	stream – An output stream.

	container_ref – Local encryption key.

	handler – Security handler

	
static read_from_stream(stream, container_ref)

	

	
class pyhanko.pdf_utils.generic.DictionaryObject(dict_data=None)

	Bases: dict, pyhanko.pdf_utils.generic.PdfObject

A PDF dictionary object.

Keys in a PDF dictionary are PDF names, and values are PDF objects.

When accessing a key using the standard __getitem__() syntax,
IndirectObject references will be resolved.

	
raw_get(key, decrypt=True)

	Get a value from a dictionary without dereferencing.
In other words, if the value corresponding to the given key is of type
IndirectObject, the indirect reference will not be resolved.

	Parameters

	
	key – Key to look up in the dictionary.

	decrypt – If False, instances of DecryptedObjectProxy will
be returned as-is. If True, they will be decrypted.
Default True.

	Returns

	A PdfObject.

	
setdefault(key, value=None)

	Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

	
get_and_apply(key, function: Callable[[pyhanko.pdf_utils.generic.PdfObject], Any], *, raw=False, default=None)

	

	
get_value_as_reference(key, optional=False) → pyhanko.pdf_utils.generic.Reference

	

	
write_to_stream(stream, handler=None, container_ref=None)

	Abstract method to render this object to an output stream.

	Parameters

	
	stream – An output stream.

	container_ref – Local encryption key.

	handler – Security handler

	
static read_from_stream(stream, container_ref: pyhanko.pdf_utils.generic.Dereferenceable)

	

	
class pyhanko.pdf_utils.generic.StreamObject(dict_data=None, stream_data=None, encoded_data=None, handler=None)

	Bases: pyhanko.pdf_utils.generic.DictionaryObject

PDF stream object.

Essentially, a PDF stream is a dictionary object with a binary blob of
data attached. This data can be encoded by various filters (not all of which
are currently supported, see filters).

A stream object can be initialised with encoded or decoded data.
The former is used by reader.PdfFileReader to provide on-demand
decoding, with writer.BasePdfFileWriter and its subclasses working
the other way around.

Note that the StreamObject class manages some of its dictionary
keys by itself. This is partly the case for the various /Filter
and /DecodeParms entries, but also for the /Length entry.
The latter will be overwritten as necessary.

	
add_crypt_filter(name='/Identity', params=None, handler=None)

	

	
strip_filters()

	Ensure the stream is decoded, and remove any filters.

	
property data: bytes

	Return the decoded stream data as bytes.
If the stream hasn’t been decoded yet, it will be decoded on-the-fly.

	Raises

	misc.PdfStreamError – If the stream could not be decoded.

	
property encoded_data: bytes

	Return the encoded stream data as bytes.
If the stream hasn’t been encoded yet, it will be encoded on-the-fly.

	Raises

	misc.PdfStreamError – If the stream could not be encoded.

	
apply_filter(filter_name, params=None, allow_duplicates: Optional[bool] = True)

	Apply a new filter to this stream. This filter will be prepended
to any existing filters.
This means that is is placed last in the encoding order, but first
in the decoding order.

Note: Calling this method on an encoded stream will first cause the
stream to be decoded using the filters already present.
The cached value for the encoded stream data will be cleared.

	Parameters

	
	filter_name – Name of the filter
(see DECODERS)

	params – Parameters to the filter (will be written to /DecodeParms if
not None)

	allow_duplicates – If None, silently ignore duplicate filters.
If False, raise ValueError when attempting to add a duplicate
filter. If True (default), duplicate filters are allowed.

	
compress()

	Convenience method to add a /FlateDecode filter with default
settings, if one is not already present.

Note: compression is not actually applied until the stream is written.

	
property is_embedded_file_stream

	

	
write_to_stream(stream, handler=None, container_ref=None)

	Abstract method to render this object to an output stream.

	Parameters

	
	stream – An output stream.

	container_ref – Local encryption key.

	handler – Security handler

	
pyhanko.pdf_utils.generic.read_object(stream, container_ref: pyhanko.pdf_utils.generic.Dereferenceable) → pyhanko.pdf_utils.generic.PdfObject

	Read a PDF object from an input stream.

Note

The container_ref parameter tells the API which reference to register
when the returned object is modified in an incremental update.
See also here here for further
information.

	Parameters

	
	stream – An input stream.

	container_ref – A reference to an object containing this one.

Note: It is perfectly possible (and common) for container_ref to
resolve to the return value of this function.

	Returns

	A PdfObject.

	
pyhanko.pdf_utils.generic.pdf_name

	alias of pyhanko.pdf_utils.generic.NameObject

	
pyhanko.pdf_utils.generic.pdf_string(string) → Union[pyhanko.pdf_utils.generic.ByteStringObject, pyhanko.pdf_utils.generic.TextStringObject]

	Encode a string as a TextStringObject if possible,
or a ByteStringObject otherwise.

	Parameters

	string – A Python string.

	
pyhanko.pdf_utils.generic.pdf_date(dt: datetime.datetime) → pyhanko.pdf_utils.generic.TextStringObject

	Convert a datetime object into a PDF string.
This function supports both timezone-aware and naive datetime objects.

	Parameters

	dt – The datetime object to convert.

	Returns

	A TextStringObject representing the datetime passed in.

pyhanko.pdf_utils.images module

Utilities for embedding bitmap image data into PDF files.

The image data handling is done by
Pillow [https://github.com/python-pillow/Pillow].

Note

Note that also here we only support a subset of what the PDF standard
provides for. Most RGB and grayscale images (with or without transparency)
that can be read by PIL/Pillow can be used without issue.
PNG images with an indexed palette backed by one of these colour spaces
can also be used.

Currently there is no support for CMYK images or (direct) support for
embedding JPEG-encoded image data as such, but these features may be added
later.

	
pyhanko.pdf_utils.images.pil_image(img: PIL.Image.Image, writer: pyhanko.pdf_utils.writer.BasePdfFileWriter)

	This function writes a PIL/Pillow Image object to a PDF file
writer, as an image XObject.

	Parameters

	
	img – A Pillow Image object

	writer – A PDF file writer

	Returns

	A reference to the image XObject written.

	
class pyhanko.pdf_utils.images.PdfImage(image: Union[PIL.Image.Image, str], writer: Optional[pyhanko.pdf_utils.writer.BasePdfFileWriter] = None, resources: Optional[pyhanko.pdf_utils.content.PdfResources] = None, name: Optional[str] = None, opacity=None, box: Optional[pyhanko.pdf_utils.layout.BoxConstraints] = None)

	Bases: pyhanko.pdf_utils.content.PdfContent

Wrapper class that implements the PdfContent interface for
image objects.

Note

Instances of this class are reusable, in the sense that the
implementation is aware of changes to the associated writer
object. This allows the same image to be embedded into multiple files
without instantiating a new PdfImage every time.

	
property image_ref: pyhanko.pdf_utils.generic.IndirectObject

	Return a reference to the image XObject associated with this
PdfImage instance.
If no such reference is available, it will be created using
pil_image(), and the result will be cached until the
writer attribute changes
(see set_writer()).

	Returns

	An indirect reference to an image XObject.

	
render() → bytes

	Compile the content to graphics operators.

pyhanko.pdf_utils.incremental_writer module

Utility for writing incremental updates to existing PDF files.

	
class pyhanko.pdf_utils.incremental_writer.IncrementalPdfFileWriter(input_stream, prev: Optional[pyhanko.pdf_utils.reader.PdfFileReader] = None)

	Bases: pyhanko.pdf_utils.writer.BasePdfFileWriter

Class to incrementally update existing files.

This BasePdfFileWriter subclass encapsulates a
PdfFileReader instance in addition to exposing an
interface to add and modify PDF objects.

Incremental updates to a PDF file append modifications to the end of the
file. This is critical when the original file contents are not to be
modified directly (e.g. when it contains digital signatures).
It has the additional advantage of providing an automatic audit trail of
sorts.

	Parameters

	
	input_stream – Input stream to read current revision from.

	prev – Explicitly pass in a PDF reader. This parameter is internal API.

	
IO_CHUNK_SIZE = 4096

	

	
classmethod from_reader(reader: pyhanko.pdf_utils.reader.PdfFileReader) → pyhanko.pdf_utils.incremental_writer.IncrementalPdfFileWriter

	Instantiate an incremental writer from a PDF file reader.

	Parameters

	reader – A PdfFileReader object with a PDF to extend.

	
ensure_output_version(version)

	

	
get_object(ido)

	Retrieve the object associated with the provided reference from
this PDF handler.

	Parameters

	ref – An instance of generic.Reference.

	Returns

	A PDF object.

	
mark_update(obj_ref: Union[pyhanko.pdf_utils.generic.Reference, pyhanko.pdf_utils.generic.IndirectObject])

	Mark an object reference to be updated.
This is only relevant for incremental updates, but is included
as a no-op by default for interoperability reasons.

	Parameters

	obj_ref – An indirect object instance or a reference.

	
update_container(obj: pyhanko.pdf_utils.generic.PdfObject)

	Mark the container of an object (as indicated by the
container_ref attribute on
PdfObject) for an update.

As with mark_update(), this only applies to incremental updates,
but defaults to a no-op.

	Parameters

	obj – The object whose top-level container needs to be rewritten.

	
update_root()

	Signal that the document catalog should be written to the output.
Equivalent to calling mark_update() with root_ref.

	
set_info(info: Optional[Union[pyhanko.pdf_utils.generic.IndirectObject, pyhanko.pdf_utils.generic.DictionaryObject]])

	Set the /Info entry of the document trailer.

	Parameters

	info – The new /Info dictionary, either as an indirect reference
or as a DictionaryObject

	
set_custom_trailer_entry(key: pyhanko.pdf_utils.generic.NameObject, value: pyhanko.pdf_utils.generic.PdfObject)

	Set a custom, unmanaged entry in the document trailer or cross-reference
stream dictionary.

Warning

Calling this method to set an entry that is managed by pyHanko
internally (info dictionary, document catalog, etc.) has undefined
results.

	Parameters

	
	key – Dictionary key to use in the trailer.

	value – Value to set

	
write(stream)

	Write the contents of this PDF writer to a stream.

	Parameters

	stream – A writable output stream.

	
write_updated_section(stream)

	Only write the updated and new objects to the designated output stream.

The new PDF file can then be put together by concatenating the original
input with the generated output.

	Parameters

	stream – Output stream to write to.

	
write_in_place()

	Write the updated file contents in-place to the same stream as
the input stream.
This obviously requires a stream supporting both reading and writing
operations.

	
encrypt(user_pwd)

	Method to handle updates to encrypted files.

This method handles decrypting of the original file, and makes sure
the resulting updated file is encrypted in a compatible way.
The standard mandates that updates to encrypted files be effected using
the same encryption settings. In particular, incremental updates
cannot remove file encryption.

	Parameters

	user_pwd – The original file’s user password.

	Raises

	PdfReadError – Raised when there is a problem decrypting the file.

	
encrypt_pubkey(credential: pyhanko.pdf_utils.crypt.EnvelopeKeyDecrypter)

	Method to handle updates to files encrypted using public-key
encryption.

The same caveats as encrypt() apply here.

	Parameters

	credential – The EnvelopeKeyDecrypter handling the recipient’s
private key.

	Raises

	PdfReadError – Raised when there is a problem decrypting the file.

	
stream_xrefs: bool

	Boolean controlling whether or not the output file will contain
its cross-references in stream format, or as a classical XRef table.

The default for new files is True. For incremental updates,
the writer adapts to the system used in the previous iteration of the
document (as mandated by the standard).

pyhanko.pdf_utils.layout module

Layout utilities (to be expanded)

	
exception pyhanko.pdf_utils.layout.LayoutError

	Bases: ValueError

Indicates an error in a layout computation.

	
exception pyhanko.pdf_utils.layout.BoxSpecificationError

	Bases: pyhanko.pdf_utils.layout.LayoutError

Raised when a box constraint is over/underspecified.

	
class pyhanko.pdf_utils.layout.BoxConstraints(width=None, height=None, aspect_ratio: Optional[fractions.Fraction] = None)

	Bases: object

Represents a box of potentially variable width and height.
Among other uses, this can be leveraged to produce a variably sized
box with a fixed aspect ratio.

If width/height are not defined yet, they can be set by assigning to the
width and height attributes.

	
property width: int

	
	Returns

	The width of the box.

	Raises

	BoxSpecificationError – if the box’s width could not be determined.

	
property width_defined: bool

	
	Returns

	True if the box currently has a well-defined width,
False otherwise.

	
property height: int

	
	Returns

	The height of the box.

	Raises

	BoxSpecificationError – if the box’s height could not be determined.

	
property height_defined: bool

	
	Returns

	True if the box currently has a well-defined height,
False otherwise.

	
property aspect_ratio: fractions.Fraction

	
	Returns

	The aspect ratio of the box.

	Raises

	BoxSpecificationError – if the box’s aspect ratio could not be determined.

	
property aspect_ratio_defined: bool

	
	Returns

	True if the box currently has a well-defined aspect ratio,
False otherwise.

	
class pyhanko.pdf_utils.layout.AxisAlignment(value)

	Bases: enum.Enum

Class representing one-dimensional alignment along an axis.

	
ALIGN_MIN = 1

	Align maximally towards the negative end of the axis.

	
ALIGN_MID = 2

	Center content along the axis.

	
ALIGN_MAX = 3

	Align maximally towards the positive end of the axis.

	
classmethod from_x_align(align_str: str) → pyhanko.pdf_utils.layout.AxisAlignment

	Convert from a horizontal alignment config string.

	Parameters

	align_str – A string: ‘left’, ‘mid’ or ‘right’.

	Returns

	An AxisAlignment value.

	Raises

	ConfigurationError – on unexpected string inputs.

	
classmethod from_y_align(align_str: str) → pyhanko.pdf_utils.layout.AxisAlignment

	Convert from a vertical alignment config string.

	Parameters

	align_str – A string: ‘bottom’, ‘mid’ or ‘top’.

	Returns

	An AxisAlignment value.

	Raises

	ConfigurationError – on unexpected string inputs.

	
property flipped

	

	
align(container_len: int, inner_len: int, pre_margin, post_margin) → int

	

	
class pyhanko.pdf_utils.layout.Margins(left: int = 0, right: int = 0, top: int = 0, bottom: int = 0)

	Bases: pyhanko.pdf_utils.config_utils.ConfigurableMixin

Class describing a set of margins.

	
left: int = 0

	

	
right: int = 0

	

	
top: int = 0

	

	
bottom: int = 0

	

	
classmethod uniform(num)

	Return a set of uniform margins.

	Parameters

	num – The uniform margin to apply to all four sides.

	Returns

	Margins(num, num, num, num)

	
static effective(dim_name, container_len, pre, post)

	Internal helper method to compute effective margins.

	
effective_width(width)

	Compute width without margins.

	Parameters

	width – The container width.

	Returns

	The width after subtracting the left and right margins.

	Raises

	LayoutError – if the container width is too short to accommodate the margins.

	
effective_height(height)

	Compute height without margins.

	Parameters

	height – The container height.

	Returns

	The height after subtracting the top and bottom margins.

	Raises

	LayoutError – if the container height is too short to accommodate the margins.

	
classmethod from_config(config_dict)

	Attempt to instantiate an object of the class on which it is called,
by means of the configuration settings passed in.

First, we check that the keys supplied in the dictionary correspond
to data fields on the current class.
Then, the dictionary is processed using the process_entries()
method. The resulting dictionary is passed to the initialiser
of the current class as a kwargs dict.

	Parameters

	config_dict – A dictionary containing configuration values.

	Returns

	An instance of the class on which it is called.

	Raises

	ConfigurationError – when an unexpected configuration key is encountered or left
unfilled, or when there is a problem processing one of the config
values.

	
class pyhanko.pdf_utils.layout.InnerScaling(value)

	Bases: enum.Enum

Class representing a scaling convention.

	
NO_SCALING = 1

	Never scale content.

	
STRETCH_FILL = 2

	Scale content to fill the entire container.

	
STRETCH_TO_FIT = 3

	Scale content while preserving aspect ratio until either the maximal
width or maximal height is reached.

	
SHRINK_TO_FIT = 4

	Scale content down to fit in the container, while preserving the original
aspect ratio.

	
classmethod from_config(config_str: str) → pyhanko.pdf_utils.layout.InnerScaling

	Convert from a configuration string.

	Parameters

	config_str – A string: ‘none’, ‘stretch-fill’, ‘stretch-to-fit’, ‘shrink-to-fit’

	Returns

	An InnerScaling value.

	Raises

	ConfigurationError – on unexpected string inputs.

	
class pyhanko.pdf_utils.layout.SimpleBoxLayoutRule(x_align: pyhanko.pdf_utils.layout.AxisAlignment, y_align: pyhanko.pdf_utils.layout.AxisAlignment, margins: pyhanko.pdf_utils.layout.Margins = Margins(left=0, right=0, top=0, bottom=0), inner_content_scaling: pyhanko.pdf_utils.layout.InnerScaling = InnerScaling.SHRINK_TO_FIT)

	Bases: pyhanko.pdf_utils.config_utils.ConfigurableMixin

Class describing alignment, scaling and margin rules for a box
positioned inside another box.

	
x_align: pyhanko.pdf_utils.layout.AxisAlignment

	Horizontal alignment settings.

	
y_align: pyhanko.pdf_utils.layout.AxisAlignment

	Vertical alignment settings.

	
margins: pyhanko.pdf_utils.layout.Margins = Margins(left=0, right=0, top=0, bottom=0)

	Container (inner) margins. Defaults to all zeroes.

	
inner_content_scaling: pyhanko.pdf_utils.layout.InnerScaling = 4

	Inner content scaling rule.

	
classmethod process_entries(config_dict)

	Hook method that can modify the configuration dictionary
to overwrite or tweak some of their values (e.g. to convert string
parameters into more complex Python objects)

Subclasses that override this method should call
super().process_entries(), and leave keys that they do not
recognise untouched.

	Parameters

	config_dict – A dictionary containing configuration values.

	Raises

	ConfigurationError – when there is a problem processing a relevant entry.

	
substitute_margins(new_margins: pyhanko.pdf_utils.layout.Margins) → pyhanko.pdf_utils.layout.SimpleBoxLayoutRule

	

	
fit(container_box: pyhanko.pdf_utils.layout.BoxConstraints, inner_nat_width: int, inner_nat_height: int) → pyhanko.pdf_utils.layout.Positioning

	Position and possibly scale a box within a container, according
to this layout rule.

	Parameters

	
	container_box – BoxConstraints describing the container.

	inner_nat_width – The inner box’s natural width.

	inner_nat_height – The inner box’s natural height.

	Returns

	A Positioning describing the scaling & position of the
lower left corner of the inner box.

	
class pyhanko.pdf_utils.layout.Positioning(x_pos: int, y_pos: int, x_scale: float, y_scale: float)

	Bases: pyhanko.pdf_utils.config_utils.ConfigurableMixin

Class describing the position and scaling of an object in a container.

	
x_pos: int

	Horizontal coordinate

	
y_pos: int

	Vertical coordinate

	
x_scale: float

	Horizontal scaling

	
y_scale: float

	Vertical scaling

	
as_cm()

	Convenience method to convert this Positioning into a PDF
cm operator.

	Returns

	A byte string representing the cm operator corresponding
to this Positioning.

pyhanko.pdf_utils.misc module

Utility functions for PDF library.
Taken from PyPDF2 with modifications and additions, see
here for the original license of the PyPDF2 project.

Generally, all of these constitute internal API, except for the exception
classes.

	
exception pyhanko.pdf_utils.misc.PdfError

	Bases: Exception

	
exception pyhanko.pdf_utils.misc.PdfReadError

	Bases: pyhanko.pdf_utils.misc.PdfError

	
exception pyhanko.pdf_utils.misc.PdfWriteError

	Bases: pyhanko.pdf_utils.misc.PdfError

	
exception pyhanko.pdf_utils.misc.PdfStreamError

	Bases: pyhanko.pdf_utils.misc.PdfReadError

	
exception pyhanko.pdf_utils.misc.IndirectObjectExpected

	Bases: pyhanko.pdf_utils.misc.PdfReadError

	
pyhanko.pdf_utils.misc.get_and_apply(dictionary: dict, key, function: Callable, *, default=None)

	

	
pyhanko.pdf_utils.misc.get_courier()

	
	Returns

	A resource dictionary representing the standard Courier font
(or one of its metric equivalents).

	
class pyhanko.pdf_utils.misc.OrderedEnum(value)

	Bases: enum.Enum

Ordered enum (from the Python documentation)

	
pyhanko.pdf_utils.misc.is_regular_character(byte_value: int)

	

	
pyhanko.pdf_utils.misc.read_non_whitespace(stream, seek_back=False, allow_eof=False)

	Finds and reads the next non-whitespace character (ignores whitespace).

	
pyhanko.pdf_utils.misc.read_until_whitespace(stream, maxchars=None)

	Reads non-whitespace characters and returns them.
Stops upon encountering whitespace or when maxchars is reached.

	
pyhanko.pdf_utils.misc.read_until_regex(stream, regex, ignore_eof=False)

	Reads until the regular expression pattern matched (ignore the match)
Raise PdfStreamError on premature end-of-file.
:param bool ignore_eof: If true, ignore end-of-line and return immediately
:param regex: regex to match
:param stream: stream to search

	
pyhanko.pdf_utils.misc.skip_over_whitespace(stream)

	Similar to readNonWhitespace, but returns a Boolean if more than
one whitespace character was read.

	
pyhanko.pdf_utils.misc.skip_over_comment(stream)

	

	
pyhanko.pdf_utils.misc.instance_test(cls)

	

	
pyhanko.pdf_utils.misc.peek(itr)

	

	
pyhanko.pdf_utils.misc.assert_writable_and_random_access(output)

	Raise an error if the buffer in question is not writable, and return
a boolean to indicate whether it supports random-access reading.

	Parameters

	output –

	Returns

	

	
pyhanko.pdf_utils.misc.prepare_rw_output_stream(output)

	Prepare an output stream that supports both reading and writing.
Intended to be used for writing & updating signed files:
when producing a signature, we render the PDF to a byte buffer with
placeholder values for the signature data, or straight to the provided
output stream if possible.

More precisely: this function will return the original output stream
if it is writable, readable and seekable.
If the output parameter is None, not readable or not seekable,
this function will return a BytesIO instance instead.
If the output parameter is not None and not writable,
IOError will be raised.

	Parameters

	output – A writable file-like object, or None.

	Returns

	A file-like object that supports reading, writing and seeking.

	
pyhanko.pdf_utils.misc.finalise_output(orig_output, returned_output)

	Several internal APIs transparently replaces non-readable/seekable
buffers with BytesIO for signing operations, but we don’t want to
expose that to the public API user.
This internal API function handles the unwrapping.

	
pyhanko.pdf_utils.misc.DEFAULT_CHUNK_SIZE = 4096

	Default chunk size for stream I/O.

	
pyhanko.pdf_utils.misc.chunked_write(temp_buffer: bytearray, stream, output, max_read=None)

	

	
pyhanko.pdf_utils.misc.chunked_digest(temp_buffer: bytearray, stream, md, max_read=None)

	

	
pyhanko.pdf_utils.misc.chunk_stream(temp_buffer: bytearray, stream, max_read=None)

	

	
class pyhanko.pdf_utils.misc.ConsList(head: object, tail: 'ConsList' = None)

	Bases: object

	
head: object

	

	
tail: pyhanko.pdf_utils.misc.ConsList = None

	

	
static empty() → pyhanko.pdf_utils.misc.ConsList

	

	
static sing(value) → pyhanko.pdf_utils.misc.ConsList

	

	
cons(head)

	

	
class pyhanko.pdf_utils.misc.Singleton(name, bases, dct)

	Bases: type

	
pyhanko.pdf_utils.misc.rd(x)

	

pyhanko.pdf_utils.reader module

Utility to read PDF files.
Contains code from the PyPDF2 project; see here
for the original license.

The implementation was tweaked with the express purpose of facilitating
historical inspection and auditing of PDF files with multiple revisions
through incremental updates.
This comes at a cost, and future iterations of this module may offer more
flexibility in terms of the level of detail with which file size is scrutinised.

	
class pyhanko.pdf_utils.reader.PdfFileReader(stream, strict=True)

	Bases: pyhanko.pdf_utils.rw_common.PdfHandler

Class implementing functionality to read a PDF file and cache
certain data about it.

	
last_startxref = None

	

	
has_xref_stream = False

	

	
property input_version

	

	
property trailer_view: pyhanko.pdf_utils.generic.DictionaryObject

	Returns a view of the document trailer of the document represented
by this PdfHandler instance.

The view is effectively read-only, in the sense that any writes
will not be reflected in the actual trailer (if the handler supports
writing, that is).

	Returns

	A generic.DictionaryObject representing the current state
of the document trailer.

	
property root_ref: pyhanko.pdf_utils.generic.Reference

	
	Returns

	A reference to the document catalog of this PDF handler.

	
property document_id: Tuple[bytes, bytes]

	

	
get_historical_root(revision: int)

	Get the document catalog for a specific revision.

	Parameters

	revision – The revision to query, the oldest one being 0.

	Returns

	The value of the document catalog dictionary for that revision.

	
property total_revisions: int

	
	Returns

	The total number of revisions made to this file.

	
get_object(ref, revision=None, never_decrypt=False, transparent_decrypt=True)

	Read an object from the input stream.

	Parameters

	
	ref – Reference to the object.

	revision – Revision number, to return the historical value of a reference.
This always bypasses the cache.
The oldest revision is numbered 0.
See also HistoricalResolver.

	never_decrypt – Skip decryption step (only needed for parsing /Encrypt)

	transparent_decrypt – If True, all encrypted objects are transparently decrypted by
default (in the sense that a user of the API in a PyPDF2 compatible
way would only “see” decrypted objects).
If False, this method may return a proxy object that still
allows access to the “original”.

Danger

The encryption parameters are considered internal,
undocumented API, and subject to change without notice.

	Returns

	A PdfObject.

	Raises

	PdfReadError – Raised if there is an issue reading the object from the file.

	
cache_get_indirect_object(generation, idnum)

	

	
cache_indirect_object(generation, idnum, obj)

	

	
read()

	

	
decrypt(password: Union[str, bytes])

	When using an encrypted PDF file with the standard PDF encryption
handler, this function will allow the file to be decrypted.
It checks the given password against the document’s user password and
owner password, and then stores the resulting decryption key if either
password is correct.

Both legacy encryption schemes and PDF 2.0 encryption (based on AES-256)
are supported.

Danger

Supplying either user or owner password will work.
Cryptographically, both allow the decryption key to be computed,
but processors are expected to adhere to the /P flags in the
encryption dictionary when accessing a file with the user password.
Currently, pyHanko does not enforce these restrictions, but it
may in the future.

Danger

One should also be aware that the legacy encryption schemes used
prior to PDF 2.0 are (very) weak, and we only support them for
compatibility reasons.
Under no circumstances should these still be used to encrypt new
files.

	Parameters

	password – The password to match.

	
decrypt_pubkey(credential: pyhanko.pdf_utils.crypt.EnvelopeKeyDecrypter)

	Decrypt a PDF file encrypted using public-key encryption by providing
a credential representing the private key of one of the recipients.

Danger

The same caveats as in decrypt() w.r.t. permission handling
apply to this method.

Danger

The robustness of the public key cipher being used is not the only
factor in the security of public-key encryption in PDF.
The standard still permits weak schemes to encrypt the actual file
data and file keys.
PyHanko uses sane defaults everywhere, but other software may not.

	Parameters

	credential – The EnvelopeKeyDecrypter handling the recipient’s
private key.

	
property encrypted

	
	Returns

	True if a document is encrypted, False otherwise.

	
get_historical_resolver(revision: int) → pyhanko.pdf_utils.reader.HistoricalResolver

	Return a PdfHandler instance that provides a view
on the file at a specific revision.

	Parameters

	revision – The revision number to use, with 0 being the oldest.

	Returns

	An instance of HistoricalResolver.

	
property embedded_signatures

	
	Returns

	The signature objects embedded in this document, in signing order;
see EmbeddedPdfSignature.

	
property embedded_regular_signatures

	
	Returns

	The signature objects of type /Sig embedded in this document,
in signing order;
see EmbeddedPdfSignature.

	
property embedded_timestamp_signatures

	
	Returns

	The signature objects of type /DocTimeStamp embedded in
this document, in signing order;
see EmbeddedPdfSignature.

	
class pyhanko.pdf_utils.reader.HistoricalResolver(reader: pyhanko.pdf_utils.reader.PdfFileReader, revision)

	Bases: pyhanko.pdf_utils.rw_common.PdfHandler

PdfHandler implementation that provides a view
on a particular revision of a PDF file.

Instances of HistoricalResolver should be created by calling the
get_historical_resolver() method on a
PdfFileReader object.

Instances of this class cache the result of get_object() calls.

Danger

This class is documented, but is nevertheless considered internal API,
and easy to misuse.

In particular, the container_ref attribute must not be relied upon
for objects retrieved from a HistoricalResolver.
Internally, it is only used to make lazy decryption work in historical
revisions.

Note

Be aware that instances of this class transparently rewrite the PDF
handler associated with any reference objects returned from the reader,
so calling get_object() on an indirect
reference object will cause the reference to be resolved within the
selected revision.

	
property document_id: Tuple[bytes, bytes]

	

	
property trailer_view: pyhanko.pdf_utils.generic.DictionaryObject

	Returns a view of the document trailer of the document represented
by this PdfHandler instance.

The view is effectively read-only, in the sense that any writes
will not be reflected in the actual trailer (if the handler supports
writing, that is).

	Returns

	A generic.DictionaryObject representing the current state
of the document trailer.

	
get_object(ref: pyhanko.pdf_utils.generic.Reference)

	Retrieve the object associated with the provided reference from
this PDF handler.

	Parameters

	ref – An instance of generic.Reference.

	Returns

	A PDF object.

	
property root_ref: pyhanko.pdf_utils.generic.Reference

	
	Returns

	A reference to the document catalog of this PDF handler.

	
explicit_refs_in_revision()

	

	
refs_freed_in_revision()

	

	
object_streams_used()

	

	
is_ref_available(ref: pyhanko.pdf_utils.generic.Reference) → bool

	Check if the reference in question would already point to an object
in this revision.

	Parameters

	ref – A reference object (usually one written to by a by a newer revision)

	Returns

	True if the reference is undefined, False otherwise.

	
collect_dependencies(obj: pyhanko.pdf_utils.generic.PdfObject, since_revision=None)

	Collect all indirect references used by an object and its descendants.

	Parameters

	
	obj – The object to inspect.

	since_revision – Optionally specify a revision number that tells the scanner to only
include objects IDs that were added in that revision or later.

Warning

In particular, this means that the scanner will not recurse
into older objects either.

	Returns

	A set of Reference objects.

	
pyhanko.pdf_utils.reader.parse_catalog_version(version_str) → Optional[Tuple[int, int]]

	

pyhanko.pdf_utils.rw_common module

Utilities common to reading and writing PDF files.

	
class pyhanko.pdf_utils.rw_common.PdfHandler

	Bases: object

Abstract class providing a general interface for quering objects
in PDF readers and writers alike.

	
get_object(ref: pyhanko.pdf_utils.generic.Reference)

	Retrieve the object associated with the provided reference from
this PDF handler.

	Parameters

	ref – An instance of generic.Reference.

	Returns

	A PDF object.

	
property trailer_view: pyhanko.pdf_utils.generic.DictionaryObject

	Returns a view of the document trailer of the document represented
by this PdfHandler instance.

The view is effectively read-only, in the sense that any writes
will not be reflected in the actual trailer (if the handler supports
writing, that is).

	Returns

	A generic.DictionaryObject representing the current state
of the document trailer.

	
property root_ref: pyhanko.pdf_utils.generic.Reference

	
	Returns

	A reference to the document catalog of this PDF handler.

	
property root: pyhanko.pdf_utils.generic.DictionaryObject

	
	Returns

	The document catalog of this PDF handler.

	
property document_id: Tuple[bytes, bytes]

	

	
find_page_container(page_ix)

	Retrieve the node in the page tree containing the
page with index page_ix, along with the necessary objects
to modify it in an incremental update scenario.

	Parameters

	page_ix – The (zero-indexed) number of the page for which we want to
retrieve the parent.
A negative number counts pages from the back of the document,
with index -1 referring to the last page.

	Returns

	A triple with the /Pages object (or a reference to it),
the index of the target page in said /Pages object, and a
(possibly inherited) resource dictionary.

	
find_page_for_modification(page_ix)

	Retrieve the page with index page_ix from the page tree, along with
the necessary objects to modify it in an incremental update scenario.

	Parameters

	page_ix – The (zero-indexed) number of the page to retrieve.
A negative number counts pages from the back of the document,
with index -1 referring to the last page.

	Returns

	A tuple with a reference to the page object and a
(possibly inherited) resource dictionary.

pyhanko.pdf_utils.text module

Utilities related to text rendering & layout.

	
class pyhanko.pdf_utils.text.TextStyle(font: pyhanko.pdf_utils.font.api.FontEngineFactory = <factory>, font_size: int = 10, leading: Optional[int] = None)

	Bases: pyhanko.pdf_utils.config_utils.ConfigurableMixin

Container for basic test styling settings.

	
font: pyhanko.pdf_utils.font.api.FontEngineFactory

	The FontEngineFactory to be used for this text style.
Defaults to Courier (as a non-embedded standard font).

	
font_size: int = 10

	Font size to be used.

	
leading: int = None

	Text leading. If None, the font_size parameter is used instead.

	
classmethod process_entries(config_dict)

	Hook method that can modify the configuration dictionary
to overwrite or tweak some of their values (e.g. to convert string
parameters into more complex Python objects)

Subclasses that override this method should call
super().process_entries(), and leave keys that they do not
recognise untouched.

	Parameters

	config_dict – A dictionary containing configuration values.

	Raises

	ConfigurationError – when there is a problem processing a relevant entry.

	
class pyhanko.pdf_utils.text.TextBoxStyle(font: pyhanko.pdf_utils.font.api.FontEngineFactory = <factory>, font_size: int = 10, leading: Optional[int] = None, border_width: int = 0, box_layout_rule: Optional[pyhanko.pdf_utils.layout.SimpleBoxLayoutRule] = None, vertical_text: bool = False)

	Bases: pyhanko.pdf_utils.text.TextStyle

Extension of TextStyle for use in text boxes.

	
border_width: int = 0

	Border width, if applicable.

	
box_layout_rule: pyhanko.pdf_utils.layout.SimpleBoxLayoutRule = None

	Layout rule to nest the text within its containing box.

Warning

This only affects the position of the text object, not the alignment of
the text within.

	
vertical_text: bool = False

	Switch layout code to vertical mode instead of horizontal mode.

	
class pyhanko.pdf_utils.text.TextBox(style: pyhanko.pdf_utils.text.TextBoxStyle, writer, resources: Optional[pyhanko.pdf_utils.content.PdfResources] = None, box: Optional[pyhanko.pdf_utils.layout.BoxConstraints] = None, font_name='F1')

	Bases: pyhanko.pdf_utils.content.PdfContent

Implementation of a text box that implements the PdfContent
interface.

Note

Text boxes currently don’t offer automatic word wrapping.

	
put_string_line(txt)

	

	
property content_lines

	
	Returns

	Text content of the text box, broken up into lines.

	
property content

	
	Returns

	The actual text content of the text box.
This is a modifiable property.

In textboxes that don’t have a fixed size, setting this property
can cause the text box to be resized.

	
property leading

	
	Returns

	The effective leading value, i.e. the
leading attribute of the associated
TextBoxStyle, or font_size if
not specified.

	
render()

	Compile the content to graphics operators.

pyhanko.pdf_utils.writer module

Utilities for writing PDF files.
Contains code from the PyPDF2 project; see here
for the original license.

	
class pyhanko.pdf_utils.writer.ObjectStream(writer: pyhanko.pdf_utils.writer.BasePdfFileWriter, compress=True)

	Bases: object

Utility class to collect objects into a PDF object stream.

Object streams are mainly useful for space efficiency reasons.
They allow related objects to be grouped & compressed together in a
more flexible manner.

Warning

Object streams can only be used in files with a cross-reference
stream, as opposed to a classical XRef table.
In particular, this means that incremental updates to files with a
legacy XRef table cannot contain object streams either.
See § 7.5.7 in ISO 32000-1 for further details.

Danger

Use BasePdfFileWriter.prepare_object_stream() to create instances
of object streams. The __init__ function is internal API.

	
add_object(idnum: int, obj: pyhanko.pdf_utils.generic.PdfObject)

	Add an object to an object stream.
Note that objects in object streams always have their generation number
set to 0 by definition.

	Parameters

	
	idnum – The object’s ID number.

	obj – The object to embed into the object stream.

	Raises

	TypeError – Raised if obj is an instance of StreamObject
or IndirectObject.

	
register_and_emit()

	Internal method to flush an object stream as part of the file
writing process.

	
as_pdf_object() → pyhanko.pdf_utils.generic.StreamObject

	Render the object stream to a PDF stream object

	Returns

	An instance of StreamObject.

	
class pyhanko.pdf_utils.writer.BasePdfFileWriter(root, info, document_id, obj_id_start=0, stream_xrefs=True)

	Bases: pyhanko.pdf_utils.rw_common.PdfHandler

Base class for PDF writers.

	
output_version = (1, 7)

	Output version to be declared in the output file.

	
stream_xrefs: bool

	Boolean controlling whether or not the output file will contain
its cross-references in stream format, or as a classical XRef table.

The default for new files is True. For incremental updates,
the writer adapts to the system used in the previous iteration of the
document (as mandated by the standard).

	
get_subset_collection(base_postscript_name: str)

	

	
ensure_output_version(version)

	

	
set_info(info: Optional[Union[pyhanko.pdf_utils.generic.IndirectObject, pyhanko.pdf_utils.generic.DictionaryObject]])

	Set the /Info entry of the document trailer.

	Parameters

	info – The new /Info dictionary, either as an indirect reference
or as a DictionaryObject

	
set_custom_trailer_entry(key: pyhanko.pdf_utils.generic.NameObject, value: pyhanko.pdf_utils.generic.PdfObject)

	Set a custom, unmanaged entry in the document trailer or cross-reference
stream dictionary.

Warning

Calling this method to set an entry that is managed by pyHanko
internally (info dictionary, document catalog, etc.) has undefined
results.

	Parameters

	
	key – Dictionary key to use in the trailer.

	value – Value to set

	
property document_id: Tuple[bytes, bytes]

	

	
mark_update(obj_ref: Union[pyhanko.pdf_utils.generic.Reference, pyhanko.pdf_utils.generic.IndirectObject])

	Mark an object reference to be updated.
This is only relevant for incremental updates, but is included
as a no-op by default for interoperability reasons.

	Parameters

	obj_ref – An indirect object instance or a reference.

	
update_container(obj: pyhanko.pdf_utils.generic.PdfObject)

	Mark the container of an object (as indicated by the
container_ref attribute on
PdfObject) for an update.

As with mark_update(), this only applies to incremental updates,
but defaults to a no-op.

	Parameters

	obj – The object whose top-level container needs to be rewritten.

	
property root_ref: pyhanko.pdf_utils.generic.Reference

	
	Returns

	A reference to the document catalog.

	
update_root()

	Signal that the document catalog should be written to the output.
Equivalent to calling mark_update() with root_ref.

	
register_extension(ext: pyhanko.pdf_utils.writer.DeveloperExtension)

	

	
get_object(ido)

	Retrieve the object associated with the provided reference from
this PDF handler.

	Parameters

	ref – An instance of generic.Reference.

	Returns

	A PDF object.

	
allocate_placeholder() → pyhanko.pdf_utils.generic.IndirectObject

	Allocate an object reference to populate later.
Calls to get_object() for this reference will
return NullObject until it is populated using
add_object().

This method is only relevant in certain advanced contexts where
an object ID needs to be known before the object it refers
to can be built; chances are you’ll never need it.

	Returns

	A IndirectObject instance referring to
the object just allocated.

	
add_object(obj, obj_stream: Optional[pyhanko.pdf_utils.writer.ObjectStream] = None, idnum=None) → pyhanko.pdf_utils.generic.IndirectObject

	Add a new object to this writer.

	Parameters

	
	obj – The object to add.

	obj_stream – An object stream to add the object to.

	idnum – Manually specify the object ID of the object to be added.
This is only allowed for object IDs that have previously been
allocated using allocate_placeholder().

	Returns

	A IndirectObject instance referring to
the object just added.

	
prepare_object_stream(compress=True)

	Prepare and return a new ObjectStream object.

	Parameters

	compress – Indicates whether the resulting object stream should be compressed.

	Returns

	An ObjectStream object.

	
property trailer_view: pyhanko.pdf_utils.generic.DictionaryObject

	Returns a view of the document trailer of the document represented
by this PdfHandler instance.

The view is effectively read-only, in the sense that any writes
will not be reflected in the actual trailer (if the handler supports
writing, that is).

	Returns

	A generic.DictionaryObject representing the current state
of the document trailer.

	
write(stream)

	Write the contents of this PDF writer to a stream.

	Parameters

	stream – A writable output stream.

	
register_annotation(page_ref, annot_ref)

	Register an annotation to be added to a page.
This convenience function takes care of calling mark_update()
where necessary.

	Parameters

	
	page_ref – Reference to the page object involved.

	annot_ref – Reference to the annotation object to be added.

	
insert_page(new_page, after=None)

	Insert a page object into the tree.

	Parameters

	
	new_page – Page object to insert.

	after – Page number (zero-indexed) after which to insert the page.

	Returns

	A reference to the newly inserted page.

	
import_object(obj: pyhanko.pdf_utils.generic.PdfObject, obj_stream: Optional[pyhanko.pdf_utils.writer.ObjectStream] = None) → pyhanko.pdf_utils.generic.PdfObject

	Deep-copy an object into this writer, dealing with resolving indirect
references in the process.

Danger

The table mapping indirect references in the input to indirect
references in the writer is not preserved between calls.
Concretely, this means that invoking import_object() twice
on the same input reader may cause object duplication.

	Parameters

	
	obj – The object to import.

	obj_stream – The object stream to import objects into.

Note

Stream objects and bare references will not be put into
the object stream; the standard forbids this.

	Returns

	The object as associated with this writer.
If the input object was an indirect reference, a dictionary
(incl. streams) or an array, the returned value will always be
a new instance.

	
import_page_as_xobject(other: pyhanko.pdf_utils.rw_common.PdfHandler, page_ix=0, inherit_filters=True)

	Import a page content stream from some other
PdfHandler into the current one as a form XObject.

	Parameters

	
	other – A PdfHandler

	page_ix – Index of the page to copy (default: 0)

	inherit_filters – Inherit the content stream’s filters, if present.

	Returns

	An IndirectObject referring to the page object
as added to the current reader.

	
add_stream_to_page(page_ix, stream_ref, resources=None, prepend=False)

	Append an indirect stream object to a page in a PDF as a content
stream.

	Parameters

	
	page_ix – Index of the page to modify.
The first page has index 0.

	stream_ref – IndirectObject reference to the stream
object to add.

	resources – Resource dictionary containing resources to add to the page’s
existing resource dictionary.

	prepend – Prepend the content stream to the list of content streams, as
opposed to appending it to the end.
This has the effect of causing the stream to be rendered
underneath the already existing content on the page.

	Returns

	An IndirectObject reference to the page object
that was modified.

	
add_content_to_page(page_ix, pdf_content: pyhanko.pdf_utils.content.PdfContent, prepend=False)

	Convenience wrapper around add_stream_to_page() to turn a
PdfContent instance into a page content stream.

	Parameters

	
	page_ix – Index of the page to modify.
The first page has index 0.

	pdf_content – An instance of PdfContent

	prepend – Prepend the content stream to the list of content streams, as
opposed to appending it to the end.
This has the effect of causing the stream to be rendered
underneath the already existing content on the page.

	Returns

	An IndirectObject reference to the page object
that was modified.

	
merge_resources(orig_dict, new_dict) → bool

	Update an existing resource dictionary object with data from another
one. Returns True if the original dict object was modified directly.

The caller is responsible for avoiding name conflicts with existing
resources.

	
class pyhanko.pdf_utils.writer.PageObject(contents, media_box, resources=None)

	Bases: pyhanko.pdf_utils.generic.DictionaryObject

Subclass of DictionaryObject that handles some of the
initialisation boilerplate for page objects.

	
class pyhanko.pdf_utils.writer.PdfFileWriter(stream_xrefs=True, init_page_tree=True)

	Bases: pyhanko.pdf_utils.writer.BasePdfFileWriter

Class to write new PDF files.

	
stream_xrefs: bool

	Boolean controlling whether or not the output file will contain
its cross-references in stream format, or as a classical XRef table.

The default for new files is True. For incremental updates,
the writer adapts to the system used in the previous iteration of the
document (as mandated by the standard).

	
object_streams: List[pyhanko.pdf_utils.writer.ObjectStream]

	

	
security_handler: Optional[pyhanko.pdf_utils.crypt.SecurityHandler]

	

	
encrypt(owner_pass, user_pass=None)

	Mark this document to be encrypted with PDF 2.0 encryption (AES-256).

Caution

While pyHanko supports legacy PDF encryption as well, the API
to create new documents using outdated encryption is left
largely undocumented on purpose to discourage its use.

This caveat does not apply to incremental updates added to
existing documents.

Danger

The PDF 2.0 standard mandates AES-256 in CBC mode, and also includes
12 bytes of known plaintext by design. This implies that a
sufficiently knowledgeable attacker can inject arbitrary content
into your encrypted files without knowledge of the password.

Adding a digital signature to the encrypted document is not
a foolproof way to deal with this either, since most viewers will
still allow the document to be opened before signatures are
validated, and therefore end users are still exposed to potentially
malicious content.

Until the standard supports authenticated encryption schemes, you
should never rely on its encryption provisions if tampering
is a concern.

	Parameters

	
	owner_pass – The desired owner password.

	user_pass – The desired user password (defaults to the owner password
if not specified)

	
encrypt_pubkey(recipients: List[asn1crypto.x509.Certificate])

	Mark this document to be encrypted with PDF 2.0 public key encryption.
The certificates passed in should be RSA certificates.

PyHanko defaults to AES-256 to encrypt the actual file contents.
The seed used to derive the file encryption key is also encrypted
using AES-256 and bundled in a CMS EnvelopedData object.
The envelope key is then encrypted separately for each recipient, using
their respective public keys.

Caution

The caveats for encrypt() also apply here.

	Parameters

	recipients – Certificates of the recipients that should be able to decrypt
the document.

	
set_custom_trailer_entry(key: pyhanko.pdf_utils.generic.NameObject, value: pyhanko.pdf_utils.generic.PdfObject)

	Set a custom, unmanaged entry in the document trailer or cross-reference
stream dictionary.

Warning

Calling this method to set an entry that is managed by pyHanko
internally (info dictionary, document catalog, etc.) has undefined
results.

	Parameters

	
	key – Dictionary key to use in the trailer.

	value – Value to set

	
pyhanko.pdf_utils.writer.init_xobject_dictionary(command_stream: bytes, box_width, box_height, resources: Optional[pyhanko.pdf_utils.generic.DictionaryObject] = None) → pyhanko.pdf_utils.generic.StreamObject

	Helper function to initialise form XObject dictionaries.

Note

For utilities to handle image XObjects, see images.

	Parameters

	
	command_stream – The XObject’s raw appearance stream.

	box_width – The width of the XObject’s bounding box.

	box_height – The height of the XObject’s bounding box.

	resources – A resource dictionary to include with the form object.

	Returns

	A StreamObject representation of the form XObject.

	
pyhanko.pdf_utils.writer.copy_into_new_writer(input_handler: pyhanko.pdf_utils.rw_common.PdfHandler) → pyhanko.pdf_utils.writer.PdfFileWriter

	Copy all objects in a given PDF handler into a new PdfFileWriter.
This operation will attempt to preserve the document catalog
of the original input_handler.

Very roughly, calling this function and then immediately invoking
write() on the resulting writer should result
in an equivalent document as far as presentation is concerned.
As a general rule, behaviour that is controlled from outside the document
catalog (e.g. encryption) or that requires byte-for-byte equivalence with
the original (e.g. digital signatures) will not survive this translation.

	Parameters

	input_handler – PdfHandler to source objects from.

	Returns

	New PdfFileWriter containing all objects from the input
handler.

	
class pyhanko.pdf_utils.writer.DeveloperExtension(prefix_name: pyhanko.pdf_utils.generic.NameObject, base_version: pyhanko.pdf_utils.generic.NameObject, extension_level: int, url: Optional[str] = None, extension_revision: Optional[str] = None, compare_by_level: bool = False, subsumed_by: Iterable[int] = (), subsumes: Iterable[int] = (), multivalued: pyhanko.pdf_utils.writer.DevExtensionMultivalued = DevExtensionMultivalued.MAYBE)

	Bases: object

PDF developer extension designation.

	
prefix_name: pyhanko.pdf_utils.generic.NameObject

	Registered developer prefix.

	
base_version: pyhanko.pdf_utils.generic.NameObject

	Base version on to which the extension applies.

	
extension_level: int

	Extension level.

	
url: Optional[str] = None

	Optional URL linking to the extension’s documentation.

	
extension_revision: Optional[str] = None

	Optional extra revision information. Not comparable.

	
compare_by_level: bool = False

	Compare developer extensions by level number.
If this value is True and a copy of this extension already exists in the
target file with a higher level number, do not override it.
If one exists with a lower level number, override it.

If this value is False, the decision is based on subsumed_by
and subsumes.

Warning

It is generally not safe to assume that extension levels are used as a
versioning system (i.e. that higher extension levels supersede lower
ones), hence why the default is False.

	
subsumed_by: Iterable[int] = ()

	List of extension levels that would subsume this one. If one of these is
present in the extensions dictionary, attempting to register this extension
will not override it.

Default value: empty.

Warning

This parameter is ignored if compare_by_level is True.

	
subsumes: Iterable[int] = ()

	List of extensions explicitly subsumed by this one. If one of these is
present in the extensions dictionary, attempting to register this extension
will override it.

Default value: empty.

Warning

This parameter is ignored if compare_by_level is True.

	
multivalued: pyhanko.pdf_utils.writer.DevExtensionMultivalued = 3

	Setting indicating whether this extension is expected to behave well w.r.t.
the new mechanism for multivalued extensions in ISO 32000-2:2020.

	
as_pdf_object() → pyhanko.pdf_utils.generic.DictionaryObject

	Format the data in this object into a PDF dictionary for registration
into the /Extensions dictionary.

	Returns

	A generic.DictionaryObject.

	
class pyhanko.pdf_utils.writer.DevExtensionMultivalued(value)

	Bases: enum.Enum

Setting indicating how an extension is expected to behave well w.r.t.
the new mechanism for multivalued extensions in ISO 32000-2:2020.

	
ALWAYS = 1

	Always serialise this extension as a multivalued extension.

	
NEVER = 2

	Never serialise this extension as a multivalued extension.

	
MAYBE = 3

	Make this extension single-valued whenever possible, but allow multiple
values as well, e.g. when a different but non-comparable extension with
the same prefix is already present in the file.

pyhanko.sign package

	pyhanko.sign.ades package
	pyhanko.sign.ades.api module

	pyhanko.sign.ades.cades_asn1 module

	pyhanko.sign.ades.asn1_util module

	pyhanko.sign.beid module

	pyhanko.sign.diff_analysis module
	Guidelines for developing rules for use with StandardDiffPolicy

	pyhanko.sign.fields module

	pyhanko.sign.general module

	pyhanko.sign.pkcs11 module

	pyhanko.sign.signers package
	pyhanko.sign.signers.cms_embedder module

	pyhanko.sign.signers.csc_signer module
	Usage notes
	CSCSigner overview

	Authenticating to the signing service

	Obtaining SAD from the signing service

	Certificate provisioning

	pyhanko.sign.signers.constants module

	pyhanko.sign.signers.functions module

	pyhanko.sign.signers.pdf_byterange module

	pyhanko.sign.signers.pdf_cms module

	pyhanko.sign.signers.pdf_signer module

	pyhanko.sign.timestamps package
	pyhanko.sign.timestamps.api module

	pyhanko.sign.timestamps.aiohttp_client module

	pyhanko.sign.timestamps.requests_client module

	pyhanko.sign.timestamps.dummy_client module

	pyhanko.sign.timestamps.common_utils module

	pyhanko.sign.validation module

pyhanko.sign.ades package

	pyhanko.sign.ades.api module

	pyhanko.sign.ades.cades_asn1 module

	pyhanko.sign.ades.asn1_util module

pyhanko.sign.ades.api module

	
class pyhanko.sign.ades.api.GenericCommitment(value)

	Bases: enum.Enum

An enumeration.

	
PROOF_OF_ORIGIN = 1

	

	
PROOF_OF_RECEIPT = 2

	

	
PROOF_OF_DELIVERY = 3

	

	
PROOF_OF_SENDER = 4

	

	
PROOF_OF_APPROVAL = 5

	

	
PROOF_OF_CREATION = 6

	

	
property asn1: pyhanko.sign.ades.cades_asn1.CommitmentTypeIndication

	

	
class pyhanko.sign.ades.api.CAdESSignedAttrSpec(commitment_type: Optional[pyhanko.sign.ades.cades_asn1.CommitmentTypeIndication] = None, timestamp_content: bool = False, signature_policy_identifier: Optional[pyhanko.sign.ades.cades_asn1.SignaturePolicyIdentifier] = None)

	Bases: object

Class that controls signed CAdES attributes on a PDF signature.

	
commitment_type: Optional[pyhanko.sign.ades.cades_asn1.CommitmentTypeIndication] = None

	Signature commitment type. Can be one of the standard values, or a custom
one.

	
timestamp_content: bool = False

	Indicate whether the signature should include a signed timestamp.

Note

This should be contrasted with unsigned timestamps:
a signed timestamp proves that the signature was created after some
point in time, while an unsigned timestamp computed over the signed
content proves that the signature existed before said point in time.

	
signature_policy_identifier: Optional[pyhanko.sign.ades.cades_asn1.SignaturePolicyIdentifier] = None

	Signature policy identifier to embed into the signature.

Warning

Right now, pyHanko does not “understand” signature policies, so the
signature policy identifier will be taken at face value and embedded
without paying any heed to the actual rules of the signature policy.
It is the API user’s responsibility to make sure that all relevant
provisions of the signature policy are adhered to.

	
prepare_providers(message_digest, md_algorithm, timestamper: Optional[pyhanko.sign.timestamps.api.TimeStamper] = None)

	

pyhanko.sign.ades.cades_asn1 module

	
class pyhanko.sign.ades.cades_asn1.CommitmentTypeIdentifier(value=None, default=None, contents=None, **kwargs)

	Bases: asn1crypto.core.ObjectIdentifier

	
class pyhanko.sign.ades.cades_asn1.CommitmentTypeQualifier(value=None, default=None, **kwargs)

	Bases: asn1crypto.core.Sequence

	
class pyhanko.sign.ades.cades_asn1.CommitmentTypeQualifiers(value=None, default=None, contents=None, spec=None, **kwargs)

	Bases: asn1crypto.core.SequenceOf

	
class pyhanko.sign.ades.cades_asn1.CommitmentTypeIndication(value=None, default=None, **kwargs)

	Bases: asn1crypto.core.Sequence

	
class pyhanko.sign.ades.cades_asn1.SigPolicyQualifierId(value=None, default=None, contents=None, **kwargs)

	Bases: asn1crypto.core.ObjectIdentifier

	
class pyhanko.sign.ades.cades_asn1.NoticeNumbers(value=None, default=None, contents=None, spec=None, **kwargs)

	Bases: asn1crypto.core.SequenceOf

	
class pyhanko.sign.ades.cades_asn1.NoticeReference(value=None, default=None, **kwargs)

	Bases: asn1crypto.core.Sequence

	
class pyhanko.sign.ades.cades_asn1.SPUserNotice(value=None, default=None, **kwargs)

	Bases: asn1crypto.core.Sequence

	
class pyhanko.sign.ades.cades_asn1.SPDocSpecification(value=None, default=None, **kwargs)

	Bases: asn1crypto.core.Sequence

	
class pyhanko.sign.ades.cades_asn1.SigPolicyQualifierInfo(value=None, default=None, **kwargs)

	Bases: asn1crypto.core.Sequence

	
class pyhanko.sign.ades.cades_asn1.SigPolicyQualifierInfos(value=None, default=None, contents=None, spec=None, **kwargs)

	Bases: asn1crypto.core.SequenceOf

	
class pyhanko.sign.ades.cades_asn1.SignaturePolicyId(value=None, default=None, **kwargs)

	Bases: asn1crypto.core.Sequence

	
class pyhanko.sign.ades.cades_asn1.SignaturePolicyIdentifier(name=None, value=None, **kwargs)

	Bases: asn1crypto.core.Choice

	
class pyhanko.sign.ades.cades_asn1.SignaturePolicyDocument(value=None, default=None, **kwargs)

	Bases: asn1crypto.core.Sequence

	
class pyhanko.sign.ades.cades_asn1.SignaturePolicyStore(value=None, default=None, **kwargs)

	Bases: asn1crypto.core.Sequence

	
class pyhanko.sign.ades.cades_asn1.DisplayText(name=None, value=None, **kwargs)

	Bases: asn1crypto.core.Choice

pyhanko.sign.ades.asn1_util module

	
pyhanko.sign.ades.asn1_util.as_set_of(asn1_type: Type)

	

	
pyhanko.sign.ades.asn1_util.register_cms_attribute(dotted_oid: str, readable_name: str, asn1_type: Type)

	

pyhanko.sign.beid module

Sign PDF files using a Belgian eID card.

This module defines a very thin convenience wrapper around
pyhanko.sign.pkcs11 to set up a PKCS#11 session with an eID card and
read the appropriate certificates on the device.

	
pyhanko.sign.beid.open_beid_session(lib_location, slot_no=None) → pkcs11.types.Session

	Open a PKCS#11 session

	Parameters

	
	lib_location – Path to the shared library file containing the eID PKCS#11 module.
Usually, the file is named libbeidpkcs11.so,
libbeidpkcs11.dylib or beidpkcs11.dll, depending on your
operating system.

	slot_no – Slot number to use. If not specified, the first slot containing a token
labelled BELPIC will be used.

	Returns

	An open PKCS#11 session object.

	
class pyhanko.sign.beid.BEIDSigner(pkcs11_session: pkcs11.types.Session, use_auth_cert: bool = False, bulk_fetch: bool = False, embed_roots=True)

	Bases: pyhanko.sign.pkcs11.PKCS11Signer

Belgian eID-specific signer implementation that automatically populates
the (trustless) certificate list with the relevant certificates stored
on the card.
This includes the government’s (self-signed) root certificate and the
certificate of the appropriate intermediate CA.

pyhanko.sign.diff_analysis module

New in version 0.2.0: pyhanko.sign.diff_analysis extracted from
pyhanko.sign.validation and restructured into a more rule-based
format.

This module defines utilities for difference analysis between revisions
of the same PDF file.
PyHanko uses this functionality to validate signatures on files
that have been modified after signing (using PDF’s incremental update feature).

In pyHanko’s validation model, every incremental update is disallowed by
default. For a change to be accepted, it must be cleared by at least one
whitelisting rule.
These rules can moreover qualify the modification level at which they accept
the change (see ModificationLevel).
Additionally, any rule can veto an entire revision as suspect by raising
a SuspiciousModification exception.
Whitelisting rules are encouraged to apply their vetoes liberally.

Whitelisting rules are bundled in DiffPolicy objects for use by the
validator.

Guidelines for developing rules for use with StandardDiffPolicy

Caution

These APIs aren’t fully stable yet, so some changes might still occur
between now and the first major release.

In general, you should keep the following informal guidelines in mind when
putting together custom diff rules.

	All rules are either executed completely (i.e. their generators exhausted)
or aborted.

	If the diff runner aborts a rule, this always means that the entire
revision is rejected. In other words, for accepted revisions, all rules
will always have run to completion.

	Whitelisting rules are allowed to informally delegate some checking to
other rules, provided that this is documented clearly.

Note

Example: CatalogModificationRule ignores /AcroForm,
which is validated by another rule entirely.

	Rules should be entirely stateless.
“Clearing” a reference by yielding it does not imply that the revision
cannot be vetoed by that same rule further down the road (this is why
the first point is important).

	
class pyhanko.sign.diff_analysis.ModificationLevel(value)

	Bases: pyhanko.pdf_utils.misc.OrderedEnum

Records the (semantic) modification level of a document.

Compare MDPPerm, which records the document
modification policy associated with a particular signature, as opposed
to the empirical judgment indicated by this enum.

	
NONE = 0

	The document was not modified at all (i.e. it is byte-for-byte unchanged).

	
LTA_UPDATES = 1

	The only updates are of the type that would be allowed as part of
signature long term archival (LTA) processing.
That is to say, updates to the document security store or new document
time stamps. For the purposes of evaluating whether a document has been
modified in the sense defined in the PAdES and ISO 32000-2 standards,
these updates do not count.
Adding form fields is permissible at this level, but only if they are
signature fields. This is necessary for proper document timestamp support.

	
FORM_FILLING = 2

	The only updates are extra signatures and updates to form field values or
their appearance streams, in addition to the previous levels.

	
ANNOTATIONS = 3

	In addition to the previous levels, manipulating annotations is also allowed
at this level.

Note

This level is currently unused by the default diff policy, and
modifications to annotations other than those permitted to fill in forms
are treated as suspicious.

	
OTHER = 4

	The document has been modified in ways that aren’t on the validator’s
whitelist. This always invalidates the corresponding signature, irrespective
of cryptographical integrity or /DocMDP settings.

	
exception pyhanko.sign.diff_analysis.SuspiciousModification

	Bases: ValueError

Error indicating a suspicious modification

	
class pyhanko.sign.diff_analysis.QualifiedWhitelistRule

	Bases: object

Abstract base class for a whitelisting rule that outputs references together
with the modification level at which they’re cleared.

This is intended for use by complicated whitelisting rules that need to
differentiate between multiple levels.

	
apply_qualified(old: pyhanko.pdf_utils.reader.HistoricalResolver, new: pyhanko.pdf_utils.reader.HistoricalResolver) → Iterable[Tuple[pyhanko.sign.diff_analysis.ModificationLevel, pyhanko.sign.diff_analysis.ReferenceUpdate]]

	Apply the rule to the changes between two revisions.

	Parameters

	
	old – The older, base revision.

	new – The newer revision to be vetted.

	
class pyhanko.sign.diff_analysis.WhitelistRule

	Bases: object

Abstract base class for a whitelisting rule that simply outputs
cleared references without specifying a modification level.

These rules are more flexible than rules of type
QualifiedWhitelistRule, since the modification level can be
specified separately (see WhitelistRule.as_qualified()).

	
apply(old: pyhanko.pdf_utils.reader.HistoricalResolver, new: pyhanko.pdf_utils.reader.HistoricalResolver) → Iterable[pyhanko.sign.diff_analysis.ReferenceUpdate]

	Apply the rule to the changes between two revisions.

	Parameters

	
	old – The older, base revision.

	new – The newer revision to be vetted.

	
as_qualified(level: pyhanko.sign.diff_analysis.ModificationLevel) → pyhanko.sign.diff_analysis.QualifiedWhitelistRule

	Construct a new QualifiedWhitelistRule that whitelists the
object references from this rule at the level specified.

	Parameters

	level – The modification level at which the output of this rule should be
cleared.

	Returns

	A QualifiedWhitelistRule backed by this rule.

	
pyhanko.sign.diff_analysis.qualify(level: pyhanko.sign.diff_analysis.ModificationLevel, rule_result: Generator[pyhanko.sign.diff_analysis.X, None, pyhanko.sign.diff_analysis.R], transform: Callable[[pyhanko.sign.diff_analysis.X], pyhanko.sign.diff_analysis.ReferenceUpdate] = <function <lambda>>) → Generator[Tuple[pyhanko.sign.diff_analysis.ModificationLevel, pyhanko.sign.diff_analysis.ReferenceUpdate], None, pyhanko.sign.diff_analysis.R]

	This is a helper function for rule implementors.
It attaches a fixed modification level to an existing reference update
generator, respecting the original generator’s return value (if relevant).

A prototypical use would be of the following form:

def some_generator_function():
 # do stuff
 for ref in some_list:
 # do stuff
 yield ref

 # do more stuff
 return summary_value

...

def some_qualified_generator_function():
 summary_value = yield from qualify(
 ModificationLevel.FORM_FILLING,
 some_generator_function()
)

Provided that some_generator_function yields
ReferenceUpdate objects, the yield type of the resulting
generator will be tuples of the form (level, ref).

	Parameters

	
	level – The modification level to set.

	rule_result – A generator that outputs references to be whitelisted.

	transform – Function to apply to the reference object before appending
the modification level and yielding it.
Defaults to the identity.

	Returns

	A converted generator that outputs references qualified at the
modification level specified.

	
class pyhanko.sign.diff_analysis.ReferenceUpdate(updated_ref: pyhanko.pdf_utils.generic.Reference, paths_checked: Union[pyhanko.pdf_utils.reader.RawPdfPath, Iterable[pyhanko.pdf_utils.reader.RawPdfPath], NoneType] = None, blanket_approve: bool = False)

	Bases: object

	
updated_ref: pyhanko.pdf_utils.generic.Reference

	Reference that was (potentially) updated.

	
paths_checked: Optional[Union[pyhanko.pdf_utils.reader.RawPdfPath, Iterable[pyhanko.pdf_utils.reader.RawPdfPath]]] = None

	

	
blanket_approve: bool = False

	

	
classmethod curry_ref(**kwargs)

	

	
class pyhanko.sign.diff_analysis.DocInfoRule

	Bases: pyhanko.sign.diff_analysis.WhitelistRule

Rule that allows the /Info dictionary in the trailer to be updated.

	
apply(old: pyhanko.pdf_utils.reader.HistoricalResolver, new: pyhanko.pdf_utils.reader.HistoricalResolver) → Iterable[pyhanko.sign.diff_analysis.ReferenceUpdate]

	Apply the rule to the changes between two revisions.

	Parameters

	
	old – The older, base revision.

	new – The newer revision to be vetted.

	
class pyhanko.sign.diff_analysis.DSSCompareRule

	Bases: pyhanko.sign.diff_analysis.WhitelistRule

Rule that allows changes to the document security store (DSS).

This rule will validate the structure of the DSS quite rigidly, and
will raise SuspiciousModification whenever it encounters
structural problems with the DSS.
Similarly, modifications that remove structural items from the DSS
also count as suspicious. However, merely removing individual OCSP
responses, CRLs or certificates when they become irrelevant is permitted.
This is also allowed by PAdES.

	
apply(old: pyhanko.pdf_utils.reader.HistoricalResolver, new: pyhanko.pdf_utils.reader.HistoricalResolver) → Iterable[pyhanko.sign.diff_analysis.ReferenceUpdate]

	Apply the rule to the changes between two revisions.

	Parameters

	
	old – The older, base revision.

	new – The newer revision to be vetted.

	
class pyhanko.sign.diff_analysis.MetadataUpdateRule(check_xml_syntax=True, always_refuse_stream_override=False)

	Bases: pyhanko.sign.diff_analysis.WhitelistRule

Rule to adjudicate updates to the XMP metadata stream.

The content of the metadata isn’t actually validated in any significant way;
this class only checks whether the XML is well-formed.

	Parameters

	
	check_xml_syntax – Do a well-formedness check on the XML syntax. Default True.

	always_refuse_stream_override – Always refuse to override the metadata stream if its object ID existed
in a prior revision, including if the new stream overrides the old
metadata stream and the syntax check passes. Default False.

Note

In other situations, pyHanko will reject stream overrides on
general principle, since combined with the fault-tolerance of some
PDF readers, these can allow an attacker to manipulate parts of the
signed content in subtle but significant ways.

In case of the metadata stream, the risk is significantly mitigated
thanks to the XML syntax check on both versions of the stream,
but if you’re feeling extra paranoid, you can turn the default
behaviour back on by setting always_refuse_stream_override
to True.

	
static is_well_formed_xml(metadata_ref: pyhanko.pdf_utils.generic.Reference)

	Checks whether the provided stream consists of well-formed XML data.
Note that this does not perform any more advanced XML or XMP validation,
the check is purely syntactic.

	Parameters

	metadata_ref – A reference to a (purported) metadata stream.

	Raises

	SuspiciousModification – if there are indications that the reference doesn’t point to an XML
stream.

	
apply(old: pyhanko.pdf_utils.reader.HistoricalResolver, new: pyhanko.pdf_utils.reader.HistoricalResolver) → Iterable[pyhanko.sign.diff_analysis.ReferenceUpdate]

	Apply the rule to the changes between two revisions.

	Parameters

	
	old – The older, base revision.

	new – The newer revision to be vetted.

	
class pyhanko.sign.diff_analysis.CatalogModificationRule(ignored_keys=None)

	Bases: pyhanko.sign.diff_analysis.QualifiedWhitelistRule

Rule that adjudicates modifications to the document catalog.

	Parameters

	ignored_keys – Values in the document catalog that may change between revisions.
The default ones are /AcroForm, /DSS, /Extensions,
/Metadata, /MarkInfo and /Version.

Checking for /AcroForm, /DSS and /Metadata is delegated to
FormUpdatingRule, DSSCompareRule and
MetadataUpdateRule, respectively.

	
apply_qualified(old: pyhanko.pdf_utils.reader.HistoricalResolver, new: pyhanko.pdf_utils.reader.HistoricalResolver) → Iterable[Tuple[pyhanko.sign.diff_analysis.ModificationLevel, pyhanko.pdf_utils.generic.Reference]]

	Apply the rule to the changes between two revisions.

	Parameters

	
	old – The older, base revision.

	new – The newer revision to be vetted.

	
class pyhanko.sign.diff_analysis.ObjectStreamRule

	Bases: pyhanko.sign.diff_analysis.WhitelistRule

Rule that allows object streams to be added.

Note that this rule only whitelists the object streams themselves (provided
they do not override any existing objects, obviously), not the objects
in them.

	
apply(old: pyhanko.pdf_utils.reader.HistoricalResolver, new: pyhanko.pdf_utils.reader.HistoricalResolver) → Iterable[pyhanko.pdf_utils.generic.Reference]

	Apply the rule to the changes between two revisions.

	Parameters

	
	old – The older, base revision.

	new – The newer revision to be vetted.

	
class pyhanko.sign.diff_analysis.XrefStreamRule

	Bases: pyhanko.sign.diff_analysis.WhitelistRule

Rule that allows new cross-reference streams to be defined.

	
apply(old: pyhanko.pdf_utils.reader.HistoricalResolver, new: pyhanko.pdf_utils.reader.HistoricalResolver) → Iterable[pyhanko.pdf_utils.generic.Reference]

	Apply the rule to the changes between two revisions.

	Parameters

	
	old – The older, base revision.

	new – The newer revision to be vetted.

	
class pyhanko.sign.diff_analysis.FormUpdatingRule(field_rules: List[pyhanko.sign.diff_analysis.FieldMDPRule], ignored_acroform_keys=None)

	Bases: object

Special whitelisting rule that validates changes to the form attached to
the input document.

This rule is special in two ways:

	it outputs FormUpdate objects instead of references;

	it delegates most of the hard work to sub-rules (instances of
FieldMDPRule).

A DiffPolicy can have at most one FormUpdatingRule,
but there is no limit on the number of FieldMDPRule objects
attached to it.

FormUpdate objects contain a reference plus metadata about
the form field it belongs to.

	Parameters

	
	field_rules – A list of FieldMDPRule objects to validate the individual
form fields.

	ignored_acroform_keys – Keys in the /AcroForm dictionary that may be changed.
Changes are potentially subject to validation by other rules.

	
apply(old: pyhanko.pdf_utils.reader.HistoricalResolver, new: pyhanko.pdf_utils.reader.HistoricalResolver) → Iterable[Tuple[pyhanko.sign.diff_analysis.ModificationLevel, pyhanko.sign.diff_analysis.FormUpdate]]

	Evaluate changes in the document’s form between two revisions.

	Parameters

	
	old – The older, base revision.

	new – The newer revision to be vetted.

	
class pyhanko.sign.diff_analysis.FormUpdate(updated_ref: pyhanko.pdf_utils.generic.Reference, paths_checked: Optional[Union[pyhanko.pdf_utils.reader.RawPdfPath, Iterable[pyhanko.pdf_utils.reader.RawPdfPath]]] = None, blanket_approve: bool = False, field_name: Optional[str] = None, valid_when_locked: bool = False, valid_when_certifying: bool = True)

	Bases: pyhanko.sign.diff_analysis.ReferenceUpdate

Container for a reference together with (optional) metadata.

Currently, this metadata consists of the relevant field’s (fully qualified)
name, and whether the update should be approved or not if said field
is locked by the FieldMDP policy currently in force.

	
field_name: Optional[str] = None

	The relevant field’s fully qualified name, or None if there’s either
no obvious associated field, or if there are multiple reasonable candidates.

	
valid_when_locked: bool = False

	Flag indicating whether the update is valid even when the field is locked.
This is only relevant if field_name is not None.

	
valid_when_certifying: bool = True

	Flag indicating whether the update is valid when checking against an
explicit DocMDP policy. Default is True.
If False, the change will only be accepted if we are evaluating changes
to a document after an approval signature.

	
class pyhanko.sign.diff_analysis.FieldMDPRule

	Bases: object

Sub-rules attached to a FormUpdatingRule.

	
apply(context: pyhanko.sign.diff_analysis.FieldComparisonContext) → Iterable[Tuple[pyhanko.sign.diff_analysis.ModificationLevel, pyhanko.sign.diff_analysis.FormUpdate]]

	Apply the rule to the given FieldComparisonContext.

	Parameters

	context – The context of this form revision evaluation, given as an instance
of FieldComparisonContext.

	
class pyhanko.sign.diff_analysis.FieldComparisonSpec(field_type: str, old_field_ref: Optional[pyhanko.pdf_utils.generic.Reference], new_field_ref: Optional[pyhanko.pdf_utils.generic.Reference], old_canonical_path: Optional[pyhanko.pdf_utils.reader.RawPdfPath])

	Bases: object

Helper object that specifies a form field name together with references
to its old and new versions.

	
field_type: str

	The (fully qualified) form field name.

	
old_field_ref: Optional[pyhanko.pdf_utils.generic.Reference]

	A reference to the field’s dictionary in the old revision, if present.

	
new_field_ref: Optional[pyhanko.pdf_utils.generic.Reference]

	A reference to the field’s dictionary in the new revision, if present.

	
old_canonical_path: Optional[pyhanko.pdf_utils.reader.RawPdfPath]

	Path from the trailer through the AcroForm structure to this field (in the
older revision). If the field is new, set to None.

	
property old_field: Optional[pyhanko.pdf_utils.generic.DictionaryObject]

	
	Returns

	The field’s dictionary in the old revision, if present, otherwise
None.

	
property new_field: Optional[pyhanko.pdf_utils.generic.DictionaryObject]

	
	Returns

	The field’s dictionary in the new revision, if present, otherwise
None.

	
expected_paths()

	

	
class pyhanko.sign.diff_analysis.FieldComparisonContext(field_specs: Dict[str, pyhanko.sign.diff_analysis.FieldComparisonSpec], old: pyhanko.pdf_utils.reader.HistoricalResolver, new: pyhanko.pdf_utils.reader.HistoricalResolver)

	Bases: object

Context for a form diffing operation.

	
field_specs: Dict[str, pyhanko.sign.diff_analysis.FieldComparisonSpec]

	Dictionary mapping field names to FieldComparisonSpec objects.

	
old: pyhanko.pdf_utils.reader.HistoricalResolver

	The older, base revision.

	
new: pyhanko.pdf_utils.reader.HistoricalResolver

	The newer revision.

	
class pyhanko.sign.diff_analysis.GenericFieldModificationRule(always_modifiable=None, value_update_keys=None)

	Bases: pyhanko.sign.diff_analysis.BaseFieldModificationRule

This rule allows non-signature form fields to be modified at
ModificationLevel.FORM_FILLING.

This rule will take field locks into account if the
FieldComparisonContext includes a FieldMDPSpec.

	
check_form_field(fq_name: str, spec: pyhanko.sign.diff_analysis.FieldComparisonSpec, context: pyhanko.sign.diff_analysis.FieldComparisonContext) → Iterable[Tuple[pyhanko.sign.diff_analysis.ModificationLevel, pyhanko.sign.diff_analysis.FormUpdate]]

	Investigate updates to a particular form field.
This function is called by apply() for every form field in
the new revision.

	Parameters

	
	fq_name – The fully qualified name of the form field.j

	spec – The FieldComparisonSpec object describing the old state
of the field in relation to the new state.

	context – The full FieldComparisonContext that is currently
being evaluated.

	Returns

	An iterable yielding FormUpdate objects qualified
with an appropriate ModificationLevel.

	
class pyhanko.sign.diff_analysis.SigFieldCreationRule(approve_widget_bindings=True, allow_new_visible_after_certify=False)

	Bases: pyhanko.sign.diff_analysis.FieldMDPRule

This rule allows signature fields to be created at the root of the form
hierarchy, but disallows the creation of other types of fields.
It also disallows field deletion.

In addition, this rule will allow newly created signature fields to
attach themselves as widget annotations to pages.

The creation of invisible signature fields is considered a modification
at level ModificationLevel.LTA_UPDATES, but appearance-related
changes will be qualified with ModificationLevel.FORM_FILLING.

	Parameters

	
	allow_new_visible_after_certify – Creating new visible signature fields is disallowed after
certification signatures by default; this is stricter than Acrobat.
Set this parameter to True to disable this check.

	approve_widget_bindings – Set to False to reject new widget annotation registrations
associated with approved new fields.

	
apply(context: pyhanko.sign.diff_analysis.FieldComparisonContext) → Iterable[Tuple[pyhanko.sign.diff_analysis.ModificationLevel, pyhanko.sign.diff_analysis.FormUpdate]]

	Apply the rule to the given FieldComparisonContext.

	Parameters

	context – The context of this form revision evaluation, given as an instance
of FieldComparisonContext.

	
class pyhanko.sign.diff_analysis.SigFieldModificationRule(always_modifiable=None, value_update_keys=None)

	Bases: pyhanko.sign.diff_analysis.BaseFieldModificationRule

This rule allows signature fields to be filled in, and set an appearance
if desired. Deleting values from signature fields is disallowed, as is
modifying signature fields that already contain a signature.

This rule will take field locks into account if the
FieldComparisonContext includes a FieldMDPSpec.

For (invisible) document timestamps, this is allowed at
ModificationLevel.LTA_UPDATES, but in all other cases
the modification level will be bumped to
ModificationLevel.FORM_FILLING.

	
check_form_field(fq_name: str, spec: pyhanko.sign.diff_analysis.FieldComparisonSpec, context: pyhanko.sign.diff_analysis.FieldComparisonContext) → Iterable[Tuple[pyhanko.sign.diff_analysis.ModificationLevel, pyhanko.sign.diff_analysis.FormUpdate]]

	Investigate updates to a particular form field.
This function is called by apply() for every form field in
the new revision.

	Parameters

	
	fq_name – The fully qualified name of the form field.j

	spec – The FieldComparisonSpec object describing the old state
of the field in relation to the new state.

	context – The full FieldComparisonContext that is currently
being evaluated.

	Returns

	An iterable yielding FormUpdate objects qualified
with an appropriate ModificationLevel.

	
class pyhanko.sign.diff_analysis.BaseFieldModificationRule(always_modifiable=None, value_update_keys=None)

	Bases: pyhanko.sign.diff_analysis.FieldMDPRule

Base class that implements some boilerplate to validate modifications
to individual form fields.

	
compare_fields(spec: pyhanko.sign.diff_analysis.FieldComparisonSpec) → bool

	Helper method to compare field dictionaries.

	Parameters

	spec – The current FieldComparisonSpec.

	Returns

	True if the modifications are permissible even when the field is
locked, False otherwise.
If keys beyond those in value_update_keys are changed,
a SuspiciousModification is raised.

	
apply(context: pyhanko.sign.diff_analysis.FieldComparisonContext) → Iterable[Tuple[pyhanko.sign.diff_analysis.ModificationLevel, pyhanko.sign.diff_analysis.FormUpdate]]

	Apply the rule to the given FieldComparisonContext.

	Parameters

	context – The context of this form revision evaluation, given as an instance
of FieldComparisonContext.

	
check_form_field(fq_name: str, spec: pyhanko.sign.diff_analysis.FieldComparisonSpec, context: pyhanko.sign.diff_analysis.FieldComparisonContext) → Iterable[Tuple[pyhanko.sign.diff_analysis.ModificationLevel, pyhanko.sign.diff_analysis.FormUpdate]]

	Investigate updates to a particular form field.
This function is called by apply() for every form field in
the new revision.

	Parameters

	
	fq_name – The fully qualified name of the form field.j

	spec – The FieldComparisonSpec object describing the old state
of the field in relation to the new state.

	context – The full FieldComparisonContext that is currently
being evaluated.

	Returns

	An iterable yielding FormUpdate objects qualified
with an appropriate ModificationLevel.

	
class pyhanko.sign.diff_analysis.DiffPolicy

	Bases: object

Analyse the differences between two revisions.

	
apply(old: pyhanko.pdf_utils.reader.HistoricalResolver, new: pyhanko.pdf_utils.reader.HistoricalResolver, field_mdp_spec: Optional[pyhanko.sign.fields.FieldMDPSpec] = None, doc_mdp: Optional[pyhanko.sign.fields.MDPPerm] = None) → pyhanko.sign.diff_analysis.DiffResult

	Execute the policy on a pair of revisions, with the MDP values provided.
SuspiciousModification exceptions should be propagated.

	Parameters

	
	old – The older, base revision.

	new – The newer revision.

	field_mdp_spec – The field MDP spec that’s currently active.

	doc_mdp – The DocMDP spec that’s currently active.

	Returns

	A DiffResult object summarising the policy’s judgment.

	
review_file(reader: pyhanko.pdf_utils.reader.PdfFileReader, base_revision: Union[int, pyhanko.pdf_utils.reader.HistoricalResolver], field_mdp_spec: Optional[pyhanko.sign.fields.FieldMDPSpec] = None, doc_mdp: Optional[pyhanko.sign.fields.MDPPerm] = None) → Union[pyhanko.sign.diff_analysis.DiffResult, pyhanko.sign.diff_analysis.SuspiciousModification]

	Compare the current state of a file to an earlier version,
with the MDP values provided.
SuspiciousModification exceptions should be propagated.

If there are multiple revisions between the base revision and the
current one, the precise manner in which the review is conducted
is left up to the implementing class. In particular,
subclasses may choose to review each intermediate revision individually,
or handle them all at once.

	Parameters

	
	reader – PDF reader representing the current state of the file.

	base_revision – The older, base revision. You can choose between providing it as a
revision index, or a HistoricalResolver instance.

	field_mdp_spec – The field MDP spec that’s currently active.

	doc_mdp – The DocMDP spec that’s currently active.

	Returns

	A DiffResult object summarising the policy’s judgment.

	
class pyhanko.sign.diff_analysis.StandardDiffPolicy(global_rules: List[pyhanko.sign.diff_analysis.QualifiedWhitelistRule], form_rule: Optional[pyhanko.sign.diff_analysis.FormUpdatingRule], reject_object_freeing=True, ignore_orphaned_objects=True)

	Bases: pyhanko.sign.diff_analysis.DiffPolicy

Run a list of rules to analyse the differences between two revisions.

	Parameters

	
	global_rules – The QualifiedWhitelistRule objects encoding the rules to
apply.

	form_rule – The FormUpdatingRule that adjudicates changes to form fields
and their values.

	reject_object_freeing – Always fail revisions that free objects that existed prior to signing.

Note

PyHanko resolves freed references to the null object in PDF,
and a freeing instruction in a cross-reference section is
always registered as a change that needs to be approved, regardless
of the value of this setting.

It is theoretically possible for a rule to permit deleting content,
in which case allowing objects to be freed might be reasonable.
That said, pyHanko takes the conservative default position to reject
all object freeing instructions as suspect.

	ignore_orphaned_objects – Some PDF writers create objects that aren’t used anywhere (tsk tsk).
Since those don’t affect the “actual” document content, they can usually
be ignored. If True, newly created orphaned objects will be
cleared at level ModificationLevel.LTA_UPDATES.
Default is True.

	
apply(old: pyhanko.pdf_utils.reader.HistoricalResolver, new: pyhanko.pdf_utils.reader.HistoricalResolver, field_mdp_spec: Optional[pyhanko.sign.fields.FieldMDPSpec] = None, doc_mdp: Optional[pyhanko.sign.fields.MDPPerm] = None) → pyhanko.sign.diff_analysis.DiffResult

	Execute the policy on a pair of revisions, with the MDP values provided.
SuspiciousModification exceptions should be propagated.

	Parameters

	
	old – The older, base revision.

	new – The newer revision.

	field_mdp_spec – The field MDP spec that’s currently active.

	doc_mdp – The DocMDP spec that’s currently active.

	Returns

	A DiffResult object summarising the policy’s judgment.

	
review_file(reader: pyhanko.pdf_utils.reader.PdfFileReader, base_revision: Union[int, pyhanko.pdf_utils.reader.HistoricalResolver], field_mdp_spec: Optional[pyhanko.sign.fields.FieldMDPSpec] = None, doc_mdp: Optional[pyhanko.sign.fields.MDPPerm] = None) → Union[pyhanko.sign.diff_analysis.DiffResult, pyhanko.sign.diff_analysis.SuspiciousModification]

	Implementation of DiffPolicy.review_file() that reviews
each intermediate revision between the base revision and the current one
individually.

	
pyhanko.sign.diff_analysis.DEFAULT_DIFF_POLICY = <pyhanko.sign.diff_analysis.StandardDiffPolicy object>

	Default DiffPolicy implementation.

This policy includes the following rules, all with the default settings.
The unqualified rules in the list all have their updates qualified at
level LTA_UPDATES.

	CatalogModificationRule,

	DocInfoRule,

	ObjectStreamRule,

	XrefStreamRule,

	DSSCompareRule,

	MetadataUpdateRule.

	FormUpdatingRule, with the following field rules:

	SigFieldCreationRule,

	SigFieldModificationRule,

	GenericFieldModificationRule.

	
pyhanko.sign.diff_analysis.NO_CHANGES_DIFF_POLICY = <pyhanko.sign.diff_analysis.StandardDiffPolicy object>

	DiffPolicy implementation that does not provide any rules,
and will therefore simply reject all changes.

	
class pyhanko.sign.diff_analysis.DiffResult(modification_level: pyhanko.sign.diff_analysis.ModificationLevel, changed_form_fields: Set[str])

	Bases: object

Encodes the result of a difference analysis on two revisions.

Returned by DiffPolicy.apply().

	
modification_level: pyhanko.sign.diff_analysis.ModificationLevel

	The strictest modification level at which all changes pass muster.

	
changed_form_fields: Set[str]

	Set containing the names of all changed form fields.

Note

For the purposes of this parameter, a change is defined as any
FormUpdate where FormUpdate.valid_when_locked
is False.

pyhanko.sign.fields module

Utilities to deal with signature form fields and their properties in PDF files.

	
class pyhanko.sign.fields.SigFieldSpec(sig_field_name: str, on_page: int = 0, box: (<class 'int'>, <class 'int'>, <class 'int'>, <class 'int'>) = None, seed_value_dict: pyhanko.sign.fields.SigSeedValueSpec = None, field_mdp_spec: pyhanko.sign.fields.FieldMDPSpec = None, doc_mdp_update_value: pyhanko.sign.fields.MDPPerm = None, combine_annotation: bool = True, empty_field_appearance: bool = False)

	Bases: object

Description of a signature field to be created.

	
sig_field_name: str

	Name of the signature field.

	
on_page: int = 0

	Index of the page on which the signature field should be included (starting
at 0).
A negative number counts pages from the back of the document,
with index -1 referring to the last page.

Note

This is essentially only relevant for visible signature fields, i.e.
those that have a widget associated with them.

	
box: (<class 'int'>, <class 'int'>, <class 'int'>, <class 'int'>) = None

	Bounding box of the signature field, if applicable.

Typically specified in ll_x, ll_y, ur_x, ur_y format,
where ll_* refers to the lower left and ur_* to the upper right
corner.

	
seed_value_dict: pyhanko.sign.fields.SigSeedValueSpec = None

	Specification for the seed value dictionary, if applicable.

	
field_mdp_spec: pyhanko.sign.fields.FieldMDPSpec = None

	Specification for the field lock dictionary, if applicable.

	
doc_mdp_update_value: pyhanko.sign.fields.MDPPerm = None

	Value to use for the document modification policy associated with the
signature in this field.

This value will be embedded into the field lock dictionary if specified, and
is meaningless if field_mdp_spec is not specified.

Warning

DocMDP entries for approval signatures are a PDF 2.0 feature.
Older PDF software will likely ignore this part of the field lock
dictionary.

	
combine_annotation: bool = True

	Flag controlling whether the field should be combined with its
annotation dictionary; True by default.

	
empty_field_appearance: bool = False

	Generate a neutral appearance stream for empty, visible signature fields.
If False, an empty appearance stream will be put in.

Note

We use an empty appearance stream to satisfy the appearance requirements
for widget annotations in ISO 32000-2. However, even when a nontrivial
appearance stream is present on an empty signature field, many viewers
will not use it to render the appearance of the empty field on-screen.

Instead, these viewers typically substitute their own native widget.

	
format_lock_dictionary() → Optional[pyhanko.pdf_utils.generic.DictionaryObject]

	

	
class pyhanko.sign.fields.SigSeedValFlags(value)

	Bases: enum.Flag

Flags for the /Ff entry in the seed value dictionary for a signature
field. These mark which of the constraints are to be strictly enforced,
as opposed to optional ones.

Warning

The flags LEGAL_ATTESTATION and APPEARANCE_FILTER are
processed in accordance with the specification when creating a
signature, but support is nevertheless limited.

	PyHanko does not support legal attestations at all, so given that
the LEGAL_ATTESTATION requirement flag only restricts the
legal attestations that can be used by the signer, pyHanko can safely
ignore it when signing.

On the other hand, since the validator is not aware of
legal attestations either, it cannot validate signatures that
make legal_attestations a mandatory
constraint.

	Since pyHanko does not define any named appearances, setting
the APPEARANCE_FILTER flag and the
appearance entry in the seed value
dictionary will make pyHanko refuse to sign the document.

When validating, the situation is different: since pyHanko has no
way of knowing whether the signer used the named appearance imposed
by the seed value dictionary, it will simply emit a warning and
continue validating the signature.

	
FILTER = 1

	Makes the signature handler setting mandatory. PyHanko only supports
/Adobe.PPKLite.

	
SUBFILTER = 2

	See subfilters.

	
V = 4

	See sv_dict_version.

	
REASONS = 8

	See reasons.

	
LEGAL_ATTESTATION = 16

	See legal_attestations.

	
ADD_REV_INFO = 32

	See add_rev_info.

	
DIGEST_METHOD = 64

	See digest_method.

	
LOCK_DOCUMENT = 128

	See lock_document.

	
APPEARANCE_FILTER = 256

	See appearance.

	
class pyhanko.sign.fields.SigCertConstraints(flags: pyhanko.sign.fields.SigCertConstraintFlags = SigCertConstraintFlags.None, subjects: Optional[List[asn1crypto.x509.Certificate]] = None, subject_dn: Optional[asn1crypto.x509.Name] = None, issuers: Optional[List[asn1crypto.x509.Certificate]] = None, info_url: Optional[str] = None, url_type: pyhanko.pdf_utils.generic.NameObject = '/Browser', key_usage: Optional[List[pyhanko.sign.fields.SigCertKeyUsage]] = None)

	Bases: object

This part of the seed value dictionary allows the document author
to set constraints on the signer’s certificate.

See Table 235 in ISO 32000-1.

	
flags: pyhanko.sign.fields.SigCertConstraintFlags = 0

	Enforcement flags. By default, all entries are optional.

	
subjects: List[asn1crypto.x509.Certificate] = None

	Explicit list of certificates that can be used to sign a signature field.

	
subject_dn: asn1crypto.x509.Name = None

	Certificate subject names that can be used to sign a signature field.
Subject DN entries that are not mentioned are unconstrained.

	
issuers: List[asn1crypto.x509.Certificate] = None

	List of issuer certificates that the signer certificate can be issued by.
Note that these issuers do not need to be the direct issuer of the
signer’s certificate; any descendant relationship will do.

	
info_url: str = None

	Informational URL that should be opened when an appropriate certificate
cannot be found (if url_type is /Browser, that is).

Note

PyHanko ignores this value, but we include it for compatibility.

	
url_type: pyhanko.pdf_utils.generic.NameObject = '/Browser'

	Handler that should be used to open info_url.
/Browser is the only implementation-independent value.

	
key_usage: List[pyhanko.sign.fields.SigCertKeyUsage] = None

	Specify the key usage extensions that should (or should not) be present
on the signer’s certificate.

	
classmethod from_pdf_object(pdf_dict)

	Read a PDF dictionary into a SigCertConstraints object.

	Parameters

	pdf_dict – A DictionaryObject.

	Returns

	A SigCertConstraints object.

	
as_pdf_object()

	Render this SigCertConstraints object to a PDF dictionary.

	Returns

	A DictionaryObject.

	
satisfied_by(signer: asn1crypto.x509.Certificate, validation_path: Optional[pyhanko_certvalidator.path.ValidationPath])

	Evaluate whether a signing certificate satisfies the required
constraints of this SigCertConstraints object.

	Parameters

	
	signer – The candidate signer’s certificate.

	validation_path – Validation path of the signer’s certificate.

	Raises

	UnacceptableSignerError – Raised if the conditions are not met.

	
class pyhanko.sign.fields.SigSeedValueSpec(flags: pyhanko.sign.fields.SigSeedValFlags = SigSeedValFlags.None, reasons: Optional[List[str]] = None, timestamp_server_url: Optional[str] = None, timestamp_required: bool = False, cert: Optional[pyhanko.sign.fields.SigCertConstraints] = None, subfilters: Optional[List[pyhanko.sign.fields.SigSeedSubFilter]] = None, digest_methods: Optional[List[str]] = None, add_rev_info: Optional[bool] = None, seed_signature_type: Optional[pyhanko.sign.fields.SeedSignatureType] = None, sv_dict_version: Optional[Union[pyhanko.sign.fields.SeedValueDictVersion, int]] = None, legal_attestations: Optional[List[str]] = None, lock_document: Optional[pyhanko.sign.fields.SeedLockDocument] = None, appearance: Optional[str] = None)

	Bases: object

Python representation of a PDF seed value dictionary.

	
flags: pyhanko.sign.fields.SigSeedValFlags = 0

	Enforcement flags. By default, all entries are optional.

	
reasons: List[str] = None

	Acceptable reasons for signing.

	
timestamp_server_url: str = None

	RFC 3161 timestamp server endpoint suggestion.

	
timestamp_required: bool = False

	Flags whether a timestamp is required.
This flag is only meaningful if timestamp_server_url is specified.

	
cert: pyhanko.sign.fields.SigCertConstraints = None

	Constraints on the signer’s certificate.

	
subfilters: List[pyhanko.sign.fields.SigSeedSubFilter] = None

	Acceptable /SubFilter values.

	
digest_methods: List[str] = None

	Acceptable digest methods.

	
add_rev_info: bool = None

	Indicates whether revocation information should be embedded.

Warning

This flag exclusively refers to the Adobe-style revocation information
embedded within the CMS object that is written to the signature field.
PAdES-style revocation information that is saved to the document
security store (DSS) does not satisfy the requirement.
Additionally, the standard mandates that /SubFilter be equal to
/adbe.pkcs7.detached if this flag is True.

	
seed_signature_type: pyhanko.sign.fields.SeedSignatureType = None

	Specifies the type of signature that should occupy a signature field;
this represents the /MDP entry in the seed value dictionary.
See SeedSignatureType for details.

Caution

Since a certification-type signature is by definition the first
signature applied to a document, compliance with this requirement
cannot be cryptographically enforced.

	
sv_dict_version: Union[pyhanko.sign.fields.SeedValueDictVersion, int] = None

	Specifies the compliance level required of a seed value dictionary
processor. If None, pyHanko will compute an appropriate value.

Note

You may also specify this value directly as an integer.
This covers potential future versions of the standard that pyHanko
does not support out of the box.

	
legal_attestations: List[str] = None

	Specifies the possible legal attestations that a certification signature
occupying this signature field can supply.
The corresponding flag in flags indicates whether this is a
mandatory constraint.

Caution

Since legal_attestations is only relevant for certification
signatures, compliance with this requirement cannot be reliably
enforced.
Regardless, since pyHanko’s validator is also unaware of legal
attestation settings, it will refuse to validate signatures
where this seed value constitutes a mandatory constraint.

Additionally, since pyHanko does not support legal attestation
specifications at all, it vacuously satisfies the requirements of this
entry no matter what, and will therefore ignore it when signing.

	
lock_document: pyhanko.sign.fields.SeedLockDocument = None

	Tell the signer whether or not the document should be locked after signing
this field; see SeedLockDocument for details.

The corresponding flag in flags indicates whether this constraint
is mandatory.

	
appearance: str = None

	Specify a named appearance to use when generating the signature.
The corresponding flag in flags indicates whether this constraint
is mandatory.

Caution

There is no standard registry of named appearances, so these constraints
are not portable, and cannot be validated.

PyHanko currently does not define any named appearances.

	
as_pdf_object()

	Render this SigSeedValueSpec object to a PDF dictionary.

	Returns

	A DictionaryObject.

	
classmethod from_pdf_object(pdf_dict)

	Read from a seed value dictionary.

	Parameters

	pdf_dict – A DictionaryObject.

	Returns

	A SigSeedValueSpec object.

	
build_timestamper()

	Return a timestamper object based on the timestamp_server_url
attribute of this SigSeedValueSpec object.

	Returns

	A HTTPTimeStamper.

	
class pyhanko.sign.fields.SigCertConstraintFlags(value)

	Bases: enum.Flag

Flags for the /Ff entry in the certificate seed value dictionary for
a dictionary field. These mark which of the constraints are to be
strictly enforced, as opposed to optional ones.

Warning

While this enum records values for all flags, not all corresponding
constraint types have been implemented yet.

	
SUBJECT = 1

	See SigCertConstraints.subjects.

	
ISSUER = 2

	See SigCertConstraints.issuers.

	
OID = 4

	Currently not supported.

	
SUBJECT_DN = 8

	See SigCertConstraints.subject_dn.

	
RESERVED = 16

	Currently not supported (reserved).

	
KEY_USAGE = 32

	See SigCertConstraints.key_usage.

	
URL = 64

	See SigCertConstraints.info_url.

Note

As specified in the standard, this enforcement bit is supposed to be
ignored by default. We include it for compatibility reasons.

	
UNSUPPORTED = 20

	Flags for which the corresponding constraint is unsupported.

	
class pyhanko.sign.fields.SigSeedSubFilter(value)

	Bases: enum.Enum

Enum declaring all supported /SubFilter values.

	
ADOBE_PKCS7_DETACHED = '/adbe.pkcs7.detached'

	

	
PADES = '/ETSI.CAdES.detached'

	

	
ETSI_RFC3161 = '/ETSI.RFC3161'

	

	
class pyhanko.sign.fields.SeedValueDictVersion(value)

	Bases: pyhanko.pdf_utils.misc.OrderedEnum

Specify the minimal compliance level for a seed value dictionary processor.

	
PDF_1_5 = 1

	Require the reader to understand all keys defined in PDF 1.5.

	
PDF_1_7 = 2

	Require the reader to understand all keys defined in PDF 1.7.

	
PDF_2_0 = 3

	Require the reader to understand all keys defined in PDF 2.0.

	
class pyhanko.sign.fields.SeedLockDocument(value)

	Bases: enum.Enum

Provides a recommendation to the signer as to whether the document should
be locked after signing.
The corresponding flag in SigSeedValueSpec.flags determines whether
this constraint is a required constraint.

	
LOCK = '/true'

	Lock the document after signing.

	
DO_NOT_LOCK = '/false'

	Lock the document after signing.

	
SIGNER_DISCRETION = '/auto'

	Leave the decision up to the signer.

Note

This is functionally equivalent to not specifying any value.

	
class pyhanko.sign.fields.SigCertKeyUsage(must_have: Optional[asn1crypto.x509.KeyUsage] = None, forbidden: Optional[asn1crypto.x509.KeyUsage] = None)

	Bases: object

Encodes the key usage bits that must (resp. must not) be active on the
signer’s certificate.

Note

See § 4.2.1.3 in RFC 5280 [https://tools.ietf.org/html/rfc5280.html] and KeyUsage for more
information on key usage extensions.

Note

The human-readable names of the key usage extensions are recorded
in camelCase in RFC 5280 [https://tools.ietf.org/html/rfc5280.html], but this class uses
the naming convention of KeyUsage in asn1crypto.
The conversion is done by replacing camelCase with snake_case.
For example, nonRepudiation becomes non_repudiation, and
digitalSignature turns into digital_signature.

Note

This class is intended to closely replicate the definition of the
KeyUsage entry Table 235 in ISO 32000-1.
In particular, it does not provide a mechanism to deal
with extended key usage extensions (cf. § 4.2.1.12 in RFC 5280 [https://tools.ietf.org/html/rfc5280.html]).

	Parameters

	
	must_have – The KeyUsage object encoding the key usage extensions
that must be present on the signer’s certificate.

	forbidden – The KeyUsage object encoding the key usage extensions
that must not be present on the signer’s certificate.

	
encode_to_sv_string()

	Encode the key usage requirements in the format specified in the PDF
specification.

	Returns

	A string.

	
classmethod read_from_sv_string(ku_str)

	Parse a PDF KeyUsage string into an instance of
SigCertKeyUsage. See Table 235 in ISO 32000-1.

	Parameters

	ku_str – A PDF KeyUsage string.

	Returns

	An instance of SigCertKeyUsage.

	
classmethod from_sets(must_have: Optional[Set[str]] = None, forbidden: Optional[Set[str]] = None)

	Initialise a SigCertKeyUsage object from two sets.

	Parameters

	
	must_have – The key usage extensions that must be present on the signer’s
certificate.

	forbidden – The key usage extensions that must not be present on the signer’s
certificate.

	Returns

	A SigCertKeyUsage object encoding these.

	
must_have_set() → Set[str]

	Return the set of key usage extensions that must be present
on the signer’s certificate.

	
forbidden_set() → Set[str]

	Return the set of key usage extensions that must not be present
on the signer’s certificate.

	
class pyhanko.sign.fields.MDPPerm(value)

	Bases: pyhanko.pdf_utils.misc.OrderedEnum

Indicates a /DocMDP level.

Cf. Table 254 in ISO 32000-1.

	
NO_CHANGES = 1

	No changes to the document are allowed.

Warning

This does not apply to DSS updates and the addition of document time
stamps.

	
FILL_FORMS = 2

	Form filling & signing is allowed.

	
ANNOTATE = 3

	Form filling, signing and commenting are allowed.

Warning

Validating this /DocMDP level is not currently supported,
but included in the list for completeness.

	
class pyhanko.sign.fields.FieldMDPAction(value)

	Bases: enum.Enum

Marker for the scope of a /FieldMDP policy.

	
ALL = '/All'

	The policy locks all form fields.

	
INCLUDE = '/Include'

	The policy locks all fields in the list (see FieldMDPSpec.fields).

	
EXCLUDE = '/Exclude'

	The policy locks all fields except those specified in the list
(see FieldMDPSpec.fields).

	
class pyhanko.sign.fields.FieldMDPSpec(action: pyhanko.sign.fields.FieldMDPAction, fields: Optional[List[str]] = None)

	Bases: object

/FieldMDP policy description.

This class models both field lock dictionaries and /FieldMDP
transformation parameters.

	
action: pyhanko.sign.fields.FieldMDPAction

	Indicates the scope of the policy.

	
fields: Optional[List[str]] = None

	Indicates the fields subject to the policy,
unless action is FieldMDPAction.ALL.

	
as_pdf_object() → pyhanko.pdf_utils.generic.DictionaryObject

	Render this /FieldMDP policy description as a PDF dictionary.

	Returns

	A DictionaryObject.

	
as_transform_params() → pyhanko.pdf_utils.generic.DictionaryObject

	Render this /FieldMDP policy description as a PDF dictionary,
ready for inclusion into the /TransformParams entry of a
/FieldMDP dictionary associated with a signature object.

	Returns

	A DictionaryObject.

	
as_sig_field_lock() → pyhanko.pdf_utils.generic.DictionaryObject

	Render this /FieldMDP policy description as a PDF dictionary,
ready for inclusion into the /Lock dictionary of a signature field.

	Returns

	A DictionaryObject.

	
classmethod from_pdf_object(pdf_dict) → pyhanko.sign.fields.FieldMDPSpec

	Read a PDF dictionary into a FieldMDPSpec object.

	Parameters

	pdf_dict – A DictionaryObject.

	Returns

	A FieldMDPSpec object.

	
is_locked(field_name: str) → bool

	Adjudicate whether a field should be locked by the policy described by
this FieldMDPSpec object.

	Parameters

	field_name – The name of a form field.

	Returns

	True if the field should be locked, False otherwise.

	
class pyhanko.sign.fields.SignatureFormField(field_name, *, box=None, include_on_page=None, combine_annotation=True, annot_flags=132)

	Bases: pyhanko.pdf_utils.generic.DictionaryObject

	
register_widget_annotation(writer: pyhanko.pdf_utils.writer.BasePdfFileWriter, sig_field_ref)

	

	
pyhanko.sign.fields.enumerate_sig_fields(handler: pyhanko.pdf_utils.rw_common.PdfHandler, filled_status=None)

	Enumerate signature fields.

	Parameters

	
	handler – The PdfHandler to operate on.

	filled_status – Optional boolean. If True (resp. False) then all filled
(resp. empty) fields are returned. If left None (the default), then
all fields are returned.

	Returns

	A generator producing signature fields.

	
pyhanko.sign.fields.append_signature_field(pdf_out: pyhanko.pdf_utils.writer.BasePdfFileWriter, sig_field_spec: pyhanko.sign.fields.SigFieldSpec)

	Append signature fields to a PDF file.

	Parameters

	
	pdf_out – Incremental writer to house the objects.

	sig_field_spec – A SigFieldSpec object describing the signature field
to add.

	
pyhanko.sign.fields.ensure_sig_flags(writer: pyhanko.pdf_utils.writer.BasePdfFileWriter, lock_sig_flags: bool = True)

	Ensure the SigFlags setting is present in the AcroForm dictionary.

	Parameters

	
	writer – A PDF writer.

	lock_sig_flags – Whether to flag the document as append-only.

	
pyhanko.sign.fields.prepare_sig_field(sig_field_name, root, update_writer: pyhanko.pdf_utils.writer.BasePdfFileWriter, existing_fields_only=False, **kwargs)

	Returns a tuple of a boolean and a reference to a signature field.
The boolean is True if the field was created, and False otherwise.

Danger

This function is internal API.

pyhanko.sign.general module

General tools related to Cryptographic Message Syntax (CMS) signatures,
not necessarily to the extent implemented in the PDF specification.

CMS is defined in RFC 5652 [https://tools.ietf.org/html/rfc5652.html]. To parse CMS messages, pyHanko relies heavily on
asn1crypto [https://github.com/wbond/asn1crypto].

	
class pyhanko.sign.general.SignatureStatus(intact: bool, valid: bool, trusted: bool, revoked: bool, signing_cert: asn1crypto.x509.Certificate, pkcs7_signature_mechanism: str, md_algorithm: str, validation_path: pyhanko_certvalidator.path.ValidationPath)

	Bases: object

Class describing the validity of a (general) CMS signature.

	
intact: bool

	Reports whether the signature is intact, i.e. whether the hash of the
message content (which may or may not be embedded inside the CMS object
itself) matches the hash value that was signed.

	
valid: bool

	Reports whether the signature is valid, i.e. whether the hash’s signature
actually validates.

	
trusted: bool

	Reports whether the signer’s certificate is trusted w.r.t. the currently
relevant validation context and key usage requirements.

	
revoked: bool

	Reports whether the signer’s certificate has been revoked or not.
If this field is True, then obviously trusted will be False.

	
signing_cert: asn1crypto.x509.Certificate

	Contains the certificate of the signer, as embedded in the CMS object.

	
pkcs7_signature_mechanism: str

	CMS signature mechanism used.

	
md_algorithm: str

	Message digest algorithm used.

	
validation_path: pyhanko_certvalidator.path.ValidationPath

	Validation path providing a valid chain of trust from the signer’s
certificate to a trusted root certificate.

	
key_usage: ClassVar[Set[str]] = {'non_repudiation'}

	Class property indicating which key usages are accepted on the signer’s
certificate. The default is non_repudiation only.

	
extd_key_usage: ClassVar[Optional[Set[str]]] = None

	Class property indicating which extended key usage key purposes are accepted
to be present on the signer’s certificate.

See KeyUsageConstraints.extd_key_usage.

	
summary_fields()

	

	
summary()

	Provide a textual but machine-parsable summary of the validity.

	
async classmethod validate_cert_usage(validator: pyhanko_certvalidator.CertificateValidator, key_usage_settings: Optional[pyhanko.sign.general.KeyUsageConstraints] = None)

	

	
pyhanko.sign.general.simple_cms_attribute(attr_type, value)

	Convenience method to quickly construct a CMS attribute object with
one value.

	Parameters

	
	attr_type – The attribute type, as a string or OID.

	value – The value.

	Returns

	A cms.CMSAttribute object.

	
pyhanko.sign.general.find_cms_attribute(attrs, name)

	Find and return CMS attribute values of a given type.

	Parameters

	
	attrs – The cms.CMSAttributes object.

	name – The attribute type as a string (as defined in asn1crypto).

	Returns

	The values associated with the requested type, if present.

	Raises

	NonexistentAttributeError – Raised when no such type entry could be found in the
cms.CMSAttributes object.

	
pyhanko.sign.general.find_unique_cms_attribute(attrs, name)

	Find and return a unique CMS attribute value of a given type.

	Parameters

	
	attrs – The cms.CMSAttributes object.

	name – The attribute type as a string (as defined in asn1crypto).

	Returns

	The value associated with the requested type, if present.

	Raises

	
	NonexistentAttributeError – Raised when no such type entry could be found in the
cms.CMSAttributes object.

	MultivaluedAttributeError – Raised when the attribute’s cardinality is not 1.

	
pyhanko.sign.general.extract_message_digest(signer_info: asn1crypto.cms.SignerInfo)

	

	
pyhanko.sign.general.validate_sig_integrity(signer_info: asn1crypto.cms.SignerInfo, cert: asn1crypto.x509.Certificate, expected_content_type: str, actual_digest: bytes, weak_hash_algorithms=frozenset({'md2', 'md5', 'sha1'})) → Tuple[bool, bool]

	Validate the integrity of a signature for a particular signerInfo object
inside a CMS signed data container.

Warning

This function does not do any trust checks, and is considered
“dangerous” API because it is easy to misuse.

	Parameters

	
	signer_info – A cms.SignerInfo object.

	cert – The signer’s certificate.

Note

This function will not attempt to extract certificates from
the signed data.

	expected_content_type – The expected value for the content type attribute (as a Python string,
see cms.ContentType).

	actual_digest – The actual digest to be matched to the message digest attribute.

	weak_hash_algorithms – List, tuple or set of weak hashing algorithms.

	Returns

	A tuple of two booleans. The first indicates whether the provided
digest matches the value in the signed attributes.
The second indicates whether the signature of the digest is valid.

	
class pyhanko.sign.general.CertificateStore

	Bases: pyhanko_certvalidator.registry.CertificateCollection, abc.ABC

	
register(cert: asn1crypto.x509.Certificate) → bool

	Register a single certificate.

	Parameters

	cert – Certificate to add.

	Returns

	True if the certificate was added, False if it already
existed in this store.

	
register_multiple(certs)

	Register multiple certificates.

	Parameters

	certs – Certificates to register.

	Returns

	True if at least one certificate was added, False
if all certificates already existed in this store.

	
class pyhanko.sign.general.SimpleCertificateStore

	Bases: pyhanko_certvalidator.registry.CertificateStore

Simple trustless certificate store.

	
classmethod from_certs(certs)

	

	
register(cert: asn1crypto.x509.Certificate) → bool

	Register a single certificate.

	Parameters

	cert – Certificate to add.

	Returns

	True if the certificate was added, False if it already
existed in this store.

	
retrieve_many_by_key_identifier(key_identifier: bytes)

	Retrieves possibly multiple certs via the corresponding key identifiers

	Parameters

	key_identifier – A byte string of the key identifier

	Returns

	A list of asn1crypto.x509.Certificate objects

	
retrieve_by_name(name: asn1crypto.x509.Name)

	Retrieves a list certs via their subject name

	Parameters

	name – An asn1crypto.x509.Name object

	Returns

	A list of asn1crypto.x509.Certificate objects

	
retrieve_by_issuer_serial(issuer_serial)

	Retrieve a certificate by its issuer_serial value.

	Parameters

	issuer_serial – The issuer_serial value of the certificate.

	Returns

	The certificate corresponding to the issuer_serial key
passed in.

	Returns

	None or an asn1crypto.x509.Certificate object

	
class pyhanko.sign.general.KeyUsageConstraints(key_usage: Optional[Set[str]] = None, key_usage_forbidden: Optional[Set[str]] = None, extd_key_usage: Optional[Set[str]] = None, explicit_extd_key_usage_required: bool = True, match_all_key_usages: bool = False)

	Bases: pyhanko.pdf_utils.config_utils.ConfigurableMixin

Convenience class to pass around key usage requirements and validate them.
Intended to be flexible enough to handle both PKIX and ISO 32000 certificate
seed value constraint semantics.

Changed in version 0.6.0: Bring extended key usage semantics in line with RFC 5280 [https://tools.ietf.org/html/rfc5280.html] (PKIX).

	
key_usage: Set[str] = None

	All or some (depending on match_all_key_usage) of these key usage
extensions must be present in the signer’s certificate.
If not set or empty, all key usages are considered acceptable.

	
key_usage_forbidden: Set[str] = None

	These key usages must not be present in the signer’s certificate.

Note

This behaviour is undefined in RFC 5280 [https://tools.ietf.org/html/rfc5280.html] (PKIX), but included for
compatibility with certificate seed value settings in ISO 32000.

	
extd_key_usage: Set[str] = None

	List of acceptable key purposes that can appear in an extended key
usage extension in the signer’s certificate, if such an extension is at all
present. If not set, all extended key usages are considered acceptable.

If no extended key usage extension is present, or if the
anyExtendedKeyUsage key purpose ID is present, the resulting behaviour
depends on explicit_extd_key_usage_required.

Setting this option to the empty set (as opposed to None) effectively
bans all (presumably unrecognised) extended key usages.

Warning

Note the difference in behaviour with key_usage for empty
sets of valid usages.

Warning

Contrary to what some CAs seem to believe, the criticality of the
extended key usage extension is irrelevant here.
Even a non-critical EKU extension must be enforced according to
RFC 5280 [https://tools.ietf.org/html/rfc5280.html] § 4.2.1.12.

In practice, many certificate authorities issue non-repudiation certs
that can also be used for TLS authentication by only including the
TLS client authentication key purpose ID in the EKU extension.
Interpreted strictly, RFC 5280 [https://tools.ietf.org/html/rfc5280.html] bans such certificates from being
used to sign documents, and pyHanko will enforce these semantics
if extd_key_usage is not None.

	
explicit_extd_key_usage_required: bool = True

	
New in version 0.6.0.

Require an extended key usage extension with the right key usages to be
present if extd_key_usage is non-empty.

If this flag is True, at least one key purpose in extd_key_usage
must appear in the certificate’s extended key usage, and
anyExtendedKeyUsage will be ignored.

	
match_all_key_usages: bool = False

	
New in version 0.6.0.

If True, all key usages indicated in key_usage must be present
in the certificate. If False, one match suffices.

If key_usage is empty or None, this option has no effect.

	
validate(cert: asn1crypto.x509.Certificate)

	

	
classmethod process_entries(config_dict)

	Hook method that can modify the configuration dictionary
to overwrite or tweak some of their values (e.g. to convert string
parameters into more complex Python objects)

Subclasses that override this method should call
super().process_entries(), and leave keys that they do not
recognise untouched.

	Parameters

	config_dict – A dictionary containing configuration values.

	Raises

	ConfigurationError – when there is a problem processing a relevant entry.

	
exception pyhanko.sign.general.SigningError

	Bases: ValueError

Error encountered while signing a file.

	
exception pyhanko.sign.general.UnacceptableSignerError

	Bases: pyhanko.sign.general.SigningError

Error raised when a signer was judged unacceptable.

	
exception pyhanko.sign.general.WeakHashAlgorithmError

	Bases: pyhanko.sign.general.SignatureValidationError

	
exception pyhanko.sign.general.NonexistentAttributeError

	Bases: KeyError

	
exception pyhanko.sign.general.MultivaluedAttributeError

	Bases: ValueError

	
exception pyhanko.sign.general.SignatureValidationError

	Bases: ValueError

Error validating a signature.

	
pyhanko.sign.general.load_certs_from_pemder(cert_files)

	A convenience function to load PEM/DER-encoded certificates from files.

	Parameters

	cert_files – An iterable of file names.

	Returns

	A generator producing asn1crypto.x509.Certificate objects.

	
pyhanko.sign.general.load_cert_from_pemder(cert_file)

	A convenience function to load a single PEM/DER-encoded certificate
from a file.

	Parameters

	cert_file – A file name.

	Returns

	An asn1crypto.x509.Certificate object.

	
pyhanko.sign.general.load_private_key_from_pemder(key_file, passphrase: Optional[bytes]) → asn1crypto.keys.PrivateKeyInfo

	A convenience function to load PEM/DER-encoded keys from files.

	Parameters

	
	key_file – File to read the key from.

	passphrase – Key passphrase.

	Returns

	A private key encoded as an unencrypted PKCS#8 PrivateKeyInfo object.

	
pyhanko.sign.general.get_pyca_cryptography_hash(algorithm, prehashed=False)

	

	
pyhanko.sign.general.optimal_pss_params(cert: asn1crypto.x509.Certificate, digest_algorithm: str) → asn1crypto.algos.RSASSAPSSParams

	Figure out the optimal RSASSA-PSS parameters for a given certificate.
The subject’s public key must be an RSA key.

	Parameters

	
	cert – An RSA X.509 certificate.

	digest_algorithm – The digest algorithm to use.

	Returns

	RSASSA-PSS parameters.

	
pyhanko.sign.general.as_signing_certificate(cert: asn1crypto.x509.Certificate) → asn1crypto.tsp.SigningCertificate

	Format an ASN.1 SigningCertificate object, where the certificate
is identified by its SHA-1 digest.

	Parameters

	cert – An X.509 certificate.

	Returns

	A tsp.SigningCertificate object referring to the original
certificate.

	
pyhanko.sign.general.as_signing_certificate_v2(cert: asn1crypto.x509.Certificate, hash_algo='sha256') → asn1crypto.tsp.SigningCertificateV2

	Format an ASN.1 SigningCertificateV2 value, where the certificate
is identified by the hash algorithm specified.

	Parameters

	
	cert – An X.509 certificate.

	hash_algo – Hash algorithm to use to digest the certificate.
Default is SHA-256.

	Returns

	A tsp.SigningCertificateV2 object referring to the original
certificate.

	
pyhanko.sign.general.match_issuer_serial(expected_issuer_serial: Union[asn1crypto.cms.IssuerAndSerialNumber, asn1crypto.tsp.IssuerSerial], cert: asn1crypto.x509.Certificate) → bool

	Match the issuer and serial number of an X.509 certificate against some
expected identifier.

	Parameters

	
	expected_issuer_serial – A certificate identifier, either cms.IssuerAndSerialNumber
or tsp.IssuerSerial.

	cert – An x509.Certificate.

	Returns

	True if there’s a match, False otherwise.

pyhanko.sign.pkcs11 module

This module provides PKCS#11 integration for pyHanko, by providing a wrapper
for python-pkcs11 [https://github.com/danni/python-pkcs11] that can be
seamlessly plugged into a PdfSigner.

	
class pyhanko.sign.pkcs11.PKCS11Signer(pkcs11_session: pkcs11.types.Session, cert_label: Optional[str] = None, signing_cert: Optional[asn1crypto.x509.Certificate] = None, ca_chain=None, key_label: Optional[str] = None, prefer_pss=False, embed_roots=True, other_certs_to_pull=(), bulk_fetch=True, key_id: Optional[bytes] = None, cert_id: Optional[bytes] = None, use_raw_mechanism=False)

	Bases: pyhanko.sign.signers.pdf_cms.Signer

Signer implementation for PKCS11 devices.

	Parameters

	
	pkcs11_session – The PKCS11 session object to use.

	cert_label – The label of the certificate that will be used for signing, to
be pulled from the PKCS#11 token.

	cert_id – ID of the certificate object that will be used for signing, to
be pulled from the PKCS#11 token.

	signing_cert – The signer’s certificate. If the signer’s certificate is provided via
this parameter, the cert_label and cert_id parameters will not
be used to retrieve the signer’s certificate.

	ca_chain – Set of other relevant certificates
(as asn1crypto.x509.Certificate objects).

	key_label – The label of the key that will be used for signing.
Defaults to the value of cert_label if left unspecified and
key_id is also unspecified.

Note

At least one of key_id, key_label and cert_label must
be supplied.

	key_id – ID of the private key object (optional).

	other_certs_to_pull – List labels of other certificates to pull from the PKCS#11 device.
Defaults to the empty tuple. If None, pull all certificates.

	bulk_fetch – Boolean indicating the fetching strategy.
If True, fetch all certs and filter the unneeded ones.
If False, fetch the requested certs one by one.
Default value is True, unless other_certs_to_pull has one or
fewer elements, in which case it is always treated as False.

	use_raw_mechanism – Use the ‘raw’ equivalent of the selected signature mechanism. This is
useful when working with tokens that do not support a hash-then-sign
mode of operation.

Note

This functionality is only available for ECDSA at this time.
Support for other signature schemes will be added on an as-needed
basis.

	
property cert_registry

	

	
property signing_cert

	

	
async async_sign_raw(data: bytes, digest_algorithm: str, dry_run=False) → bytes

	Compute the raw cryptographic signature of the data provided, hashed
using the digest algorithm provided.

	Parameters

	
	data – Data to sign.

	digest_algorithm – Digest algorithm to use.

Warning

If signature_mechanism also specifies a digest, they
should match.

	dry_run – Do not actually create a signature, but merely output placeholder
bytes that would suffice to contain an actual signature.

	Returns

	Signature bytes.

	
async ensure_objects_loaded()

	Async method that, when awaited, ensures that objects
(relevant certificates, key handles, …) are loaded.

This coroutine is guaranteed to be called & awaited in sign_raw(),
but some property implementations may cause object loading to be
triggered synchronously (for backwards compatibility reasons).
This blocks the event loop the first time it happens.

To avoid this behaviour, asynchronous code should ideally perform
await signer.ensure_objects_loaded() after instantiating the signer.

Note

The asynchronous context manager on PKCS11SigningContext
takes care of that automatically.

	
pyhanko.sign.pkcs11.open_pkcs11_session(lib_location, slot_no=None, token_label=None, user_pin=None) → pkcs11.types.Session

	Open a PKCS#11 session

	Parameters

	
	lib_location – Path to the PKCS#11 module.

	slot_no – Slot number to use. If not specified, the first slot containing a token
labelled token_label will be used.

	token_label – Label of the token to use. If None, there is no constraint.

	user_pin – User PIN to use.

Note

Some PKCS#11 implementations do not require PIN when the token
is opened, but will prompt for it out-of-band when signing.

	Returns

	An open PKCS#11 session object.

	
class pyhanko.sign.pkcs11.PKCS11SigningContext(config: pyhanko.config.PKCS11SignatureConfig, user_pin: Optional[str] = None)

	Bases: object

Context manager for PKCS#11 configurations.

pyhanko.sign.signers package

	pyhanko.sign.signers.cms_embedder module

	pyhanko.sign.signers.csc_signer module
	Usage notes
	CSCSigner overview

	Authenticating to the signing service

	Obtaining SAD from the signing service

	Certificate provisioning

	pyhanko.sign.signers.constants module

	pyhanko.sign.signers.functions module

	pyhanko.sign.signers.pdf_byterange module

	pyhanko.sign.signers.pdf_cms module

	pyhanko.sign.signers.pdf_signer module

pyhanko.sign.signers.cms_embedder module

This module describes and implements the low-level PdfCMSEmbedder
protocol for embedding CMS payloads into PDF signature objects.

	
class pyhanko.sign.signers.cms_embedder.PdfCMSEmbedder(new_field_spec: Optional[pyhanko.sign.fields.SigFieldSpec] = None)

	Bases: object

Low-level class that handles embedding CMS objects into PDF signature
fields.

It also takes care of appearance generation and DocMDP configuration,
but does not otherwise offer any of the conveniences of
PdfSigner.

	Parameters

	new_field_spec – SigFieldSpec to use when creating new fields on-the-fly.

	
write_cms(field_name: str, writer: pyhanko.pdf_utils.writer.BasePdfFileWriter, existing_fields_only=False)

	
New in version 0.3.0.

Changed in version 0.7.0: Digest wrapped in
PreparedByteRangeDigest
in step 3; output returned in step 3 instead of step 4.

This method returns a generator coroutine that controls the process
of embedding CMS data into a PDF signature field.
Can be used for both timestamps and regular signatures.

Danger

This is a very low-level interface that performs virtually no
error checking, and is intended to be used in situations
where the construction of the CMS object to be embedded
is not under the caller’s control (e.g. a remote signer
that produces full-fledged CMS objects).

In almost every other case, you’re better of using
PdfSigner instead, with a custom Signer
implementation to handle the cryptographic operations if necessary.

The coroutine follows the following specific protocol.

	First, it retrieves or creates the signature field to embed the
CMS object in, and yields a reference to said field.

	The caller should then send in a SigObjSetup object, which
is subsequently processed by the coroutine. For convenience, the
coroutine will then yield a reference to the signature dictionary
(as embedded in the PDF writer).

	Next, the caller should send a SigIOSetup object,
describing how the resulting document should be hashed and written
to the output. The coroutine will write the entire document with a
placeholder region reserved for the signature and compute the
document’s hash and yield it to the caller.
It will then yield a prepared_digest, output tuple, where
prepared_digest is a PreparedByteRangeDigest object
containing the document digest and the relevant offsets, and
output is the output stream to which the document to be
signed was written.

From this point onwards, no objects may be changed or added to
the IncrementalPdfFileWriter currently in use.

	Finally, the caller should pass in a CMS object to place inside
the signature dictionary. The CMS object can be supplied as a raw
bytes object, or an asn1crypto-style object.
The coroutine’s final yield is the value of the signature
dictionary’s /Contents entry, given as a hexadecimal string.

Caution

It is the caller’s own responsibility to ensure that enough room
is available in the placeholder signature object to contain
the final CMS object.

	Parameters

	
	field_name – The name of the field to fill in. This should be a field of type
/Sig.

	writer – An IncrementalPdfFileWriter containing the
document to sign.

	existing_fields_only – If True, never create a new empty signature field to contain
the signature.
If False, a new field may be created if no field matching
field_name exists.

	Returns

	A generator coroutine implementing the protocol described above.

	
class pyhanko.sign.signers.cms_embedder.SigMDPSetup(md_algorithm: str, certify: bool = False, field_lock: Union[pyhanko.sign.fields.FieldMDPSpec, NoneType] = None, docmdp_perms: Union[pyhanko.sign.fields.MDPPerm, NoneType] = None)

	Bases: object

	
md_algorithm: str

	Message digest algorithm to write into the signature reference dictionary,
if one is written at all.

Warning

It is the caller’s responsibility to make sure that this value agrees
with the value embedded into the CMS object, and with the algorithm
used to hash the document.
The low-level PdfCMSEmbedder API will simply take it at
face value.

	
certify: bool = False

	Sign with an author (certification) signature, as opposed to an approval
signature. A document can contain at most one such signature, and it must
be the first one.

	
field_lock: Optional[pyhanko.sign.fields.FieldMDPSpec] = None

	Field lock information to write to the signature reference dictionary.

	
docmdp_perms: Optional[pyhanko.sign.fields.MDPPerm] = None

	DocMDP permissions to write to the signature reference dictionary.

	
apply(sig_obj_ref, writer)

	Apply the settings to a signature object.

Danger

This method is internal API.

	
class pyhanko.sign.signers.cms_embedder.SigObjSetup(sig_placeholder: pyhanko.sign.signers.pdf_byterange.PdfSignedData, mdp_setup: Optional[pyhanko.sign.signers.cms_embedder.SigMDPSetup] = None, appearance_setup: Optional[pyhanko.sign.signers.cms_embedder.SigAppearanceSetup] = None)

	Bases: object

Describes the signature dictionary to be embedded as the form field’s value.

	
sig_placeholder: pyhanko.sign.signers.pdf_byterange.PdfSignedData

	Bare-bones placeholder object, usually of type SignatureObject
or DocumentTimestamp.

In particular, this determines the number of bytes to allocate for the
CMS object.

	
mdp_setup: Optional[pyhanko.sign.signers.cms_embedder.SigMDPSetup] = None

	Optional DocMDP settings, see SigMDPSetup.

	
appearance_setup: Optional[pyhanko.sign.signers.cms_embedder.SigAppearanceSetup] = None

	Optional appearance settings, see SigAppearanceSetup.

	
class pyhanko.sign.signers.cms_embedder.SigAppearanceSetup(style: pyhanko.stamp.BaseStampStyle, timestamp: datetime.datetime, name: str, text_params: Optional[dict] = None)

	Bases: object

Signature appearance configuration.

Part of the low-level PdfCMSEmbedder API, see
SigObjSetup.

	
style: pyhanko.stamp.BaseStampStyle

	Stamp style to use to generate the appearance.

	
timestamp: datetime.datetime

	Timestamp to show in the signature appearance.

	
name: str

	Signer name to show in the signature appearance.

	
text_params: dict = None

	Additional text interpolation parameters to pass to the underlying
stamp style.

	
apply(sig_annot, writer)

	Apply the settings to an annotation.

Danger

This method is internal API.

	
class pyhanko.sign.signers.cms_embedder.SigIOSetup(md_algorithm: str, in_place: bool = False, chunk_size: int = 4096, output: Optional[IO] = None)

	Bases: object

I/O settings for writing signed PDF documents.

Objects of this type are used in the penultimate phase of
the PdfCMSEmbedder protocol.

	
md_algorithm: str

	Message digest algorithm to use to compute the document hash.
It should be supported by pyca/cryptography.

Warning

This is also the message digest algorithm that should appear in the
corresponding signerInfo entry in the CMS object that ends up
being embedded in the signature field.

	
in_place: bool = False

	Sign the input in-place. If False, write output to a BytesIO
object, or output if the latter is not None.

	
chunk_size: int = 4096

	Size of the internal buffer (in bytes) used to feed data to the message
digest function if the input stream does not support memoryview.

	
output: Optional[IO] = None

	Write the output to the specified output stream. If None, write to a
new BytesIO object. Default is None.

pyhanko.sign.signers.csc_signer module

New in version 0.10.0.

Asynchronous Signer implementation for
interacting with a remote signing service using the Cloud Signature Consortium
(CSC) API.

This implementation is based on version 1.0.4.0 (2019-06) of the CSC API
specification.

Usage notes

This module’s CSCSigner class supplies an implementation of the
Signer class in pyHanko.
As such, it is flexible enough to be used either through pyHanko’s high-level
API (sign_pdf() et al.), or through
the interrupted signing API.

CSCSigner overview

CSCSigner is only directly responsible for calling the
signatures/signHash endpoint in the CSC API. Other than that, it only
handles batch control. This means that the following tasks require further
action on the API user’s part:

	authenticating to the signing service (typically using OAuth2);

	obtaining Signature Activation Data (SAD) from the signing service;

	provisioning the certificates to embed into the document (usually
those are supplied by the signing service as well).

The first two involve a degree of implementation/vendor dependence that is
difficult to cater to in full generality, and the third is out of scope
for Signer subclasses in general.

However, this module still provides a number of convenient hooks and guardrails
that should allow you to fill in these blanks with relative ease. We briefly
discuss these below.

Throughout, the particulars of how pyHanko should connect to a signing
service are supplied in a CSCServiceSessionInfo object.
This object contains the base CSC API URL, the CSC credential ID to use,
and authentication data.

Authenticating to the signing service

While the authentication process itself is the API user’s responsibility,
CSCServiceSessionInfo includes an
oauth_token field that will (by default)
be used to populate the HTTP Authorization header for every request.

To handle OAuth-specific tasks, you might want to use a library like
OAuthLib [https://oauthlib.readthedocs.io/en/latest/].

Obtaining SAD from the signing service

This is done by subclassing CSCAuthorizationInfo and passing
an instance to the CSCSigner. The CSCAuthorizationInfo
instance should call the signer’s credentials/authorize endpoint with
the proper parameters required by the service.
See the documentation for CSCAuthorizationInfo for details and=
information about helper functions.

Certificate provisioning

In pyHanko’s API, Signer instances
need to be initialised with the signer’s certificate, preferably together
with other relevant CA certificates.
In a CSC context, these are typically retrieved from the signing service by
calling the credentials/info endpoint.

This module offers a helper function to handle that task, see
fetch_certs_in_csc_credential().

	
class pyhanko.sign.signers.csc_signer.CSCSigner(session: aiohttp.client.ClientSession, auth_manager: pyhanko.sign.signers.csc_signer.CSCAuthorizationManager, sign_timeout: int = 300, prefer_pss: bool = False, embed_roots: bool = True, client_data: Optional[str] = None, batch_autocommit: bool = True, batch_size: Optional[int] = None, est_raw_signature_size=512)

	Bases: pyhanko.sign.signers.pdf_cms.Signer

Implements the Signer interface
for a remote CSC signing service.
Requests are made asynchronously, using aiohttp.

	Parameters

	
	session – The aiohttp session to use when performing queries.

	auth_manager – A CSCAuthorizationManager instance capable of procuring
signature activation data from the signing service.

	sign_timeout – Timeout for signing operations, in seconds.
Defaults to 300 seconds (5 minutes).

	prefer_pss – When signing using an RSA key, prefer PSS padding to legacy PKCS#1 v1.5
padding. Default is False. This option has no effect on non-RSA
signatures.

	embed_roots – Option that controls whether or not additional self-signed certificates
should be embedded into the CMS payload. The default is True.

	client_data – CSC client data to add to any signing request(s), if applicable.

	batch_autocommit – Whether to automatically commit a signing transaction as soon as a
batch is full. The default is True.
If False, the caller has to trigger commit() manually.

	batch_size – The number of signatures to sign in one transaction.
This defaults to 1 (i.e. a separate signatures/signHash call is made
for every signature).

	est_raw_signature_size – Estimated raw signature size (in bytes). Defaults to 512 bytes, which,
combined with other built-in safety margins, should provide a generous
overestimate.

	
signing_cert: asn1crypto.x509.Certificate

	The certificate that will be used to create the signature.

	
cert_registry: pyhanko_certvalidator.registry.CertificateStore

	Collection of certificates associated with this signer.
Note that this is simply a bookkeeping tool; in particular it doesn’t care
about trust.

	
get_signature_mechanism(digest_algorithm)

	Get the signature mechanism for this signer to use.
If signature_mechanism is set, it will be used.
Otherwise, this method will attempt to put together a default
based on mechanism used in the signer’s certificate.

	Parameters

	digest_algorithm – Digest algorithm to use as part of the signature mechanism.
Only used if a signature mechanism object has to be put together
on-the-fly.

	Returns

	A SignedDigestAlgorithm object.

	
async format_csc_signing_req(tbs_hashes: List[str], digest_algorithm: str) → dict

	Populate the request data for a CSC signing request

	Parameters

	
	tbs_hashes – Base64-encoded hashes that require signing.

	digest_algorithm – The digest algorithm to use.

	Returns

	A dict that, when encoded as a JSON object, be used as the request
body for a call to signatures/signHash.

	
async async_sign_raw(data: bytes, digest_algorithm: str, dry_run=False) → bytes

	Compute the raw cryptographic signature of the data provided, hashed
using the digest algorithm provided.

	Parameters

	
	data – Data to sign.

	digest_algorithm – Digest algorithm to use.

Warning

If signature_mechanism also specifies a digest, they
should match.

	dry_run – Do not actually create a signature, but merely output placeholder
bytes that would suffice to contain an actual signature.

	Returns

	Signature bytes.

	
async commit()

	Commit the current batch by calling the signatures/signHash endpoint
on the CSC service.

This coroutine does not return anything; instead, it notifies all
waiting signing coroutines that their signature has been fetched.

	
class pyhanko.sign.signers.csc_signer.CSCServiceSessionInfo(service_url: str, credential_id: str, oauth_token: Optional[str] = None, api_ver: str = 'v1')

	Bases: object

Information about the CSC service, together with the required authentication
data.

	
service_url: str

	Base URL of the CSC service. This is the part that precedes
/csc/<version>/... in the API endpoint URLs.

	
credential_id: str

	The identifier of the CSC credential to use when signing.
The format is vendor-dependent.

	
oauth_token: Optional[str] = None

	OAuth token to use when making requests to the CSC service.

	
api_ver: str = 'v1'

	CSC API version.

Note

This section does not affect any of the internal logic, it only changes
how the URLs are formatted.

	
endpoint_url(endpoint_name)

	Complete an endpoint name to a full URL.

	Parameters

	endpoint_name – Name of the endpoint (e.g. credentials/info).

	Returns

	A URL.

	
property auth_headers

	HTTP Header(s) necessary for authentication, to be passed with every
request.

Note

By default, this supplies the Authorization header
with the value of oauth_token as the Bearer value.

	Returns

	A dict of headers.

	
class pyhanko.sign.signers.csc_signer.CSCCredentialInfo(signing_cert: asn1crypto.x509.Certificate, chain: List[asn1crypto.x509.Certificate], supported_mechanisms: FrozenSet[str], max_batch_size: int, hash_pinning_required: bool, response_data: dict)

	Bases: object

Information about a CSC credential, typically fetched using a
credentials/info call. See also fetch_certs_in_csc_credential().

	
signing_cert: asn1crypto.x509.Certificate

	The signer’s certificate.

	
chain: List[asn1crypto.x509.Certificate]

	Other relevant CA certificates.

	
supported_mechanisms: FrozenSet[str]

	Signature mechanisms supported by the credential.

	
max_batch_size: int

	The maximal batch size that can be used with this credential.

	
hash_pinning_required: bool

	Flag controlling whether SAD must be tied to specific hashes.

	
response_data: dict

	The JSON response data from the server as an otherwise unparsed dict.

	
as_cert_store() → pyhanko_certvalidator.registry.CertificateStore

	Register the relevant certificates into a CertificateStore
and return it.

	Returns

	A CertificateStore.

	
async pyhanko.sign.signers.csc_signer.fetch_certs_in_csc_credential(session: aiohttp.client.ClientSession, csc_session_info: pyhanko.sign.signers.csc_signer.CSCServiceSessionInfo, timeout: int = 30) → pyhanko.sign.signers.csc_signer.CSCCredentialInfo

	Call the credentials/info endpoint of the CSC service for a specific
credential, and encode the result into a CSCCredentialInfo
object.

	Parameters

	
	session – The aiohttp session to use when performing queries.

	csc_session_info – General information about the CSC service and the credential.

	timeout – How many seconds to allow before time-out.

	Returns

	A CSCCredentialInfo object with the processed response.

	
class pyhanko.sign.signers.csc_signer.CSCAuthorizationInfo(sad: str, expires_at: Optional[datetime.datetime] = None)

	Bases: object

Authorization data to make a signing request.
This is the result of a call to credentials/authorize.

	
sad: str

	Signature activation data; opaque to the client.

	
expires_at: Optional[datetime.datetime] = None

	Expiry date of the signature activation data.

	
class pyhanko.sign.signers.csc_signer.CSCAuthorizationManager(csc_session_info: pyhanko.sign.signers.csc_signer.CSCServiceSessionInfo, credential_info: pyhanko.sign.signers.csc_signer.CSCCredentialInfo)

	Bases: abc.ABC

Abstract class that handles authorisation requests for the CSC signing
client.

Note

Implementations may wish to make use of the
format_csc_auth_request() convenience method to format
requests to the credentials/authorize endpoint.

	Parameters

	
	csc_session_info – General information about the CSC service and the credential.

	credential_info – Details about the credential.

	
async authorize_signature(hash_b64s: List[str]) → pyhanko.sign.signers.csc_signer.CSCAuthorizationInfo

	Request a SAD token from the signing service, either freshly or to
extend the current transaction.

Depending on the lifecycle of this object, pre-fetched SAD values
may be used. All authorization transaction management is left to
implementing subclasses.

	Parameters

	hash_b64s – Base64-encoded hash values about to be signed.

	Returns

	Authorization data.

	
format_csc_auth_request(num_signatures: int = 1, pin: Optional[str] = None, otp: Optional[str] = None, hash_b64s: Optional[List[str]] = None, description: Optional[str] = None, client_data: Optional[str] = None) → dict

	Format the parameters for a call to credentials/authorize.

	Parameters

	
	num_signatures – The number of signatures to request authorisation for.

	pin – The user’s PIN (if applicable).

	otp – The current value of an OTP token, provided by the user
(if applicable).

	hash_b64s – An explicit list of base64-encoded hashes to be tied to the SAD.
Is optional if the service’s SCAL value is 1, i.e.
when hash_pinning_required is false.

	description – A free-form description of the authorisation request
(optional).

	client_data – Custom vendor-specific data (if applicable).

	Returns

	A dict that, when encoded as a JSON object, be used as the request
body for a call to credentials/authorize.

	
static parse_csc_auth_response(response_data: dict) → pyhanko.sign.signers.csc_signer.CSCAuthorizationInfo

	Parse the response from a credentials/authorize call into
a CSCAuthorizationInfo object.

	Parameters

	response_data – The decoded response JSON.

	Returns

	A CSCAuthorizationInfo object.

	
property auth_headers

	HTTP Header(s) necessary for authentication, to be passed with every
request. By default, this delegates to
CSCServiceSessionInfo.auth_headers.

	Returns

	A dict of headers.

	
class pyhanko.sign.signers.csc_signer.PrefetchedSADAuthorizationManager(csc_session_info: pyhanko.sign.signers.csc_signer.CSCServiceSessionInfo, credential_info: pyhanko.sign.signers.csc_signer.CSCCredentialInfo, csc_auth_info: pyhanko.sign.signers.csc_signer.CSCAuthorizationInfo)

	Bases: pyhanko.sign.signers.csc_signer.CSCAuthorizationManager

Simplistic CSCAuthorizationManager for use with pre-fetched
signature activation data.

This class is effectively only useful for CSC services that do not require
SAD to be pinned to specific document hashes. It allows you to use a SAD
that was fetched before starting the signing process, for a one-shot
signature.

This can simplify resource management in cases where obtaining a
SAD is time-consuming, but the caller still wants the conveniences of
pyHanko’s high-level API without having to keep too many pyHanko objects
in memory while waiting for a credentials/authorize call to go through.

Legitimate uses are limited, but the implementation is trivial, so we
provide it here.

	Parameters

	
	csc_session_info – General information about the CSC service and the credential.

	credential_info – Details about the credential.

	csc_auth_info – The pre-fetched signature activation data.

	
async authorize_signature(hash_b64s: List[str]) → pyhanko.sign.signers.csc_signer.CSCAuthorizationInfo

	Return the prefetched SAD, or raise an error if called twice.

	Parameters

	hash_b64s – List of hashes to be signed; ignored.

	Returns

	The prefetched authorisation data.

pyhanko.sign.signers.constants module

This module defines constants & defaults used by pyHanko when creating digital
signatures.

	
pyhanko.sign.signers.constants.DEFAULT_MD = 'sha256'

	Default message digest algorithm used when computing digests for use in
signatures.

	
pyhanko.sign.signers.constants.DEFAULT_SIG_SUBFILTER = SigSeedSubFilter.ADOBE_PKCS7_DETACHED

	Default SubFilter to use for a PDF signature.

	
pyhanko.sign.signers.constants.DEFAULT_SIGNER_KEY_USAGE = {'non_repudiation'}

	Default key usage bits required for the signer’s certificate.

	
pyhanko.sign.signers.constants.SIG_DETAILS_DEFAULT_TEMPLATE = 'Digitally signed by %(signer)s.\nTimestamp: %(ts)s.'

	Default template string for signature appearances.

	
pyhanko.sign.signers.constants.DEFAULT_SIGNING_STAMP_STYLE = TextStampStyle(border_width=3, background=<pyhanko.pdf_utils.content.RawContent object>, background_layout=SimpleBoxLayoutRule(x_align=<AxisAlignment.ALIGN_MID: 2>, y_align=<AxisAlignment.ALIGN_MID: 2>, margins=Margins(left=5, right=5, top=5, bottom=5), inner_content_scaling=<InnerScaling.SHRINK_TO_FIT: 4>), background_opacity=0.6, text_box_style=TextBoxStyle(font=<pyhanko.pdf_utils.font.basic.SimpleFontEngineFactory object>, font_size=10, leading=None, border_width=0, box_layout_rule=None, vertical_text=False), inner_content_layout=None, stamp_text='Digitally signed by %(signer)s.\nTimestamp: %(ts)s.', timestamp_format='%Y-%m-%d %H:%M:%S %Z')

	Default stamp style used for visible signatures.

pyhanko.sign.signers.functions module

This module defines pyHanko’s high-level API entry points.

	
pyhanko.sign.signers.functions.sign_pdf(pdf_out: pyhanko.pdf_utils.writer.BasePdfFileWriter, signature_meta: pyhanko.sign.signers.pdf_signer.PdfSignatureMetadata, signer: pyhanko.sign.signers.pdf_cms.Signer, timestamper: Optional[pyhanko.sign.timestamps.api.TimeStamper] = None, new_field_spec: Optional[pyhanko.sign.fields.SigFieldSpec] = None, existing_fields_only=False, bytes_reserved=None, in_place=False, output=None)

	Thin convenience wrapper around PdfSigner.sign_pdf().

	Parameters

	
	pdf_out – An IncrementalPdfFileWriter.

	bytes_reserved – Bytes to reserve for the CMS object in the PDF file.
If not specified, make an estimate based on a dummy signature.

	signature_meta – The specification of the signature to add.

	signer – Signer object to use to produce the signature object.

	timestamper – TimeStamper object to use to produce any time stamp tokens
that might be required.

	in_place – Sign the input in-place. If False, write output to a
BytesIO object.

	existing_fields_only – If True, never create a new empty signature field to contain
the signature.
If False, a new field may be created if no field matching
field_name exists.

	new_field_spec – If a new field is to be created, this parameter allows the caller
to specify the field’s properties in the form of a
SigFieldSpec. This parameter is only meaningful if
existing_fields_only is False.

	output – Write the output to the specified output stream.
If None, write to a new BytesIO object.
Default is None.

	Returns

	The output stream containing the signed output.

	
async pyhanko.sign.signers.functions.async_sign_pdf(pdf_out: pyhanko.pdf_utils.writer.BasePdfFileWriter, signature_meta: pyhanko.sign.signers.pdf_signer.PdfSignatureMetadata, signer: pyhanko.sign.signers.pdf_cms.Signer, timestamper: Optional[pyhanko.sign.timestamps.api.TimeStamper] = None, new_field_spec: Optional[pyhanko.sign.fields.SigFieldSpec] = None, existing_fields_only=False, bytes_reserved=None, in_place=False, output=None)

	Thin convenience wrapper around PdfSigner.async_sign_pdf().

	Parameters

	
	pdf_out – An IncrementalPdfFileWriter.

	bytes_reserved – Bytes to reserve for the CMS object in the PDF file.
If not specified, make an estimate based on a dummy signature.

	signature_meta – The specification of the signature to add.

	signer – Signer object to use to produce the signature object.

	timestamper – TimeStamper object to use to produce any time stamp tokens
that might be required.

	in_place – Sign the input in-place. If False, write output to a
BytesIO object.

	existing_fields_only – If True, never create a new empty signature field to contain
the signature.
If False, a new field may be created if no field matching
field_name exists.

	new_field_spec – If a new field is to be created, this parameter allows the caller
to specify the field’s properties in the form of a
SigFieldSpec. This parameter is only meaningful if
existing_fields_only is False.

	output – Write the output to the specified output stream.
If None, write to a new BytesIO object.
Default is None.

	Returns

	The output stream containing the signed output.

	
pyhanko.sign.signers.functions.embed_payload_with_cms(pdf_writer: pyhanko.pdf_utils.writer.BasePdfFileWriter, file_spec_string: str, payload: pyhanko.pdf_utils.embed.EmbeddedFileObject, cms_obj: asn1crypto.cms.ContentInfo, extension='.sig', file_name: Optional[str] = None, file_spec_kwargs=None, cms_file_spec_kwargs=None)

	Embed some data as an embedded file stream into a PDF, and associate it
with a CMS object.

The resulting CMS object will also be turned into an embedded file, and
associated with the original payload through a related file relationship.

This can be used to bundle (non-PDF) detached signatures with PDF
attachments, for example.

New in version 0.7.0.

	Parameters

	
	pdf_writer – The PDF writer to use.

	file_spec_string – See file_spec_string in
FileSpec.

	payload – Payload object.

	cms_obj – CMS object pertaining to the payload.

	extension – File extension to use for the CMS attachment.

	file_name – See file_name in
FileSpec.

	file_spec_kwargs – Extra arguments to pass to the
FileSpec constructor
for the main attachment specification.

	cms_file_spec_kwargs – Extra arguments to pass to the
FileSpec constructor
for the CMS attachment specification.

pyhanko.sign.signers.pdf_byterange module

This module contains the low-level building blocks for dealing with bookkeeping
around /ByteRange digests in PDF files.

	
class pyhanko.sign.signers.pdf_byterange.PreparedByteRangeDigest(document_digest: bytes, md_algorithm: str, reserved_region_start: int, reserved_region_end: int)

	Bases: object

New in version 0.7.0.

Bookkeeping class that contains the digest of a document that is about to be
signed (or otherwise authenticated) based on said digest. It also keeps
track of the digest algorithm used, and the region in the output stream that
will contain the signature.

Instances of this class can easily be serialised, which allows for
interrupting the signing process partway through.

	
document_digest: bytes

	Digest of the document, computed over the appropriate /ByteRange.

	
md_algorithm: str

	Name of the digest algorithm used.

	
reserved_region_start: int

	Start of the reserved region in the output stream that is not part of the
/ByteRange.

	
reserved_region_end: int

	End of the reserved region in the output stream that is not part of the
/ByteRange.

	
fill_with_cms(output: IO, cms_data: Union[bytes, asn1crypto.cms.ContentInfo])

	Write a DER-encoded CMS object to the reserved region indicated
by reserved_region_start and reserved_region_end in the
output stream.

	Parameters

	
	output – Output stream to use. Must be writable and seekable.

	cms_data – CMS object to write. Can be provided as an
asn1crypto.cms.ContentInfo object, or as raw DER-encoded
bytes.

	Returns

	A bytes object containing the contents that were written,
plus any additional padding.

	
fill_reserved_region(output: IO, content_bytes: bytes)

	Write hex-encoded contents to the reserved region indicated
by reserved_region_start and reserved_region_end in the
output stream.

	Parameters

	
	output – Output stream to use. Must be writable and seekable.

	content_bytes – Content bytes. These will be padded, hexadecimally encoded and
written to the appropriate location in output stream.

	Returns

	A bytes object containing the contents that were written,
plus any additional padding.

	
class pyhanko.sign.signers.pdf_byterange.PdfByteRangeDigest(data_key='/Contents', *, bytes_reserved=None)

	Bases: pyhanko.pdf_utils.generic.DictionaryObject

General class to model a PDF Dictionary that has a /ByteRange entry
and a another data entry (named /Contents by default) that will contain
a value based on a digest computed over said /ByteRange.
The /ByteRange will cover the entire file, except for the value of the
data entry itself.

Danger

This is internal API.

	Parameters

	
	data_key – Name of the data key, which is /Contents by default.

	bytes_reserved – Number of bytes to reserve for the contents placeholder.
If None, a generous default is applied, but you should try to
estimate the size as accurately as possible.

	
fill(writer: pyhanko.pdf_utils.writer.BasePdfFileWriter, md_algorithm, in_place=False, output=None, chunk_size=4096)

	Generator coroutine that handles the document hash computation and
the actual filling of the placeholder data.

Danger

This is internal API; you should use use PdfSigner
wherever possible. If you really need fine-grained control,
use PdfCMSEmbedder
instead.

	
class pyhanko.sign.signers.pdf_byterange.PdfSignedData(obj_type, subfilter: pyhanko.sign.fields.SigSeedSubFilter = SigSeedSubFilter.ADOBE_PKCS7_DETACHED, timestamp: Optional[datetime.datetime] = None, bytes_reserved=None)

	Bases: pyhanko.sign.signers.pdf_byterange.PdfByteRangeDigest

Generic class to model signature dictionaries in a PDF file.
See also SignatureObject and DocumentTimestamp.

	Parameters

	
	obj_type – The type of signature object.

	subfilter – See SigSeedSubFilter.

	timestamp – The timestamp to embed into the /M entry.

	bytes_reserved – The number of bytes to reserve for the signature.
Defaults to 16 KiB.

Warning

Since the CMS object is written to the output file as a hexadecimal
string, you should request twice the (estimated) number of bytes
in the DER-encoded version of the CMS object.

	
class pyhanko.sign.signers.pdf_byterange.SignatureObject(timestamp: Optional[datetime.datetime] = None, subfilter: pyhanko.sign.fields.SigSeedSubFilter = SigSeedSubFilter.ADOBE_PKCS7_DETACHED, name=None, location=None, reason=None, bytes_reserved=None)

	Bases: pyhanko.sign.signers.pdf_byterange.PdfSignedData

Class modelling a (placeholder for) a regular PDF signature.

	Parameters

	
	timestamp – The (optional) timestamp to embed into the /M entry.

	subfilter – See SigSeedSubFilter.

	bytes_reserved – The number of bytes to reserve for the signature.
Defaults to 16 KiB.

Warning

Since the CMS object is written to the output file as a hexadecimal
string, you should request twice the (estimated) number of bytes
in the DER-encoded version of the CMS object.

	name – Signer name. You probably want to leave this blank, viewers should
default to the signer’s subject name.

	location – Optional signing location.

	reason – Optional signing reason. May be restricted by seed values.

	
class pyhanko.sign.signers.pdf_byterange.DocumentTimestamp(bytes_reserved=None)

	Bases: pyhanko.sign.signers.pdf_byterange.PdfSignedData

Class modelling a (placeholder for) a regular PDF signature.

	Parameters

	bytes_reserved – The number of bytes to reserve for the signature.
Defaults to 16 KiB.

Warning

Since the CMS object is written to the output file as a hexadecimal
string, you should request twice the (estimated) number of bytes
in the DER-encoded version of the CMS object.

pyhanko.sign.signers.pdf_cms module

This module defines utility classes to format CMS objects for use in PDF
signatures.

	
class pyhanko.sign.signers.pdf_cms.Signer(prefer_pss=False, embed_roots=True)

	Bases: object

Abstract signer object that is agnostic as to where the cryptographic
operations actually happen.

As of now, pyHanko provides two implementations:

	SimpleSigner implements the easy case where all the key material
can be loaded into memory.

	PKCS11Signer implements a signer that is
capable of interfacing with a PKCS11 device
(see also BEIDSigner).

	Parameters

	
	prefer_pss – When signing using an RSA key, prefer PSS padding to legacy PKCS#1 v1.5
padding. Default is False. This option has no effect on non-RSA
signatures.

	embed_roots –
New in version 0.9.0.

Option that controls whether or not additional self-signed certificates
should be embedded into the CMS payload. The default is True.

Note

The signer’s certificate is always embedded, even if it is
self-signed.

Note

Trust roots are configured by the validator, so embedding them
typically does nothing in a typical validation process.
Therefore they can be safely omitted in most cases.
Nonetheless, embedding the roots can be useful for documentation
purposes.

Warning

To be precise, if this flag is False, a certificate will be
dropped if (a) it is not the signer’s, (b) it is self-issued and
(c) its subject and authority key identifiers match (or either is
missing). In other words, we never validate the actual
self-signature. This heuristic is sufficiently accurate
for most applications.

	
signing_cert: asn1crypto.x509.Certificate

	The certificate that will be used to create the signature.

	
cert_registry: pyhanko_certvalidator.registry.CertificateStore

	Collection of certificates associated with this signer.
Note that this is simply a bookkeeping tool; in particular it doesn’t care
about trust.

	
signature_mechanism: asn1crypto.algos.SignedDigestAlgorithm = None

	The (cryptographic) signature mechanism to use.

	
get_signature_mechanism(digest_algorithm)

	Get the signature mechanism for this signer to use.
If signature_mechanism is set, it will be used.
Otherwise, this method will attempt to put together a default
based on mechanism used in the signer’s certificate.

	Parameters

	digest_algorithm – Digest algorithm to use as part of the signature mechanism.
Only used if a signature mechanism object has to be put together
on-the-fly.

	Returns

	A SignedDigestAlgorithm object.

	
property subject_name

	
	Returns

	The subject’s common name as a string, extracted from
signing_cert.

	
static format_revinfo(ocsp_responses: Optional[list] = None, crls: Optional[list] = None)

	Format Adobe-style revocation information for inclusion into a CMS
object.

	Parameters

	
	ocsp_responses – A list of OCSP responses to include.

	crls – A list of CRLs to include.

	
signer_info(digest_algorithm: str, signed_attrs, signature)

	Format the SignerInfo entry for a CMS signature.

	Parameters

	
	digest_algorithm – Digest algorithm to use.

	signed_attrs – Signed attributes (see signed_attrs()).

	signature – The raw signature to embed (see sign_raw()).

	Returns

	An asn1crypto.cms.SignerInfo object.

	
async async_sign_raw(data: bytes, digest_algorithm: str, dry_run=False) → bytes

	Compute the raw cryptographic signature of the data provided, hashed
using the digest algorithm provided.

	Parameters

	
	data – Data to sign.

	digest_algorithm – Digest algorithm to use.

Warning

If signature_mechanism also specifies a digest, they
should match.

	dry_run – Do not actually create a signature, but merely output placeholder
bytes that would suffice to contain an actual signature.

	Returns

	Signature bytes.

	
async unsigned_attrs(digest_algorithm, signature: bytes, timestamper=None, dry_run=False) → Optional[asn1crypto.cms.CMSAttributes]

	
Changed in version 0.9.0: Made asynchronous _(breaking change)_

Compute the unsigned attributes to embed into the CMS object.
This function is called after signing the hash of the signed attributes
(see signed_attrs()).

By default, this method only handles timestamp requests, but other
functionality may be added by subclasses

If this method returns None, no unsigned attributes will be
embedded.

	Parameters

	
	digest_algorithm – Digest algorithm used to hash the signed attributes.

	signature – Signature of the signed attribute hash.

	timestamper – Timestamp supplier to use.

	dry_run – Flag indicating “dry run” mode. If True, only the approximate
size of the output matters, so cryptographic
operations can be replaced by placeholders.

	Returns

	The unsigned attributes to add, or None.

	
async signed_attrs(data_digest: bytes, digest_algorithm: str, attr_settings: Optional[pyhanko.sign.signers.pdf_cms.PdfCMSSignedAttributes] = None, content_type='data', use_pades=False, timestamper=None, dry_run=False)

	
Changed in version 0.4.0: Added positional digest_algorithm parameter _(breaking change)_.

Changed in version 0.5.0: Added dry_run, timestamper and cades_meta parameters.

Changed in version 0.9.0: Made asynchronous, grouped some parameters under attr_settings
(breaking change)

Format the signed attributes for a CMS signature.

	Parameters

	
	data_digest – Raw digest of the data to be signed.

	digest_algorithm –
New in version 0.4.0.

Name of the digest algorithm used to compute the digest.

	use_pades – Respect PAdES requirements.

	dry_run –
New in version 0.5.0.

Flag indicating “dry run” mode. If True, only the approximate
size of the output matters, so cryptographic
operations can be replaced by placeholders.

	attr_settings – PdfCMSSignedAttributes object describing the attributes
to be added.

	timestamper –
New in version 0.5.0.

Timestamper to use when creating timestamp tokens.

	content_type – CMS content type of the encapsulated data. Default is data.

Danger

This parameter is internal API, and non-default values must not
be used to produce PDF signatures.

	Returns

	An asn1crypto.cms.CMSAttributes object.

	
async async_sign(data_digest: bytes, digest_algorithm: str, dry_run=False, use_pades=False, timestamper=None, signed_attr_settings: Optional[pyhanko.sign.signers.pdf_cms.PdfCMSSignedAttributes] = None, encap_content_info=None) → asn1crypto.cms.ContentInfo

	
New in version 0.9.0.

Produce a detached CMS signature from a raw data digest.

	Parameters

	
	data_digest – Digest of the actual content being signed.

	digest_algorithm – Digest algorithm to use. This should be the same digest method
as the one used to hash the (external) content.

	dry_run – If True, the actual signing step will be replaced with
a placeholder.

In a PDF signing context, this is necessary to estimate the size
of the signature container before computing the actual digest of
the document.

	signed_attr_settings – PdfCMSSignedAttributes object describing the attributes
to be added.

	use_pades – Respect PAdES requirements.

	timestamper – TimeStamper used to obtain a trusted timestamp
token that can be embedded into the signature container.

Note

If dry_run is true, the timestamper’s
dummy_response() method will be
called to obtain a placeholder token.
Note that with a standard HTTPTimeStamper,
this might still hit the timestamping server (in order to
produce a realistic size estimate), but the dummy response will
be cached.

	encap_content_info – Data to encapsulate in the CMS object.

Danger

This parameter is internal API, and must not be used to produce
PDF signatures.

	Returns

	An ContentInfo object.

	
async async_sign_prescribed_attributes(digest_algorithm: str, signed_attrs: asn1crypto.cms.CMSAttributes, cms_version='v1', dry_run=False, timestamper=None, encap_content_info=None) → asn1crypto.cms.ContentInfo

	
New in version 0.9.0.

Start the CMS signing process with the prescribed set of signed
attributes.

	Parameters

	
	digest_algorithm – Digest algorithm to use. This should be the same digest method
as the one used to hash the (external) content.

	signed_attrs – CMS attributes to sign.

	dry_run – If True, the actual signing step will be replaced with
a placeholder.

In a PDF signing context, this is necessary to estimate the size
of the signature container before computing the actual digest of
the document.

	timestamper – TimeStamper used to obtain a trusted timestamp
token that can be embedded into the signature container.

Note

If dry_run is true, the timestamper’s
dummy_response() method will be
called to obtain a placeholder token.
Note that with a standard HTTPTimeStamper,
this might still hit the timestamping server (in order to
produce a realistic size estimate), but the dummy response will
be cached.

	cms_version – CMS version to use.

	encap_content_info – Data to encapsulate in the CMS object.

Danger

This parameter is internal API, and must not be used to produce
PDF signatures.

	Returns

	An ContentInfo object.

	
async async_sign_general_data(input_data: Union[IO, bytes, asn1crypto.cms.ContentInfo, asn1crypto.cms.EncapsulatedContentInfo], digest_algorithm: str, detached=True, use_cades=False, timestamper=None, chunk_size=4096, signed_attr_settings: Optional[pyhanko.sign.signers.pdf_cms.PdfCMSSignedAttributes] = None, max_read=None) → asn1crypto.cms.ContentInfo

	
New in version 0.9.0.

Produce a CMS signature for an arbitrary data stream
(not necessarily PDF data).

	Parameters

	
	input_data – The input data to sign. This can be either a bytes object
a file-type object, a cms.ContentInfo object or
a cms.EncapsulatedContentInfo object.

Warning

asn1crypto mandates cms.ContentInfo for CMS v1
signatures. In practical terms, this means that you need to
use cms.ContentInfo if the content type is data,
and cms.EncapsulatedContentInfo otherwise.

Warning

We currently only support CMS v1 and v3 signatures.
This is only a concern if you need attribute certificate
support, in which case you can override the CMS version number
yourself (this will not invalidate any signatures).

	digest_algorithm – The name of the digest algorithm to use.

	detached – If True, create a CMS detached signature (i.e. an object where
the encapsulated content is not embedded in the signature object
itself). This is the default. If False, the content to be
signed will be embedded as encapsulated content.

	signed_attr_settings – PdfCMSSignedAttributes object describing the attributes
to be added.

	use_cades – Construct a CAdES-style CMS object.

	timestamper – PdfTimeStamper to use to create a signature timestamp

Note

If you want to create a content timestamp (as opposed to
a signature timestamp), see CAdESSignedAttrSpec.

	chunk_size – Chunk size to use when consuming input data.

	max_read – Maximal number of bytes to read from the input stream.

	Returns

	A CMS ContentInfo object of type signedData.

	
sign(data_digest: bytes, digest_algorithm: str, timestamp: Optional[datetime.datetime] = None, dry_run=False, revocation_info=None, use_pades=False, timestamper=None, cades_signed_attr_meta: Optional[pyhanko.sign.ades.api.CAdESSignedAttrSpec] = None, encap_content_info=None) → asn1crypto.cms.ContentInfo

	
Deprecated since version 0.9.0: Use async_sign() instead.
The implementation of this method will invoke async_sign()
using asyncio.run().

Produce a detached CMS signature from a raw data digest.

	Parameters

	
	data_digest – Digest of the actual content being signed.

	digest_algorithm – Digest algorithm to use. This should be the same digest method
as the one used to hash the (external) content.

	timestamp – Signing time to embed into the signed attributes
(will be ignored if use_pades is True).

Note

This timestamp value is to be interpreted as an unfounded
assertion by the signer, which may or may not be good enough
for your purposes.

	dry_run – If True, the actual signing step will be replaced with
a placeholder.

In a PDF signing context, this is necessary to estimate the size
of the signature container before computing the actual digest of
the document.

	revocation_info – Revocation information to embed; this should be the output
of a call to Signer.format_revinfo()
(ignored when use_pades is True).

	use_pades – Respect PAdES requirements.

	timestamper – TimeStamper used to obtain a trusted timestamp
token that can be embedded into the signature container.

Note

If dry_run is true, the timestamper’s
dummy_response() method will be
called to obtain a placeholder token.
Note that with a standard HTTPTimeStamper,
this might still hit the timestamping server (in order to
produce a realistic size estimate), but the dummy response will
be cached.

	cades_signed_attr_meta –
New in version 0.5.0.

Specification for CAdES-specific signed attributes.

	encap_content_info – Data to encapsulate in the CMS object.

Danger

This parameter is internal API, and must not be used to produce
PDF signatures.

	Returns

	An ContentInfo object.

	
sign_prescribed_attributes(digest_algorithm: str, signed_attrs: asn1crypto.cms.CMSAttributes, cms_version='v1', dry_run=False, timestamper=None, encap_content_info=None) → asn1crypto.cms.ContentInfo

	
Deprecated since version 0.9.0: Use async_sign_prescribed_attributes() instead.
The implementation of this method will invoke
async_sign_prescribed_attributes() using
asyncio.run().

Start the CMS signing process with the prescribed set of signed
attributes.

	Parameters

	
	digest_algorithm – Digest algorithm to use. This should be the same digest method
as the one used to hash the (external) content.

	signed_attrs – CMS attributes to sign.

	dry_run – If True, the actual signing step will be replaced with
a placeholder.

In a PDF signing context, this is necessary to estimate the size
of the signature container before computing the actual digest of
the document.

	timestamper – TimeStamper used to obtain a trusted timestamp
token that can be embedded into the signature container.

Note

If dry_run is true, the timestamper’s
dummy_response() method will be
called to obtain a placeholder token.
Note that with a standard HTTPTimeStamper,
this might still hit the timestamping server (in order to
produce a realistic size estimate), but the dummy response will
be cached.

	cms_version – CMS version to use.

	encap_content_info – Data to encapsulate in the CMS object.

Danger

This parameter is internal API, and must not be used to produce
PDF signatures.

	Returns

	An ContentInfo object.

	
sign_general_data(input_data: Union[IO, bytes, asn1crypto.cms.ContentInfo, asn1crypto.cms.EncapsulatedContentInfo], digest_algorithm: str, detached=True, timestamp: Optional[datetime.datetime] = None, use_cades=False, timestamper=None, cades_signed_attr_meta: Optional[pyhanko.sign.ades.api.CAdESSignedAttrSpec] = None, chunk_size=4096, max_read=None) → asn1crypto.cms.ContentInfo

	
New in version 0.7.0.

Deprecated since version 0.9.0: Use async_sign_general_data() instead.
The implementation of this method will invoke
async_sign_general_data() using asyncio.run().

Produce a CMS signature for an arbitrary data stream
(not necessarily PDF data).

	Parameters

	
	input_data – The input data to sign. This can be either a bytes object
a file-type object, a cms.ContentInfo object or
a cms.EncapsulatedContentInfo object.

Warning

asn1crypto mandates cms.ContentInfo for CMS v1
signatures. In practical terms, this means that you need to
use cms.ContentInfo if the content type is data,
and cms.EncapsulatedContentInfo otherwise.

Warning

We currently only support CMS v1 and v3 signatures.
This is only a concern if you need attribute certificate
support, in which case you can override the CMS version number
yourself (this will not invalidate any signatures).

	digest_algorithm – The name of the digest algorithm to use.

	detached – If True, create a CMS detached signature (i.e. an object where
the encapsulated content is not embedded in the signature object
itself). This is the default. If False, the content to be
signed will be embedded as encapsulated content.

	timestamp – Signing time to embed into the signed attributes
(will be ignored if use_cades is True).

Note

This timestamp value is to be interpreted as an unfounded
assertion by the signer, which may or may not be good enough
for your purposes.

	use_cades – Construct a CAdES-style CMS object.

	timestamper – PdfTimeStamper to use to create a signature timestamp

Note

If you want to create a content timestamp (as opposed to
a signature timestamp), see CAdESSignedAttrSpec.

	cades_signed_attr_meta – Specification for CAdES-specific signed attributes.

	chunk_size – Chunk size to use when consuming input data.

	max_read – Maximal number of bytes to read from the input stream.

	Returns

	A CMS ContentInfo object of type signedData.

	
class pyhanko.sign.signers.pdf_cms.SimpleSigner(signing_cert: asn1crypto.x509.Certificate, signing_key: asn1crypto.keys.PrivateKeyInfo, cert_registry: pyhanko_certvalidator.registry.CertificateStore, signature_mechanism: Optional[asn1crypto.algos.SignedDigestAlgorithm] = None, prefer_pss=False, embed_roots=True)

	Bases: pyhanko.sign.signers.pdf_cms.Signer

Simple signer implementation where the key material is available in local
memory.

	
signing_key: asn1crypto.keys.PrivateKeyInfo

	Private key associated with the certificate in signing_cert.

	
async async_sign_raw(data: bytes, digest_algorithm: str, dry_run=False) → bytes

	Compute the raw cryptographic signature of the data provided, hashed
using the digest algorithm provided.

	Parameters

	
	data – Data to sign.

	digest_algorithm – Digest algorithm to use.

Warning

If signature_mechanism also specifies a digest, they
should match.

	dry_run – Do not actually create a signature, but merely output placeholder
bytes that would suffice to contain an actual signature.

	Returns

	Signature bytes.

	
sign_raw(data: bytes, digest_algorithm: str) → bytes

	Synchronous raw signature implementation.

	Parameters

	
	data – Data to be signed.

	digest_algorithm – Digest algorithm to use.

	Returns

	Raw signature encoded according to the conventions of the
signing algorithm used.

	
classmethod load_pkcs12(pfx_file, ca_chain_files=None, other_certs=None, passphrase=None, signature_mechanism=None, prefer_pss=False)

	Load certificates and key material from a PCKS#12 archive
(usually .pfx or .p12 files).

	Parameters

	
	pfx_file – Path to the PKCS#12 archive.

	ca_chain_files – Path to (PEM/DER) files containing other relevant certificates
not included in the PKCS#12 file.

	other_certs – Other relevant certificates, specified as a list of
asn1crypto.x509.Certificate objects.

	passphrase – Passphrase to decrypt the PKCS#12 archive, if required.

	signature_mechanism – Override the signature mechanism to use.

	prefer_pss – Prefer PSS signature mechanism over RSA PKCS#1 v1.5 if
there’s a choice.

	Returns

	A SimpleSigner object initialised with key material loaded
from the PKCS#12 file provided.

	
classmethod load(key_file, cert_file, ca_chain_files=None, key_passphrase=None, other_certs=None, signature_mechanism=None, prefer_pss=False)

	Load certificates and key material from PEM/DER files.

	Parameters

	
	key_file – File containing the signer’s private key.

	cert_file – File containing the signer’s certificate.

	ca_chain_files – File containing other relevant certificates.

	key_passphrase – Passphrase to decrypt the private key (if required).

	other_certs – Other relevant certificates, specified as a list of
asn1crypto.x509.Certificate objects.

	signature_mechanism – Override the signature mechanism to use.

	prefer_pss – Prefer PSS signature mechanism over RSA PKCS#1 v1.5 if
there’s a choice.

	Returns

	A SimpleSigner object initialised with key material loaded
from the files provided.

	
class pyhanko.sign.signers.pdf_cms.ExternalSigner(signing_cert: asn1crypto.x509.Certificate, cert_registry: pyhanko_certvalidator.registry.CertificateStore, signature_value: bytes, signature_mechanism: Optional[asn1crypto.algos.SignedDigestAlgorithm] = None, prefer_pss=False, embed_roots=True)

	Bases: pyhanko.sign.signers.pdf_cms.Signer

Class to help formatting CMS objects for use with remote signing.
It embeds a fixed signature value into the CMS, set at initialisation.

Intended for use with Interrupted signing.

	
signing_cert: asn1crypto.x509.Certificate

	The certificate that will be used to create the signature.

	
cert_registry: pyhanko_certvalidator.registry.CertificateStore

	Collection of certificates associated with this signer.
Note that this is simply a bookkeeping tool; in particular it doesn’t care
about trust.

	
async async_sign_raw(data: bytes, digest_algorithm: str, dry_run=False) → bytes

	Return a fixed signature value.

	
class pyhanko.sign.signers.pdf_cms.PdfCMSSignedAttributes(signing_time: Optional[datetime.datetime] = None, adobe_revinfo_attr: Optional[asn1crypto.cms.CMSAttribute] = None, cades_signed_attrs: Optional[pyhanko.sign.ades.api.CAdESSignedAttrSpec] = None)

	Bases: object

New in version 0.7.0.

Serialisable container class describing input for various signed attributes
in a CMS object for a PDF signature.

	
signing_time: Optional[datetime.datetime] = None

	Timestamp for the signingTime attribute. Will be ignored in a PAdES
context.

	
adobe_revinfo_attr: Optional[asn1crypto.cms.CMSAttribute] = None

	Adobe-style signed revocation info attribute.

	
cades_signed_attrs: Optional[pyhanko.sign.ades.api.CAdESSignedAttrSpec] = None

	Optional settings for CAdES-style signed attributes.

	
async pyhanko.sign.signers.pdf_cms.format_attributes(attr_provs: List[pyhanko.sign.attributes.CMSAttributeProvider], other_attrs: Iterable[asn1crypto.cms.CMSAttributes] = (), dry_run: bool = False) → asn1crypto.cms.CMSAttributes

	Format CMS attributes obtained from attribute providers.

	Parameters

	
	attr_provs – List of attribute providers.

	other_attrs – Other (predetermined) attributes to include.

	dry_run – Whether to invoke the attribute providers in dry-run mode or not.

	Returns

	A cms.CMSAttributes value.

	
async pyhanko.sign.signers.pdf_cms.format_signed_attributes(data_digest: bytes, attr_provs: List[pyhanko.sign.attributes.CMSAttributeProvider], content_type='data', dry_run=False) → asn1crypto.cms.CMSAttributes

	Format signed attributes for a CMS SignerInfo value.

	Parameters

	
	data_digest – The byte string to put in the messageDigest attribute.

	attr_provs – List of attribute providers to source attributes from.

	content_type – The content type of the data being signed (default is data).

	dry_run – Whether to invoke the attribute providers in dry-run mode or not.

	Returns

	A cms.CMSAttributes value representing the signed attributes.

	
pyhanko.sign.signers.pdf_cms.asyncify_signer(signer_cls)

	Decorator to turn a legacy Signer subclass into one that works
with the new async API.

	
pyhanko.sign.signers.pdf_cms.select_suitable_signing_md(key: asn1crypto.keys.PublicKeyInfo) → str

	Choose a reasonable default signing message digest given the properties of
(the public part of) a key.

The fallback value is constants.DEFAULT_MD.

	Parameters

	key – A keys.PublicKeyInfo object.

	Returns

	The name of a message digest algorithm.

pyhanko.sign.signers.pdf_signer module

This module implements support for PDF-specific signing functionality.

	
class pyhanko.sign.signers.pdf_signer.PdfSignatureMetadata(field_name: Optional[str] = None, md_algorithm: Optional[str] = None, location: Optional[str] = None, reason: Optional[str] = None, name: Optional[str] = None, certify: bool = False, subfilter: Optional[pyhanko.sign.fields.SigSeedSubFilter] = None, embed_validation_info: bool = False, use_pades_lta: bool = False, timestamp_field_name: Optional[str] = None, validation_context: Optional[pyhanko_certvalidator.context.ValidationContext] = None, docmdp_permissions: pyhanko.sign.fields.MDPPerm = MDPPerm.FILL_FORMS, signer_key_usage: Set[str] = <factory>, cades_signed_attr_spec: Optional[pyhanko.sign.ades.api.CAdESSignedAttrSpec] = None, dss_settings: pyhanko.sign.signers.pdf_signer.DSSContentSettings = DSSContentSettings(include_vri=True, skip_if_unneeded=True, placement=<SigDSSPlacementPreference.TOGETHER_WITH_NEXT_TS: 3>, next_ts_settings=None), tight_size_estimates: bool = False)

	Bases: object

Specification for a PDF signature.

	
field_name: str = None

	The name of the form field to contain the signature.
If there is only one available signature field, the name may be inferred.

	
md_algorithm: str = None

	The name of the digest algorithm to use.
It should be supported by pyca/cryptography.

If None, select_suitable_signing_md() will be invoked to generate
a suitable default, unless a seed value dictionary happens to be available.

	
location: str = None

	Location of signing.

	
reason: str = None

	Reason for signing (textual).

	
name: str = None

	Name of the signer. This value is usually not necessary to set, since
it should appear on the signer’s certificate, but there are cases
where it might be useful to specify it here (e.g. in situations where
signing is delegated to a trusted third party).

	
certify: bool = False

	Sign with an author (certification) signature, as opposed to an approval
signature. A document can contain at most one such signature, and it must
be the first one.

	
subfilter: pyhanko.sign.fields.SigSeedSubFilter = None

	Signature subfilter to use.

This should be one of
ADOBE_PKCS7_DETACHED or
PADES.
If not specified, the value may be inferred from the signature field’s
seed value dictionary. Failing that,
ADOBE_PKCS7_DETACHED is used as the
default value.

	
embed_validation_info: bool = False

	Flag indicating whether validation info (OCSP responses and/or CRLs)
should be embedded or not. This is necessary to be able to validate
signatures long after they have been made.
This flag requires validation_context to be set.

The precise manner in which the validation info is embedded depends on
the (effective) value of subfilter:

	With ADOBE_PKCS7_DETACHED, the
validation information will be embedded inside the CMS object containing
the signature.

	With PADES, the validation information
will be embedded into the document security store (DSS).

	
use_pades_lta: bool = False

	If True, the signer will append an additional document timestamp after
writing the signature’s validation information to the document security
store (DSS).
This flag is only meaningful if subfilter is
PADES.

The PAdES B-LTA profile solves the long-term validation problem by
adding a timestamp chain to the document after the regular signatures, which
is updated with new timestamps at regular intervals.
This provides an audit trail that ensures the long-term integrity of the
validation information in the DSS, since OCSP responses and CRLs also have
a finite lifetime.

See also PdfTimeStamper.update_archival_timestamp_chain().

	
timestamp_field_name: str = None

	Name of the timestamp field created when use_pades_lta is True.
If not specified, a unique name will be generated using uuid.

	
validation_context: pyhanko_certvalidator.context.ValidationContext = None

	The validation context to use when validating signatures.
If provided, the signer’s certificate and any timestamp certificates
will be validated before signing.

This parameter is mandatory when embed_validation_info is True.

	
docmdp_permissions: pyhanko.sign.fields.MDPPerm = 2

	Indicates the document modification policy that will be in force after
this signature is created. Only relevant for certification signatures
or signatures that apply locking.

Warning

For non-certification signatures, this is only explicitly allowed since
PDF 2.0 (ISO 32000-2), so older software may not respect this setting
on approval signatures.

	
signer_key_usage: Set[str]

	Key usage extensions required for the signer’s certificate.
Defaults to non_repudiation only, but sometimes digital_signature
or a combination of both may be more appropriate.
See x509.KeyUsage for a complete list.

Only relevant if a validation context is also provided.

	
cades_signed_attr_spec: Optional[pyhanko.sign.ades.api.CAdESSignedAttrSpec] = None

	
New in version 0.5.0.

Specification for CAdES-specific attributes.

	
dss_settings: pyhanko.sign.signers.pdf_signer.DSSContentSettings = DSSContentSettings(include_vri=True, skip_if_unneeded=True, placement=<SigDSSPlacementPreference.TOGETHER_WITH_NEXT_TS: 3>, next_ts_settings=None)

	
New in version 0.8.0.

DSS output settings. See DSSContentSettings.

	
tight_size_estimates: bool = False

	
New in version 0.8.0.

When estimating the size of a signature container,
do not add safety margins.

Note

This should be OK if the entire CMS object is produced by pyHanko, and
the signing scheme produces signatures of a fixed size.
However, if the signature container includes unsigned attributes such
as signature timestamps, the size of the signature is never entirely
predictable.

	
class pyhanko.sign.signers.pdf_signer.DSSContentSettings(include_vri: bool = True, skip_if_unneeded: bool = True, placement: pyhanko.sign.signers.pdf_signer.SigDSSPlacementPreference = SigDSSPlacementPreference.TOGETHER_WITH_NEXT_TS, next_ts_settings: Optional[pyhanko.sign.signers.pdf_signer.TimestampDSSContentSettings] = None)

	Bases: pyhanko.sign.signers.pdf_signer.GeneralDSSContentSettings

New in version 0.8.0.

Settings for a DSS update with validation information for a signature.

	
placement: pyhanko.sign.signers.pdf_signer.SigDSSPlacementPreference = 3

	Preference for where to perform a DSS update with validation information
for a specific signature. See SigDSSPlacementPreference.

The default is SigDSSPlacementPreference.TOGETHER_WITH_NEXT_TS.

	
next_ts_settings: Optional[pyhanko.sign.signers.pdf_signer.TimestampDSSContentSettings] = None

	Explicit settings for DSS updates pertaining to a document timestamp
added as part of the same signing workflow, if applicable.

If None, a default will be generated based on the values of this
settings object.

Note

When consuming DSSContentSettings objects, you should
call get_settings_for_ts() instead of relying on the value of
this field.

	
get_settings_for_ts() → pyhanko.sign.signers.pdf_signer.TimestampDSSContentSettings

	Retrieve DSS update settings for document timestamps that are
part of our signing workflow, if there are any.

	
assert_viable()

	Check settings for consistency, and raise SigningError
otherwise.

	
class pyhanko.sign.signers.pdf_signer.TimestampDSSContentSettings(include_vri: bool = True, skip_if_unneeded: bool = True, update_before_ts: bool = False)

	Bases: pyhanko.sign.signers.pdf_signer.GeneralDSSContentSettings

New in version 0.8.0.

Settings for a DSS update with validation information for a document
timestamp.

Note

In most workflows, adding a document timestamp doesn’t trigger any DSS
updates beyond VRI additions, because the same TSA is used for signature
timestamps and for document timestamps.

	
update_before_ts: bool = False

	Perform DSS update before creating the timestamp, instead of after.

Warning

This setting can only be used if include_vri is False.

	
assert_viable()

	Check settings for consistency, and raise SigningError
otherwise.

	
class pyhanko.sign.signers.pdf_signer.GeneralDSSContentSettings(include_vri: bool = True, skip_if_unneeded: bool = True)

	Bases: object

New in version 0.8.0.

Settings that govern DSS creation and updating in general.

	
include_vri: bool = True

	Flag to control whether to create and update entries in the VRI dictionary.
The default is to always update the VRI dictionary.

Note

The VRI dictionary is a relic of the past that is effectively
deprecated in the current PAdES standards, and most modern validators
don’t rely on it being there.

That said, there’s no real harm in creating these entries, other than
that it occasionally forces DSS updates where none would otherwise
be necessary, and that it prevents the DSS from being updated prior
to signing (as opposed to after signing).

	
skip_if_unneeded: bool = True

	Do not perform a write if updating the DSS would not add any new
information.

Note

This setting is only used if the DSS update would happen in its own
revision.

	
class pyhanko.sign.signers.pdf_signer.SigDSSPlacementPreference(value)

	Bases: enum.Enum

New in version 0.8.0.

Preference for where to perform a DSS update with validation information
for a specific signature.

	
TOGETHER_WITH_SIGNATURE = 1

	Update the DSS in the revision that contains the signature.
Doing so can be useful to create a PAdES-B-LT signature in a single
revision.
Such signatures can be processed by a validator that isn’t capable of
incremental update analysis.

Warning

This setting can only be used if include_vri is False.

	
SEPARATE_REVISION = 2

	Always perform the DSS update in a separate revision, after the signature,
but before any timestamps are added.

Note

This is the old default behaviour.

	
TOGETHER_WITH_NEXT_TS = 3

	If the signing workflow includes a document timestamp after the signature,
update the DSS in the same revision as the timestamp.
In the absence of document timestamps, this is equivalent to
SEPARATE_REVISION.

Warning

This option controls the addition of validation info for the signature
and its associated signature timestamp, not the validation info for the
document timestamp itself.
See DSSContentSettings.next_ts_settings.

In most practical situations, the distinction is only relevant in
interrupted signing workflows (see Interrupted signing),
where the lifecycle of the validation context is out of pyHanko’s hands.

	
class pyhanko.sign.signers.pdf_signer.PdfTimeStamper(timestamper: pyhanko.sign.timestamps.api.TimeStamper, field_name: Optional[str] = None)

	Bases: object

Class to encapsulate the process of appending document timestamps to
PDF files.

	
property field_name: str

	Retrieve or generate the field name for the signature field to contain
the document timestamp.

	Returns

	The field name, as a (Python) string.

	
timestamp_pdf(pdf_out: pyhanko.pdf_utils.incremental_writer.IncrementalPdfFileWriter, md_algorithm, validation_context=None, bytes_reserved=None, validation_paths=None, timestamper: Optional[pyhanko.sign.timestamps.api.TimeStamper] = None, *, in_place=False, output=None, dss_settings: pyhanko.sign.signers.pdf_signer.TimestampDSSContentSettings = TimestampDSSContentSettings(include_vri=True, skip_if_unneeded=True, update_before_ts=False), chunk_size=4096, tight_size_estimates: bool = False)

	
Changed in version 0.9.0: Wrapper around async_timestamp_pdf().

Timestamp the contents of pdf_out.
Note that pdf_out should not be written to after this operation.

	Parameters

	
	pdf_out – An IncrementalPdfFileWriter.

	md_algorithm – The hash algorithm to use when computing message digests.

	validation_context – The pyhanko_certvalidator.ValidationContext
against which the TSA response should be validated.
This validation context will also be used to update the DSS.

	bytes_reserved – Bytes to reserve for the CMS object in the PDF file.
If not specified, make an estimate based on a dummy signature.

Warning

Since the CMS object is written to the output file as a
hexadecimal string, you should request twice the (estimated)
number of bytes in the DER-encoded version of the CMS object.

	validation_paths – If the validation path(s) for the TSA’s certificate are already
known, you can pass them using this parameter to avoid having to
run the validation logic again.

	timestamper – Override the default TimeStamper associated with this
PdfTimeStamper.

	output – Write the output to the specified output stream.
If None, write to a new BytesIO object.
Default is None.

	in_place – Sign the original input stream in-place.
This parameter overrides output.

	chunk_size – Size of the internal buffer (in bytes) used to feed data to the
message digest function if the input stream does not support
memoryview.

	dss_settings – DSS output settings. See TimestampDSSContentSettings.

	tight_size_estimates – When estimating the size of a document timestamp container,
do not add safety margins.

Note

External TSAs cannot be relied upon to always produce the
exact same output length, which makes this option risky to use.

	Returns

	The output stream containing the signed output.

	
async async_timestamp_pdf(pdf_out: pyhanko.pdf_utils.incremental_writer.IncrementalPdfFileWriter, md_algorithm, validation_context=None, bytes_reserved=None, validation_paths=None, timestamper: Optional[pyhanko.sign.timestamps.api.TimeStamper] = None, *, in_place=False, output=None, dss_settings: pyhanko.sign.signers.pdf_signer.TimestampDSSContentSettings = TimestampDSSContentSettings(include_vri=True, skip_if_unneeded=True, update_before_ts=False), chunk_size=4096, tight_size_estimates: bool = False, embed_roots: bool = True)

	
New in version 0.9.0.

Timestamp the contents of pdf_out.
Note that pdf_out should not be written to after this operation.

	Parameters

	
	pdf_out – An IncrementalPdfFileWriter.

	md_algorithm – The hash algorithm to use when computing message digests.

	validation_context – The pyhanko_certvalidator.ValidationContext
against which the TSA response should be validated.
This validation context will also be used to update the DSS.

	bytes_reserved – Bytes to reserve for the CMS object in the PDF file.
If not specified, make an estimate based on a dummy signature.

Warning

Since the CMS object is written to the output file as a
hexadecimal string, you should request twice the (estimated)
number of bytes in the DER-encoded version of the CMS object.

	validation_paths – If the validation path(s) for the TSA’s certificate are already
known, you can pass them using this parameter to avoid having to
run the validation logic again.

	timestamper – Override the default TimeStamper associated with this
PdfTimeStamper.

	output – Write the output to the specified output stream.
If None, write to a new BytesIO object.
Default is None.

	in_place – Sign the original input stream in-place.
This parameter overrides output.

	chunk_size – Size of the internal buffer (in bytes) used to feed data to the
message digest function if the input stream does not support
memoryview.

	dss_settings – DSS output settings. See TimestampDSSContentSettings.

	tight_size_estimates – When estimating the size of a document timestamp container,
do not add safety margins.

Note

External TSAs cannot be relied upon to always produce the
exact same output length, which makes this option risky to use.

	embed_roots – Option that controls whether the root certificate of each validation
path should be embedded into the DSS. The default is True.

Note

Trust roots are configured by the validator, so embedding them
typically does nothing in a typical validation process.
Therefore they can be safely omitted in most cases.
Nonetheless, embedding the roots can be useful for documentation
purposes.

	Returns

	The output stream containing the signed output.

	
update_archival_timestamp_chain(reader: pyhanko.pdf_utils.reader.PdfFileReader, validation_context, in_place=True, output=None, chunk_size=4096, default_md_algorithm='sha256')

	
Changed in version 0.9.0: Wrapper around async_update_archival_timestamp_chain().

Validate the last timestamp in the timestamp chain on a PDF file, and
write an updated version to an output stream.

	Parameters

	
	reader – A PdfReader encapsulating the input file.

	validation_context – pyhanko_certvalidator.ValidationContext object to validate
the last timestamp.

	output – Write the output to the specified output stream.
If None, write to a new BytesIO object.
Default is None.

	in_place – Sign the original input stream in-place.
This parameter overrides output.

	chunk_size – Size of the internal buffer (in bytes) used to feed data to the
message digest function if the input stream does not support
memoryview.

	default_md_algorithm – Message digest to use if there are no preceding timestamps in the
file.

	Returns

	The output stream containing the signed output.

	
async async_update_archival_timestamp_chain(reader: pyhanko.pdf_utils.reader.PdfFileReader, validation_context, in_place=True, output=None, chunk_size=4096, default_md_algorithm='sha256', embed_roots: bool = True)

	
New in version 0.9.0.

Validate the last timestamp in the timestamp chain on a PDF file, and
write an updated version to an output stream.

	Parameters

	
	reader – A PdfReader encapsulating the input file.

	validation_context – pyhanko_certvalidator.ValidationContext object to validate
the last timestamp.

	output – Write the output to the specified output stream.
If None, write to a new BytesIO object.
Default is None.

	in_place – Sign the original input stream in-place.
This parameter overrides output.

	chunk_size – Size of the internal buffer (in bytes) used to feed data to the
message digest function if the input stream does not support
memoryview.

	default_md_algorithm – Message digest to use if there are no preceding timestamps in the
file.

	embed_roots – Option that controls whether the root certificate of each validation
path should be embedded into the DSS. The default is True.

Note

Trust roots are configured by the validator, so embedding them
typically does nothing in a typical validation process.
Therefore they can be safely omitted in most cases.
Nonetheless, embedding the roots can be useful for documentation
purposes.

	Returns

	The output stream containing the signed output.

	
class pyhanko.sign.signers.pdf_signer.PdfSigner(signature_meta: pyhanko.sign.signers.pdf_signer.PdfSignatureMetadata, signer: pyhanko.sign.signers.pdf_cms.Signer, *, timestamper: Optional[pyhanko.sign.timestamps.api.TimeStamper] = None, stamp_style: Optional[pyhanko.stamp.BaseStampStyle] = None, new_field_spec: Optional[pyhanko.sign.fields.SigFieldSpec] = None)

	Bases: object

Class to handle PDF signatures in general.

	Parameters

	
	signature_meta – The specification of the signature to add.

	signer – Signer object to use to produce the signature object.

	timestamper – TimeStamper object to use to produce any time stamp tokens
that might be required.

	stamp_style – Stamp style specification to determine the visible style of the
signature, typically an object of type TextStampStyle or
QRStampStyle. Defaults to
constants.DEFAULT_SIGNING_STAMP_STYLE.

	new_field_spec – If a new field is to be created, this parameter allows the caller
to specify the field’s properties in the form of a
SigFieldSpec. This parameter is only meaningful if
existing_fields_only is False.

	
property default_md_for_signer: Optional[str]

	Name of the default message digest algorithm for this signer, if there
is one.
This method will try the md_algorithm
attribute on the signer’s signature_meta, or try to retrieve
the digest algorithm associated with the underlying
Signer.

	Returns

	The name of the message digest algorithm, or None.

	
init_signing_session(pdf_out: pyhanko.pdf_utils.writer.BasePdfFileWriter, existing_fields_only=False) → pyhanko.sign.signers.pdf_signer.PdfSigningSession

	Initialise a signing session with this PdfSigner for a
specified PDF file writer.

This step in the signing process handles all field-level operations
prior to signing: it creates the target form field if necessary, and
makes sure the seed value dictionary gets processed.

See also digest_doc_for_signing() and sign_pdf().

	Parameters

	
	pdf_out – The writer containing the PDF file to be signed.

	existing_fields_only – If True, never create a new empty signature field to contain
the signature.
If False, a new field may be created if no field matching
field_name exists.

	Returns

	A PdfSigningSession object modelling the signing session
in its post-setup stage.

	
digest_doc_for_signing(pdf_out: pyhanko.pdf_utils.writer.BasePdfFileWriter, existing_fields_only=False, bytes_reserved=None, *, appearance_text_params=None, in_place=False, output=None, chunk_size=4096) → Tuple[pyhanko.sign.signers.pdf_byterange.PreparedByteRangeDigest, pyhanko.sign.signers.pdf_signer.PdfTBSDocument, IO]

	
Deprecated since version 0.9.0: Use async_digest_doc_for_signing() instead.

Set up all stages of the signing process up to and including the point
where the signature placeholder is allocated, and the document’s
/ByteRange digest is computed.

See sign_pdf() for a less granular, more high-level approach.

Note

This method is useful in remote signing scenarios, where you might
want to free up resources while waiting for the remote signer to
respond. The PreparedByteRangeDigest object returned
allows you to keep track of the required state to fill the
signature container at some later point in time.

	Parameters

	
	pdf_out – A PDF file writer (usually an IncrementalPdfFileWriter)
containing the data to sign.

	existing_fields_only – If True, never create a new empty signature field to contain
the signature.
If False, a new field may be created if no field matching
field_name exists.

	bytes_reserved – Bytes to reserve for the CMS object in the PDF file.
If not specified, make an estimate based on a dummy signature.

Warning

Since the CMS object is written to the output file as a
hexadecimal string, you should request twice the (estimated)
number of bytes in the DER-encoded version of the CMS object.

	appearance_text_params – Dictionary with text parameters that will be passed to the
signature appearance constructor (if applicable).

	output – Write the output to the specified output stream.
If None, write to a new BytesIO object.
Default is None.

	in_place – Sign the original input stream in-place.
This parameter overrides output.

	chunk_size – Size of the internal buffer (in bytes) used to feed data to the
message digest function if the input stream does not support
memoryview.

	Returns

	A tuple containing a PreparedByteRangeDigest object,
a PdfTBSDocument object and an output handle to which the
document in its current state has been written.

	
async async_digest_doc_for_signing(pdf_out: pyhanko.pdf_utils.writer.BasePdfFileWriter, existing_fields_only=False, bytes_reserved=None, *, appearance_text_params=None, in_place=False, output=None, chunk_size=4096) → Tuple[pyhanko.sign.signers.pdf_byterange.PreparedByteRangeDigest, pyhanko.sign.signers.pdf_signer.PdfTBSDocument, IO]

	
New in version 0.9.0.

Set up all stages of the signing process up to and including the point
where the signature placeholder is allocated, and the document’s
/ByteRange digest is computed.

See sign_pdf() for a less granular, more high-level approach.

Note

This method is useful in remote signing scenarios, where you might
want to free up resources while waiting for the remote signer to
respond. The PreparedByteRangeDigest object returned
allows you to keep track of the required state to fill the
signature container at some later point in time.

	Parameters

	
	pdf_out – A PDF file writer (usually an IncrementalPdfFileWriter)
containing the data to sign.

	existing_fields_only – If True, never create a new empty signature field to contain
the signature.
If False, a new field may be created if no field matching
field_name exists.

	bytes_reserved – Bytes to reserve for the CMS object in the PDF file.
If not specified, make an estimate based on a dummy signature.

Warning

Since the CMS object is written to the output file as a
hexadecimal string, you should request twice the (estimated)
number of bytes in the DER-encoded version of the CMS object.

	appearance_text_params – Dictionary with text parameters that will be passed to the
signature appearance constructor (if applicable).

	output – Write the output to the specified output stream.
If None, write to a new BytesIO object.
Default is None.

	in_place – Sign the original input stream in-place.
This parameter overrides output.

	chunk_size – Size of the internal buffer (in bytes) used to feed data to the
message digest function if the input stream does not support
memoryview.

	Returns

	A tuple containing a PreparedByteRangeDigest object,
a PdfTBSDocument object and an output handle to which the
document in its current state has been written.

	
sign_pdf(pdf_out: pyhanko.pdf_utils.writer.BasePdfFileWriter, existing_fields_only=False, bytes_reserved=None, *, appearance_text_params=None, in_place=False, output=None, chunk_size=4096)

	
Changed in version 0.9.0: Wrapper around async_sign_pdf().

Sign a PDF file using the provided output writer.

	Parameters

	
	pdf_out – A PDF file writer (usually an IncrementalPdfFileWriter)
containing the data to sign.

	existing_fields_only – If True, never create a new empty signature field to contain
the signature.
If False, a new field may be created if no field matching
field_name exists.

	bytes_reserved – Bytes to reserve for the CMS object in the PDF file.
If not specified, make an estimate based on a dummy signature.

	appearance_text_params – Dictionary with text parameters that will be passed to the
signature appearance constructor (if applicable).

	output – Write the output to the specified output stream.
If None, write to a new BytesIO object.
Default is None.

	in_place – Sign the original input stream in-place.
This parameter overrides output.

	chunk_size – Size of the internal buffer (in bytes) used to feed data to the
message digest function if the input stream does not support
memoryview.

	Returns

	The output stream containing the signed data.

	
async async_sign_pdf(pdf_out: pyhanko.pdf_utils.writer.BasePdfFileWriter, existing_fields_only=False, bytes_reserved=None, *, appearance_text_params=None, in_place=False, output=None, chunk_size=4096)

	
New in version 0.9.0.

Sign a PDF file using the provided output writer.

	Parameters

	
	pdf_out – A PDF file writer (usually an IncrementalPdfFileWriter)
containing the data to sign.

	existing_fields_only – If True, never create a new empty signature field to contain
the signature.
If False, a new field may be created if no field matching
field_name exists.

	bytes_reserved – Bytes to reserve for the CMS object in the PDF file.
If not specified, make an estimate based on a dummy signature.

	appearance_text_params – Dictionary with text parameters that will be passed to the
signature appearance constructor (if applicable).

	output – Write the output to the specified output stream.
If None, write to a new BytesIO object.
Default is None.

	in_place – Sign the original input stream in-place.
This parameter overrides output.

	chunk_size – Size of the internal buffer (in bytes) used to feed data to the
message digest function if the input stream does not support
memoryview.

	Returns

	The output stream containing the signed data.

	
class pyhanko.sign.signers.pdf_signer.PdfSigningSession(pdf_signer: pyhanko.sign.signers.pdf_signer.PdfSigner, pdf_out: pyhanko.pdf_utils.writer.BasePdfFileWriter, cms_writer, sig_field, md_algorithm: str, timestamper: pyhanko.sign.timestamps.api.TimeStamper, subfilter: pyhanko.sign.fields.SigSeedSubFilter, system_time: Optional[datetime.datetime] = None, sv_spec: Optional[pyhanko.sign.fields.SigSeedValueSpec] = None)

	Bases: object

New in version 0.7.0.

Class modelling a PDF signing session in its initial state.

The __init__ method is internal API, get an instance using
PdfSigner.init_signing_session().

	
async perform_presign_validation(pdf_out: Optional[pyhanko.pdf_utils.writer.BasePdfFileWriter] = None) → Optional[pyhanko.sign.signers.pdf_signer.PreSignValidationStatus]

	Perform certificate validation checks for the signer’s certificate,
including any necessary revocation checks.

This function will also attempt to validate & collect revocation
information for the relevant TSA (by requesting a dummy timestamp).

	Parameters

	pdf_out – Current PDF writer. Technically optional; only used to look for
the end of the timestamp chain in the previous revision when
producing a PAdES-LTA signature in a document that is already
signed (to ensure that the timestamp chain is uninterrupted).

	Returns

	A PreSignValidationStatus object, or None if there
is no validation context available.

	
async estimate_signature_container_size(validation_info: pyhanko.sign.signers.pdf_signer.PreSignValidationStatus, tight=False)

	

	
prepare_tbs_document(validation_info: pyhanko.sign.signers.pdf_signer.PreSignValidationStatus, bytes_reserved, appearance_text_params=None) → pyhanko.sign.signers.pdf_signer.PdfTBSDocument

	Set up the signature appearance (if necessary) and signature dictionary
in the PDF file, to put the document in its final pre-signing state.

	Parameters

	
	validation_info – Validation information collected prior to signing.

	bytes_reserved – Bytes to reserve for the signature container.

	appearance_text_params – Optional text parameters for the signature appearance content.

	Returns

	A PdfTBSDocument describing the document in its final
pre-signing state.

	
class pyhanko.sign.signers.pdf_signer.PdfTBSDocument(cms_writer, signer: pyhanko.sign.signers.pdf_cms.Signer, md_algorithm: str, use_pades: bool, timestamper: Optional[pyhanko.sign.timestamps.api.TimeStamper] = None, post_sign_instructions: Optional[pyhanko.sign.signers.pdf_signer.PostSignInstructions] = None, validation_context: Optional[pyhanko_certvalidator.context.ValidationContext] = None)

	Bases: object

New in version 0.7.0.

A PDF document in its final pre-signing state.

The __init__ method is internal API, get an instance using
PdfSigningSession.prepare_tbs_document(). Alternatively, use
resume_signing() or finish_signing() to continue a previously
interrupted signing process without instantiating a new
PdfTBSDocument object.

	
digest_tbs_document(*, output: Optional[IO] = None, in_place: bool = False, chunk_size=4096) → Tuple[pyhanko.sign.signers.pdf_byterange.PreparedByteRangeDigest, IO]

	Write the document to an output stream and compute the digest, while
keeping track of the (future) location of the signature contents in the
output stream.

The digest can then be passed to the next part of the signing pipeline.

Warning

This method can only be called once.

	Parameters

	
	output – Write the output to the specified output stream.
If None, write to a new BytesIO object.
Default is None.

	in_place – Sign the original input stream in-place.
This parameter overrides output.

	chunk_size – Size of the internal buffer (in bytes) used to feed data to the
message digest function if the input stream does not support
memoryview.

	Returns

	A tuple containing a PreparedByteRangeDigest and the
output stream to which the output was written.

	
async perform_signature(document_digest: bytes, pdf_cms_signed_attrs: pyhanko.sign.signers.pdf_cms.PdfCMSSignedAttributes) → pyhanko.sign.signers.pdf_signer.PdfPostSignatureDocument

	Perform the relevant cryptographic signing operations on the document
digest, and write the resulting CMS object to the appropriate location
in the output stream.

Warning

This method can only be called once, and must be invoked after
digest_tbs_document().

	Parameters

	
	document_digest – Digest of the document, as computed over the relevant
/ByteRange.

	pdf_cms_signed_attrs – Description of the signed attributes to include.

	Returns

	A PdfPostSignatureDocument object.

	
classmethod resume_signing(output: IO, prepared_digest: pyhanko.sign.signers.pdf_byterange.PreparedByteRangeDigest, signature_cms: Union[bytes, asn1crypto.cms.ContentInfo], post_sign_instr: Optional[pyhanko.sign.signers.pdf_signer.PostSignInstructions] = None, validation_context: Optional[pyhanko_certvalidator.context.ValidationContext] = None) → pyhanko.sign.signers.pdf_signer.PdfPostSignatureDocument

	Resume signing after obtaining a CMS object from an external source.

This is a class method; it doesn’t require a PdfTBSDocument
instance. Contrast with perform_signature().

	Parameters

	
	output – Output stream housing the document in its final pre-signing state.
This stream must at least be writable and seekable, and also
readable if post-signature processing is required.

	prepared_digest – The prepared digest returned by a prior call to
digest_tbs_document().

	signature_cms – CMS object to embed in the signature dictionary.

	post_sign_instr – Instructions for post-signing processing (DSS updates and document
timestamps).

	validation_context – Validation context to use in post-signing operations.
This is mainly intended for TSA certificate validation, but it can
also contain additional validation data to embed in the DSS.

	Returns

	A PdfPostSignatureDocument.

	
classmethod finish_signing(output: IO, prepared_digest: pyhanko.sign.signers.pdf_byterange.PreparedByteRangeDigest, signature_cms: Union[bytes, asn1crypto.cms.ContentInfo], post_sign_instr: Optional[pyhanko.sign.signers.pdf_signer.PostSignInstructions] = None, validation_context: Optional[pyhanko_certvalidator.context.ValidationContext] = None, chunk_size=4096)

	Finish signing after obtaining a CMS object from an external source, and
perform any required post-signature processing.

This is a class method; it doesn’t require a PdfTBSDocument
instance. Contrast with perform_signature().

	Parameters

	
	output – Output stream housing the document in its final pre-signing state.

	prepared_digest – The prepared digest returned by a prior call to
digest_tbs_document().

	signature_cms – CMS object to embed in the signature dictionary.

	post_sign_instr – Instructions for post-signing processing (DSS updates and document
timestamps).

	validation_context – Validation context to use in post-signing operations.
This is mainly intended for TSA certificate validation, but it can
also contain additional validation data to embed in the DSS.

	chunk_size – Size of the internal buffer (in bytes) used to feed data to the
message digest function if the input stream does not support
memoryview.

	
async classmethod async_finish_signing(output: IO, prepared_digest: pyhanko.sign.signers.pdf_byterange.PreparedByteRangeDigest, signature_cms: Union[bytes, asn1crypto.cms.ContentInfo], post_sign_instr: Optional[pyhanko.sign.signers.pdf_signer.PostSignInstructions] = None, validation_context: Optional[pyhanko_certvalidator.context.ValidationContext] = None, chunk_size=4096)

	Finish signing after obtaining a CMS object from an external source, and
perform any required post-signature processing.

This is a class method; it doesn’t require a PdfTBSDocument
instance. Contrast with perform_signature().

	Parameters

	
	output – Output stream housing the document in its final pre-signing state.

	prepared_digest – The prepared digest returned by a prior call to
digest_tbs_document().

	signature_cms – CMS object to embed in the signature dictionary.

	post_sign_instr – Instructions for post-signing processing (DSS updates and document
timestamps).

	validation_context – Validation context to use in post-signing operations.
This is mainly intended for TSA certificate validation, but it can
also contain additional validation data to embed in the DSS.

	chunk_size – Size of the internal buffer (in bytes) used to feed data to the
message digest function if the input stream does not support
memoryview.

	
class pyhanko.sign.signers.pdf_signer.PdfPostSignatureDocument(sig_contents: bytes, post_sign_instr: Optional[pyhanko.sign.signers.pdf_signer.PostSignInstructions] = None, validation_context: Optional[pyhanko_certvalidator.context.ValidationContext] = None)

	Bases: object

New in version 0.7.0.

Represents the final phase of the PDF signing process

	
async post_signature_processing(output: IO, chunk_size=4096)

	Handle DSS updates and LTA timestamps, if applicable.

	Parameters

	
	output – I/O buffer containing the signed document. Must support
reading, writing and seeking.

	chunk_size – Chunk size to use for I/O operations that do not support the buffer
protocol.

	
class pyhanko.sign.signers.pdf_signer.PreSignValidationStatus(signer_path: pyhanko_certvalidator.path.ValidationPath, validation_paths: List[pyhanko_certvalidator.path.ValidationPath], ts_validation_paths: Optional[List[pyhanko_certvalidator.path.ValidationPath]] = None, adobe_revinfo_attr: Optional[asn1crypto.pdf.RevocationInfoArchival] = None, ocsps_to_embed: Optional[List[asn1crypto.ocsp.OCSPResponse]] = None, crls_to_embed: Optional[List[asn1crypto.crl.CertificateList]] = None)

	Bases: object

New in version 0.7.0.

Container for validation data collected prior to creating a signature, e.g.
for later inclusion in a document’s DSS, or as a signed attribute on
the signature.

	
signer_path: pyhanko_certvalidator.path.ValidationPath

	Validation path for the signer’s certificate.

	
validation_paths: List[pyhanko_certvalidator.path.ValidationPath]

	List of other relevant validation paths.

	
ts_validation_paths: Optional[List[pyhanko_certvalidator.path.ValidationPath]] = None

	List of validation paths relevant for embedded timestamps.

	
adobe_revinfo_attr: Optional[asn1crypto.pdf.RevocationInfoArchival] = None

	Preformatted revocation info attribute to include, if requested by the
settings.

	
ocsps_to_embed: List[asn1crypto.ocsp.OCSPResponse] = None

	List of OCSP responses collected so far.

	
crls_to_embed: List[asn1crypto.crl.CertificateList] = None

	List of CRLS collected so far.

	
class pyhanko.sign.signers.pdf_signer.PostSignInstructions(validation_info: pyhanko.sign.signers.pdf_signer.PreSignValidationStatus, timestamper: Optional[pyhanko.sign.timestamps.api.TimeStamper] = None, timestamp_md_algorithm: Optional[str] = None, timestamp_field_name: Optional[str] = None, dss_settings: pyhanko.sign.signers.pdf_signer.DSSContentSettings = DSSContentSettings(include_vri=True, skip_if_unneeded=True, placement=<SigDSSPlacementPreference.TOGETHER_WITH_NEXT_TS: 3>, next_ts_settings=None), tight_size_estimates: bool = False, embed_roots: bool = True)

	Bases: object

New in version 0.7.0.

Container class housing instructions for incremental updates
to the document after the signature has been put in place.
Necessary for PAdES-LT and PAdES-LTA workflows.

	
validation_info: pyhanko.sign.signers.pdf_signer.PreSignValidationStatus

	Validation information to embed in the DSS (if not already present).

	
timestamper: Optional[pyhanko.sign.timestamps.api.TimeStamper] = None

	Timestamper to use for produce document timestamps. If None, no
timestamp will be added.

	
timestamp_md_algorithm: Optional[str] = None

	Digest algorithm to use when producing timestamps.
Defaults to DEFAULT_MD.

	
timestamp_field_name: Optional[str] = None

	Name of the timestamp field to use. If not specified, a field name will be
generated.

	
dss_settings: pyhanko.sign.signers.pdf_signer.DSSContentSettings = DSSContentSettings(include_vri=True, skip_if_unneeded=True, placement=<SigDSSPlacementPreference.TOGETHER_WITH_NEXT_TS: 3>, next_ts_settings=None)

	
New in version 0.8.0.

Settings to fine-tune DSS generation.

	
tight_size_estimates: bool = False

	
New in version 0.8.0.

When estimating the size of a document timestamp container,
do not add safety margins.

Note

External TSAs cannot be relied upon to always produce the
exact same output length, which makes this option risky to use.

	
embed_roots: bool = True

	
New in version 0.9.0.

Option that controls whether the root certificate of each validation
path should be embedded into the DSS. The default is True.

Note

Trust roots are configured by the validator, so embedding them
typically does nothing in a typical validation process.
Therefore they can be safely omitted in most cases.
Nonetheless, embedding the roots can be useful for documentation
purposes.

Note

This setting is not part of DSSContentSettings because
its value is taken from the corresponding property on the
Signer involved, not from the initial configuration.

pyhanko.sign.timestamps package

	pyhanko.sign.timestamps.api module

	pyhanko.sign.timestamps.aiohttp_client module

	pyhanko.sign.timestamps.requests_client module

	pyhanko.sign.timestamps.dummy_client module

	pyhanko.sign.timestamps.common_utils module

pyhanko.sign.timestamps.api module

Module to handle the timestamping functionality in pyHanko.

Many PDF signature profiles require trusted timestamp tokens.
The tools in this module allow pyHanko to obtain such tokens from
RFC 3161 [https://tools.ietf.org/html/rfc3161.html]-compliant time stamping
authorities.

	
class pyhanko.sign.timestamps.api.TimestampSignatureStatus(intact: bool, valid: bool, trusted: bool, revoked: bool, signing_cert: asn1crypto.x509.Certificate, pkcs7_signature_mechanism: str, md_algorithm: str, validation_path: pyhanko_certvalidator.path.ValidationPath, timestamp: datetime.datetime)

	Bases: pyhanko.sign.general.SignatureStatus

Signature status class used when validating timestamp tokens.

	
key_usage: ClassVar[Set[str]] = {}

	There are no (non-extended) key usage requirements for TSA certificates.

	
extd_key_usage: ClassVar[Optional[Set[str]]] = {'time_stamping'}

	TSA certificates must have the time_stamping extended key usage
extension (OID 1.3.6.1.5.5.7.3.8).

	
timestamp: datetime.datetime

	Value of the timestamp token as a datetime object.

	
describe_timestamp_trust()

	

	
class pyhanko.sign.timestamps.api.TimeStamper(include_nonce=True)

	Bases: object

Changed in version 0.9.0: Made API more asyncio-friendly _(breaking change)_

Class to make RFC 3161 [https://tools.ietf.org/html/rfc3161.html] timestamp requests.

	
request_cms(message_digest, md_algorithm)

	Format the body of an RFC 3161 [https://tools.ietf.org/html/rfc3161.html] request as a CMS object.
Subclasses with more specific needs may want to override this.

	Parameters

	
	message_digest – Message digest to which the timestamp will apply.

	md_algorithm – Message digest algorithm to use.

Note

As per RFC 8933 [https://tools.ietf.org/html/rfc8933.html], md_algorithm should also be the
algorithm used to compute message_digest.

	Returns

	An asn1crypto.tsp.TimeStampReq object.

	
async validation_paths(validation_context)

	Produce validation paths for the certificates gathered by this
TimeStamper.

This is internal API.

	Parameters

	validation_context – The validation context to apply.

	Returns

	An asynchronous generator of validation paths.

	
async async_dummy_response(md_algorithm) → asn1crypto.cms.ContentInfo

	Return a dummy response for use in CMS object size estimation.

For every new md_algorithm passed in, this method will call
the timestamp() method exactly once, with a dummy digest.
The resulting object will be cached and reused for future invocations
of dummy_response() with the same md_algorithm value.

	Parameters

	md_algorithm – Message digest algorithm to use.

	Returns

	A timestamp token, encoded as an
asn1crypto.cms.ContentInfo object.

	
async async_request_tsa_response(req: asn1crypto.tsp.TimeStampReq) → asn1crypto.tsp.TimeStampResp

	Submit the specified timestamp request to the server.

	Parameters

	req – Request body to submit.

	Returns

	A timestamp response from the server.

	Raises

	IOError – Raised in case of an I/O issue in the communication with the
timestamping server.

	
async async_timestamp(message_digest, md_algorithm) → asn1crypto.cms.ContentInfo

	Request a timestamp for the given message digest.

	Parameters

	
	message_digest – Message digest to which the timestamp will apply.

	md_algorithm – Message digest algorithm to use.

Note

As per RFC 8933 [https://tools.ietf.org/html/rfc8933.html], md_algorithm should also be the
algorithm used to compute message_digest.

	Returns

	A timestamp token, encoded as an
asn1crypto.cms.ContentInfo object.

	Raises

	
	IOError – Raised in case of an I/O issue in the communication with the
timestamping server.

	TimestampRequestError – Raised if the timestamp server did not return a success response,
or if the server’s response is invalid.

pyhanko.sign.timestamps.aiohttp_client module

	
class pyhanko.sign.timestamps.aiohttp_client.AIOHttpTimeStamper(url, session: Union[aiohttp.client.ClientSession, pyhanko_certvalidator.fetchers.aiohttp_fetchers.util.LazySession], https=False, timeout=5, headers=None, auth: Optional[aiohttp.helpers.BasicAuth] = None)

	Bases: pyhanko.sign.timestamps.api.TimeStamper

	
async async_request_headers() → dict

	Format the HTTP request headers.
Subclasses can override this to perform their own header generation
logic.

	Returns

	Header dictionary.

	
async get_session() → aiohttp.client.ClientSession

	

	
async async_timestamp(message_digest, md_algorithm) → asn1crypto.cms.ContentInfo

	Request a timestamp for the given message digest.

	Parameters

	
	message_digest – Message digest to which the timestamp will apply.

	md_algorithm – Message digest algorithm to use.

Note

As per RFC 8933 [https://tools.ietf.org/html/rfc8933.html], md_algorithm should also be the
algorithm used to compute message_digest.

	Returns

	A timestamp token, encoded as an
asn1crypto.cms.ContentInfo object.

	Raises

	
	IOError – Raised in case of an I/O issue in the communication with the
timestamping server.

	TimestampRequestError – Raised if the timestamp server did not return a success response,
or if the server’s response is invalid.

	
async async_request_tsa_response(req: asn1crypto.tsp.TimeStampReq) → asn1crypto.tsp.TimeStampResp

	Submit the specified timestamp request to the server.

	Parameters

	req – Request body to submit.

	Returns

	A timestamp response from the server.

	Raises

	IOError – Raised in case of an I/O issue in the communication with the
timestamping server.

pyhanko.sign.timestamps.requests_client module

	
class pyhanko.sign.timestamps.requests_client.HTTPTimeStamper(url, https=False, timeout=5, auth=None, headers=None)

	Bases: pyhanko.sign.timestamps.api.TimeStamper

Standard HTTP-based timestamp client.

	
request_headers() → dict

	Format the HTTP request headers.

	Returns

	Header dictionary.

	
async async_request_tsa_response(req: asn1crypto.tsp.TimeStampReq) → asn1crypto.tsp.TimeStampResp

	Submit the specified timestamp request to the server.

	Parameters

	req – Request body to submit.

	Returns

	A timestamp response from the server.

	Raises

	IOError – Raised in case of an I/O issue in the communication with the
timestamping server.

pyhanko.sign.timestamps.dummy_client module

	
class pyhanko.sign.timestamps.dummy_client.DummyTimeStamper(tsa_cert: asn1crypto.x509.Certificate, tsa_key: asn1crypto.keys.PrivateKeyInfo, certs_to_embed: Optional[pyhanko_certvalidator.registry.CertificateStore] = None, fixed_dt: Optional[datetime.datetime] = None, include_nonce=True, override_md=None)

	Bases: pyhanko.sign.timestamps.api.TimeStamper

Timestamper that acts as its own TSA. It accepts all requests and
signs them using the certificate provided.
Used for testing purposes.

	
request_tsa_response(req: asn1crypto.tsp.TimeStampReq) → asn1crypto.tsp.TimeStampResp

	

	
async async_request_tsa_response(req: asn1crypto.tsp.TimeStampReq) → asn1crypto.tsp.TimeStampResp

	Submit the specified timestamp request to the server.

	Parameters

	req – Request body to submit.

	Returns

	A timestamp response from the server.

	Raises

	IOError – Raised in case of an I/O issue in the communication with the
timestamping server.

pyhanko.sign.timestamps.common_utils module

	
exception pyhanko.sign.timestamps.common_utils.TimestampRequestError

	Bases: OSError

Raised when an error occurs while requesting a timestamp.

	
pyhanko.sign.timestamps.common_utils.get_nonce()

	

	
pyhanko.sign.timestamps.common_utils.extract_ts_certs(ts_token, store: pyhanko_certvalidator.registry.CertificateStore)

	

	
pyhanko.sign.timestamps.common_utils.dummy_digest(md_algorithm: str) → bytes

	

	
pyhanko.sign.timestamps.common_utils.handle_tsp_response(response: asn1crypto.tsp.TimeStampResp, nonce: Optional[bytes]) → asn1crypto.cms.ContentInfo

	

	
pyhanko.sign.timestamps.common_utils.set_tsp_headers(headers: dict)

	

pyhanko.sign.validation module

	
class pyhanko.sign.validation.SignatureCoverageLevel(value)

	Bases: pyhanko.pdf_utils.misc.OrderedEnum

Indicate the extent to which a PDF signature (cryptographically) covers
a document. Note that this does not pass judgment on whether uncovered
updates are legitimate or not, but as a general rule, a legitimate signature
will satisfy at least ENTIRE_REVISION.

	
UNCLEAR = 0

	The signature’s coverage is unclear and/or disconnected.
In standard PDF signatures, this is usually a bad sign.

	
CONTIGUOUS_BLOCK_FROM_START = 1

	The signature covers a contiguous block in the PDF file stretching from
the first byte of the file to the last byte in the indicated /ByteRange.
In other words, the only interruption in the byte range is fully occupied
by the signature data itself.

	
ENTIRE_REVISION = 2

	The signature covers the entire revision in which it occurs, but incremental
updates may have been added later. This is not necessarily evidence of
tampering. In particular, it is expected when a file contains multiple
signatures. Nonetheless, caution is required.

	
ENTIRE_FILE = 3

	The entire file is covered by the signature.

	
class pyhanko.sign.validation.PdfSignatureStatus(intact: bool, valid: bool, trusted: bool, revoked: bool, signing_cert: asn1crypto.x509.Certificate, pkcs7_signature_mechanism: str, md_algorithm: str, validation_path: pyhanko_certvalidator.path.ValidationPath, signer_reported_dt: Optional[datetime.datetime] = None, timestamp_validity: Optional[pyhanko.sign.timestamps.api.TimestampSignatureStatus] = None, content_timestamp_validity: Optional[pyhanko.sign.timestamps.api.TimestampSignatureStatus] = None, coverage: Optional[pyhanko.sign.validation.SignatureCoverageLevel] = None, diff_result: Optional[Union[pyhanko.sign.diff_analysis.DiffResult, pyhanko.sign.diff_analysis.SuspiciousModification]] = None, docmdp_ok: Optional[bool] = None, has_seed_values: bool = False, seed_value_constraint_error: Optional[pyhanko.sign.validation.SigSeedValueValidationError] = None)

	Bases: pyhanko.sign.validation.ModificationInfo, pyhanko.sign.validation.StandardCMSSignatureStatus

Class to indicate the validation status of a PDF signature.

	
docmdp_ok: Optional[bool] = None

	Indicates whether the signature’s
modification_level is in line with the document
signature policy in force.

If None, compliance could not be determined.

	
has_seed_values: bool = False

	Records whether the signature form field has seed values.

	
seed_value_constraint_error: Optional[pyhanko.sign.validation.SigSeedValueValidationError] = None

	Records the reason for failure if the signature field’s seed value
constraints didn’t validate.

	
property bottom_line: bool

	Formulates a general judgment on the validity of this signature.
This takes into account the cryptographic validity of the signature,
the signature’s chain of trust, compliance with the document
modification policy, seed value constraint compliance and the validity
of the timestamp token (if present).

	Returns

	True if all constraints are satisfied, False otherwise.

	
property seed_value_ok: bool

	Indicates whether the signature satisfies all mandatory constraints in
the seed value dictionary of the associated form field.

Warning

Currently, not all seed value entries are recognised by the signer
and/or the validator, so this judgment may not be entirely accurate
in some cases.

See SigSeedValueSpec.

	
summary_fields()

	

	
pretty_print_sections()

	

	
class pyhanko.sign.validation.DocumentTimestampStatus(intact: bool, valid: bool, trusted: bool, revoked: bool, signing_cert: asn1crypto.x509.Certificate, pkcs7_signature_mechanism: str, md_algorithm: str, validation_path: pyhanko_certvalidator.path.ValidationPath, timestamp: datetime.datetime, coverage: Optional[pyhanko.sign.validation.SignatureCoverageLevel] = None, diff_result: Optional[Union[pyhanko.sign.diff_analysis.DiffResult, pyhanko.sign.diff_analysis.SuspiciousModification]] = None)

	Bases: pyhanko.sign.validation.ModificationInfo, pyhanko.sign.timestamps.api.TimestampSignatureStatus

Class to indicate the validation status of a PDF document timestamp.

	
class pyhanko.sign.validation.StandardCMSSignatureStatus(intact: bool, valid: bool, trusted: bool, revoked: bool, signing_cert: asn1crypto.x509.Certificate, pkcs7_signature_mechanism: str, md_algorithm: str, validation_path: pyhanko_certvalidator.path.ValidationPath, signer_reported_dt: Optional[datetime.datetime] = None, timestamp_validity: Optional[pyhanko.sign.timestamps.api.TimestampSignatureStatus] = None, content_timestamp_validity: Optional[pyhanko.sign.timestamps.api.TimestampSignatureStatus] = None)

	Bases: pyhanko.sign.general.SignatureStatus

Status of a standard “end-entity” CMS signature, potentially with
timing information embedded inside.

	
signer_reported_dt: Optional[datetime.datetime] = None

	Signer-reported signing time, if present in the signature.

Generally speaking, this timestamp should not be taken as fact.

	
timestamp_validity: Optional[pyhanko.sign.timestamps.api.TimestampSignatureStatus] = None

	Validation status of the signature timestamp token embedded in this
signature, if present.

	
content_timestamp_validity: Optional[pyhanko.sign.timestamps.api.TimestampSignatureStatus] = None

	Validation status of the content timestamp token embedded in this
signature, if present.

	
property bottom_line: bool

	Formulates a general judgment on the validity of this signature.
This takes into account the cryptographic validity of the signature,
the signature’s chain of trust and the validity of the timestamp token
(if present).

	Returns

	True if all constraints are satisfied, False otherwise.

	
summary_fields()

	

	
pretty_print_details()

	

	
pretty_print_sections()

	

	
class pyhanko.sign.validation.ModificationInfo(coverage: pyhanko.sign.validation.SignatureCoverageLevel = None, diff_result: Union[pyhanko.sign.diff_analysis.DiffResult, pyhanko.sign.diff_analysis.SuspiciousModification, NoneType] = None)

	Bases: object

	
coverage: pyhanko.sign.validation.SignatureCoverageLevel = None

	Indicates how much of the document is covered by the signature.

	
diff_result: Optional[Union[pyhanko.sign.diff_analysis.DiffResult, pyhanko.sign.diff_analysis.SuspiciousModification]] = None

	Result of the difference analysis run on the file:

	If None, no difference analysis was run.

	If the difference analysis was successful, this attribute will contain
a DiffResult object.

	If the difference analysis failed due to unforeseen or suspicious
modifications, the SuspiciousModification exception thrown
by the difference policy will be stored in this attribute.

	
property modification_level: Optional[pyhanko.sign.diff_analysis.ModificationLevel]

	Indicates the degree to which the document was modified after the
signature was applied.

Will be None if difference analysis results are not available;
an instance of ModificationLevel otherwise.

	
class pyhanko.sign.validation.EmbeddedPdfSignature(reader: pyhanko.pdf_utils.reader.PdfFileReader, sig_field: pyhanko.pdf_utils.generic.DictionaryObject, fq_name: str)

	Bases: object

Class modelling a signature embedded in a PDF document.

	
sig_object: pyhanko.pdf_utils.generic.DictionaryObject

	The signature dictionary.

	
sig_field: pyhanko.pdf_utils.generic.DictionaryObject

	The field dictionary of the form field containing the signature.

	
signed_data: asn1crypto.cms.SignedData

	CMS signed data in the signature.

	
signer_cert: asn1crypto.x509.Certificate

	Certificate of the signer.

	
property sig_object_type: pyhanko.pdf_utils.generic.NameObject

	Returns the type of the embedded signature object.
For ordinary signatures, this will be /Sig.
In the case of a document timestamp, /DocTimeStamp is returned.

	Returns

	A PDF name object describing the type of signature.

	
property field_name

	
	Returns

	Name of the signature field.

	
property self_reported_timestamp: Optional[datetime.datetime]

	
	Returns

	The signing time as reported by the signer, if embedded in the
signature’s signed attributes.

	
property attached_timestamp_data: Optional[asn1crypto.cms.SignedData]

	
	Returns

	The signed data component of the timestamp token embedded in this
signature, if present.

	
compute_integrity_info(diff_policy=None, skip_diff=False)

	Compute the various integrity indicators of this signature.

	Parameters

	
	diff_policy – Policy to evaluate potential incremental updates that were appended
to the signed revision of the document.
Defaults to
DEFAULT_DIFF_POLICY.

	skip_diff – If True, skip the difference analysis step entirely.

	
summarise_integrity_info() → dict

	Compile the integrity information for this signature into a dictionary
that can later be passed to PdfSignatureStatus as kwargs.

This method is only available after calling
EmbeddedPdfSignature.compute_integrity_info().

	
property seed_value_spec: Optional[pyhanko.sign.fields.SigSeedValueSpec]

	

	
property docmdp_level: Optional[pyhanko.sign.fields.MDPPerm]

	
	Returns

	The document modification policy required by this signature or
its Lock dictionary.

Warning

This does not take into account the DocMDP requirements of
earlier signatures (if present).

The specification forbids signing with a more lenient DocMDP
than the one currently in force, so this should not happen
in a compliant document.
That being said, any potential violations will still invalidate
the earlier signature with the stricter DocMDP policy.

	
property fieldmdp: Optional[pyhanko.sign.fields.FieldMDPSpec]

	
	Returns

	Read the field locking policy of this signature, if applicable.
See also FieldMDPSpec.

	
compute_digest() → bytes

	Compute the /ByteRange digest of this signature.
The result will be cached.

	Returns

	The digest value.

	
compute_tst_digest() → Optional[bytes]

	Compute the digest of the signature needed to validate its timestamp
token (if present).

Warning

This computation is only relevant for timestamp tokens embedded
inside a regular signature.
If the signature in question is a document timestamp (where the
entire signature object is a timestamp token), this method
does not apply.

	Returns

	The digest value, or None if there is no timestamp token.

	
evaluate_signature_coverage() → pyhanko.sign.validation.SignatureCoverageLevel

	Internal method used to evaluate the coverage level of a signature.

	Returns

	The coverage level of the signature.

	
evaluate_modifications(diff_policy: pyhanko.sign.diff_analysis.DiffPolicy) → Union[pyhanko.sign.diff_analysis.DiffResult, pyhanko.sign.diff_analysis.SuspiciousModification]

	Internal method used to evaluate the modification level of a signature.

	
class pyhanko.sign.validation.DocMDPInfo(permission, author_sig)

	Bases: tuple

Encodes certification information for a signed document, consisting of a
reference to the author signature, together with the associated DocMDP policy.

	
property author_sig

	Alias for field number 1

	
property permission

	Alias for field number 0

	
class pyhanko.sign.validation.RevocationInfoValidationType(value)

	Bases: enum.Enum

Indicates a validation profile to use when validating revocation info.

	
ADOBE_STYLE = 'adobe'

	Retrieve validation information from the CMS object, using Adobe’s
revocation info archival attribute.

	
PADES_LT = 'pades'

	Retrieve validation information from the DSS, and require the signature’s
embedded timestamp to still be valid.

	
PADES_LTA = 'pades-lta'

	Retrieve validation information from the DSS, but read & validate the chain
of document timestamps leading up to the signature to establish the
integrity of the validation information at the time of signing.

	
classmethod as_tuple()

	

	
class pyhanko.sign.validation.VRI(certs: set = <factory>, ocsps: set = <factory>, crls: set = <factory>)

	Bases: object

VRI dictionary as defined in PAdES / ISO 32000-2.
These dictionaries collect data that may be relevant for the validation of
a specific signature.

Note

The data are stored as PDF indirect objects, not asn1crypto values.
In particular, values are tied to a specific PDF handler.

	
certs: set

	Relevant certificates.

	
ocsps: set

	Relevant OCSP responses.

	
crls: set

	Relevant CRLs.

	
as_pdf_object() → pyhanko.pdf_utils.generic.DictionaryObject

	
	Returns

	A PDF dictionary representing this VRI entry.

	
class pyhanko.sign.validation.DocumentSecurityStore(writer: pyhanko.pdf_utils.writer.BasePdfFileWriter, certs=None, ocsps=None, crls=None, vri_entries=None, backing_pdf_object=None)

	Bases: object

Representation of a DSS in Python.

	
property modified

	

	
static sig_content_identifier(contents) → pyhanko.pdf_utils.generic.NameObject

	Hash the contents of a signature object to get the corresponding VRI
identifier.

This is internal API.

	Parameters

	contents – Signature contents.

	Returns

	A name object to put into the DSS.

	
register_vri(identifier, *, certs=(), ocsps=(), crls=())

	Register validation information for a set of signing certificates
associated with a particular signature.

	Parameters

	
	identifier – Identifier of the signature object (see sig_content_identifier).
If None, only embed the data into the DSS without associating
it with any VRI.

	certs – Certificates to add.

	ocsps – OCSP responses to add.

	crls – CRLs to add.

	
as_pdf_object()

	Convert the DocumentSecurityStore object to a python
dictionary. This method also handles DSS updates.

	Returns

	A PDF object representing this DSS.

	
as_validation_context(validation_context_kwargs, include_revinfo=True) → pyhanko_certvalidator.context.ValidationContext

	Construct a validation context from the data in this DSS.

	Parameters

	
	validation_context_kwargs – Extra kwargs to pass to the __init__ function.

	include_revinfo – If False, revocation info is skipped.

	Returns

	A validation context preloaded with information from this DSS.

	
classmethod read_dss(handler: pyhanko.pdf_utils.rw_common.PdfHandler) → pyhanko.sign.validation.DocumentSecurityStore

	Read a DSS record from a file and add the data to a validation context.

	Parameters

	handler – PDF handler from which to read the DSS.

	Returns

	A DocumentSecurityStore object describing the current state of the
DSS.

	
classmethod supply_dss_in_writer(pdf_out: pyhanko.pdf_utils.writer.BasePdfFileWriter, sig_contents, *, certs=None, ocsps=None, crls=None, paths=None, validation_context=None, embed_roots: bool = True) → pyhanko.sign.validation.DocumentSecurityStore

	Add or update a DSS, and optionally associate the new information with a
VRI entry tied to a signature object.

You can either specify the CMS objects to include directly, or
pass them in as output from pyhanko_certvalidator.

	Parameters

	
	pdf_out – PDF writer to write to.

	sig_contents – Contents of the new signature (used to compute the VRI hash), as
as a hexadecimal string, including any padding.
If None, the information will not be added to any VRI
dictionary.

	certs – Certificates to include in the VRI entry.

	ocsps – OCSP responses to include in the VRI entry.

	crls – CRLs to include in the VRI entry.

	paths – Validation paths that have been established, and need to be added
to the DSS.

	validation_context – Validation context from which to draw OCSP responses and CRLs.

	embed_roots –
New in version 0.9.0.

Option that controls whether the root certificate of each validation
path should be embedded into the DSS. The default is True.

Note

Trust roots are configured by the validator, so embedding them
typically does nothing in a typical validation process.
Therefore they can be safely omitted in most cases.
Nonetheless, embedding the roots can be useful for documentation
purposes.

Warning

This only applies to paths, not the certs parameter.

	Returns

	a DocumentSecurityStore object containing both the new
and existing contents of the DSS (if any).

	
classmethod add_dss(output_stream, sig_contents, *, certs=None, ocsps=None, crls=None, paths=None, validation_context=None, force_write: bool = False, embed_roots: bool = True)

	Wrapper around supply_dss_in_writer().

The result is applied to the output stream as an incremental update.

	Parameters

	
	output_stream – Output stream to write to.

	sig_contents – Contents of the new signature (used to compute the VRI hash), as
as a hexadecimal string, including any padding.
If None, the information will not be added to any VRI
dictionary.

	certs – Certificates to include in the VRI entry.

	ocsps – OCSP responses to include in the VRI entry.

	crls – CRLs to include in the VRI entry.

	paths – Validation paths that have been established, and need to be added
to the DSS.

	force_write – Force a write even if the DSS doesn’t have any new content.

	validation_context – Validation context from which to draw OCSP responses and CRLs.

	embed_roots –
New in version 0.9.0.

Option that controls whether the root certificate of each validation
path should be embedded into the DSS. The default is True.

Note

Trust roots are configured by the validator, so embedding them
typically does nothing in a typical validation process.
Therefore they can be safely omitted in most cases.
Nonetheless, embedding the roots can be useful for documentation
purposes.

Warning

This only applies to paths, not the certs parameter.

	
pyhanko.sign.validation.apply_adobe_revocation_info(signer_info: asn1crypto.cms.SignerInfo, validation_context_kwargs=None) → pyhanko_certvalidator.context.ValidationContext

	Read Adobe-style revocation information from a CMS object, and load it
into a validation context.

	Parameters

	
	signer_info – Signer info CMS object.

	validation_context_kwargs – Extra kwargs to pass to the __init__ function.

	Returns

	A validation context preloaded with the relevant revocation information.

	
pyhanko.sign.validation.get_timestamp_chain(reader: pyhanko.pdf_utils.reader.PdfFileReader) → Iterator[pyhanko.sign.validation.EmbeddedPdfSignature]

	Get the document timestamp chain of the associated reader, ordered
from new to old.

	Parameters

	reader – A PdfFileReader.

	Returns

	An iterable of EmbeddedPdfSignature objects representing
document timestamps.

	
pyhanko.sign.validation.read_certification_data(reader: pyhanko.pdf_utils.reader.PdfFileReader) → Optional[pyhanko.sign.validation.DocMDPInfo]

	Read the certification information for a PDF document, if present.

	Parameters

	reader – Reader representing the input document.

	Returns

	A DocMDPInfo object containing the relevant data, or None.

	
pyhanko.sign.validation.validate_pdf_ltv_signature(embedded_sig: pyhanko.sign.validation.EmbeddedPdfSignature, validation_type: pyhanko.sign.validation.RevocationInfoValidationType, validation_context_kwargs=None, bootstrap_validation_context=None, force_revinfo=False, diff_policy: Optional[pyhanko.sign.diff_analysis.DiffPolicy] = None, key_usage_settings: Optional[pyhanko.sign.general.KeyUsageConstraints] = None, skip_diff: bool = False) → pyhanko.sign.validation.PdfSignatureStatus

	
Changed in version 0.9.0: Wrapper around async_validate_pdf_ltv_signature().

Validate a PDF LTV signature according to a particular profile.

	Parameters

	
	embedded_sig – Embedded signature to evaluate.

	validation_type – Validation profile to use.

	validation_context_kwargs – Keyword args to instantiate
pyhanko_certvalidator.ValidationContext objects needed over
the course of the validation.

	bootstrap_validation_context – Validation context used to validate the current timestamp.

	force_revinfo – Require all certificates encountered to have some form of live
revocation checking provisions.

	diff_policy – Policy to evaluate potential incremental updates that were appended
to the signed revision of the document.
Defaults to
DEFAULT_DIFF_POLICY.

	key_usage_settings – A KeyUsageConstraints object specifying which key usages
must or must not be present in the signer’s certificate.

	skip_diff – If True, skip the difference analysis step entirely.

	Returns

	The status of the signature.

	
async pyhanko.sign.validation.async_validate_pdf_ltv_signature(embedded_sig: pyhanko.sign.validation.EmbeddedPdfSignature, validation_type: pyhanko.sign.validation.RevocationInfoValidationType, validation_context_kwargs=None, bootstrap_validation_context=None, force_revinfo=False, diff_policy: Optional[pyhanko.sign.diff_analysis.DiffPolicy] = None, key_usage_settings: Optional[pyhanko.sign.general.KeyUsageConstraints] = None, skip_diff: bool = False) → pyhanko.sign.validation.PdfSignatureStatus

	
New in version 0.9.0.

Validate a PDF LTV signature according to a particular profile.

	Parameters

	
	embedded_sig – Embedded signature to evaluate.

	validation_type – Validation profile to use.

	validation_context_kwargs – Keyword args to instantiate
pyhanko_certvalidator.ValidationContext objects needed over
the course of the validation.

	bootstrap_validation_context – Validation context used to validate the current timestamp.

	force_revinfo – Require all certificates encountered to have some form of live
revocation checking provisions.

	diff_policy – Policy to evaluate potential incremental updates that were appended
to the signed revision of the document.
Defaults to
DEFAULT_DIFF_POLICY.

	key_usage_settings – A KeyUsageConstraints object specifying which key usages
must or must not be present in the signer’s certificate.

	skip_diff – If True, skip the difference analysis step entirely.

	Returns

	The status of the signature.

	
pyhanko.sign.validation.validate_pdf_signature(embedded_sig: pyhanko.sign.validation.EmbeddedPdfSignature, signer_validation_context: Optional[pyhanko_certvalidator.context.ValidationContext] = None, ts_validation_context: Optional[pyhanko_certvalidator.context.ValidationContext] = None, diff_policy: Optional[pyhanko.sign.diff_analysis.DiffPolicy] = None, key_usage_settings: Optional[pyhanko.sign.general.KeyUsageConstraints] = None, skip_diff: bool = False) → pyhanko.sign.validation.PdfSignatureStatus

	Validate a PDF signature.

	Parameters

	
	embedded_sig – Embedded signature to evaluate.

	signer_validation_context – Validation context to use to validate the signature’s chain of trust.

	ts_validation_context – Validation context to use to validate the timestamp’s chain of trust
(defaults to signer_validation_context).

	diff_policy – Policy to evaluate potential incremental updates that were appended
to the signed revision of the document.
Defaults to
DEFAULT_DIFF_POLICY.

	key_usage_settings – A KeyUsageConstraints object specifying which key usages
must or must not be present in the signer’s certificate.

	skip_diff – If True, skip the difference analysis step entirely.

	Returns

	The status of the PDF signature in question.

	
async pyhanko.sign.validation.async_validate_pdf_signature(embedded_sig: pyhanko.sign.validation.EmbeddedPdfSignature, signer_validation_context: Optional[pyhanko_certvalidator.context.ValidationContext] = None, ts_validation_context: Optional[pyhanko_certvalidator.context.ValidationContext] = None, diff_policy: Optional[pyhanko.sign.diff_analysis.DiffPolicy] = None, key_usage_settings: Optional[pyhanko.sign.general.KeyUsageConstraints] = None, skip_diff: bool = False) → pyhanko.sign.validation.PdfSignatureStatus

	
New in version 0.9.0.

Validate a PDF signature.

	Parameters

	
	embedded_sig – Embedded signature to evaluate.

	signer_validation_context – Validation context to use to validate the signature’s chain of trust.

	ts_validation_context – Validation context to use to validate the timestamp’s chain of trust
(defaults to signer_validation_context).

	diff_policy – Policy to evaluate potential incremental updates that were appended
to the signed revision of the document.
Defaults to
DEFAULT_DIFF_POLICY.

	key_usage_settings – A KeyUsageConstraints object specifying which key usages
must or must not be present in the signer’s certificate.

	skip_diff – If True, skip the difference analysis step entirely.

	Returns

	The status of the PDF signature in question.

	
pyhanko.sign.validation.validate_cms_signature(signed_data: asn1crypto.cms.SignedData, status_cls: Type[pyhanko.sign.validation.StatusType] = <class 'pyhanko.sign.general.SignatureStatus'>, raw_digest: Optional[bytes] = None, validation_context: Optional[pyhanko_certvalidator.context.ValidationContext] = None, status_kwargs: Optional[dict] = None, key_usage_settings: Optional[pyhanko.sign.general.KeyUsageConstraints] = None, encap_data_invalid=False)

	
Deprecated since version 0.9.0: Use async_validate_cms_signature() instead.

Changed in version 0.7.0: Now handles both detached and enveloping signatures.

Validate a CMS signature (i.e. a SignedData object).

	Parameters

	
	signed_data – The asn1crypto.cms.SignedData object to validate.

	status_cls – Status class to use for the validation result.

	raw_digest – Raw digest, computed from context.

	validation_context – Validation context to validate the signer’s certificate.

	status_kwargs – Other keyword arguments to pass to the status_class when reporting
validation results.

	key_usage_settings – A KeyUsageConstraints object specifying which key usages
must or must not be present in the signer’s certificate.

	encap_data_invalid – If True, the encapsulated data inside the CMS is invalid,
but the remaining validation logic still has to be run (e.g. a
timestamp token, which requires validation of the embedded message
imprint).

This option is considered internal API, the semantics of which may
change without notice in the future.

	Returns

	A SignatureStatus object (or an instance of a proper subclass)

	
async pyhanko.sign.validation.async_validate_cms_signature(signed_data: asn1crypto.cms.SignedData, status_cls: Type[pyhanko.sign.validation.StatusType] = <class 'pyhanko.sign.general.SignatureStatus'>, raw_digest: Optional[bytes] = None, validation_context: Optional[pyhanko_certvalidator.context.ValidationContext] = None, status_kwargs: Optional[dict] = None, key_usage_settings: Optional[pyhanko.sign.general.KeyUsageConstraints] = None, encap_data_invalid=False)

	Validate a CMS signature (i.e. a SignedData object).

	Parameters

	
	signed_data – The asn1crypto.cms.SignedData object to validate.

	status_cls – Status class to use for the validation result.

	raw_digest – Raw digest, computed from context.

	validation_context – Validation context to validate the signer’s certificate.

	status_kwargs – Other keyword arguments to pass to the status_class when reporting
validation results.

	key_usage_settings – A KeyUsageConstraints object specifying which key usages
must or must not be present in the signer’s certificate.

	encap_data_invalid – If True, the encapsulated data inside the CMS is invalid,
but the remaining validation logic still has to be run (e.g. a
timestamp token, which requires validation of the embedded message
imprint).

This option is considered internal API, the semantics of which may
change without notice in the future.

	Returns

	A SignatureStatus object (or an instance of a proper subclass)

	
pyhanko.sign.validation.validate_detached_cms(input_data: Union[bytes, IO, asn1crypto.cms.ContentInfo, asn1crypto.cms.EncapsulatedContentInfo], signed_data: asn1crypto.cms.SignedData, signer_validation_context: Optional[pyhanko_certvalidator.context.ValidationContext] = None, ts_validation_context: Optional[pyhanko_certvalidator.context.ValidationContext] = None, key_usage_settings: Optional[pyhanko.sign.general.KeyUsageConstraints] = None, chunk_size=4096, max_read=None) → pyhanko.sign.validation.StandardCMSSignatureStatus

	
Deprecated since version 0.9.0: Use async_validate_detached_cms() instead.

Validate a detached CMS signature.

	Parameters

	
	input_data – The input data to sign. This can be either a bytes object,
a file-like object or a cms.ContentInfo /
cms.EncapsulatedContentInfo object.

If a CMS content info object is passed in, the content field
will be extracted.

	signed_data – The cms.SignedData object containing the signature to verify.

	signer_validation_context – Validation context to use to verify the signer certificate’s trust.

	ts_validation_context – Validation context to use to verify the TSA certificate’s trust, if
a timestamp token is present.
By default, the same validation context as that of the signer is used.

	key_usage_settings – Key usage parameters for the signer.

	chunk_size – Chunk size to use when consuming input data.

	max_read – Maximal number of bytes to read from the input stream.

	Returns

	A description of the signature’s status.

	
async pyhanko.sign.validation.async_validate_detached_cms(input_data: Union[bytes, IO, asn1crypto.cms.ContentInfo, asn1crypto.cms.EncapsulatedContentInfo], signed_data: asn1crypto.cms.SignedData, signer_validation_context: Optional[pyhanko_certvalidator.context.ValidationContext] = None, ts_validation_context: Optional[pyhanko_certvalidator.context.ValidationContext] = None, key_usage_settings: Optional[pyhanko.sign.general.KeyUsageConstraints] = None, chunk_size=4096, max_read=None) → pyhanko.sign.validation.StandardCMSSignatureStatus

	Validate a detached CMS signature.

	Parameters

	
	input_data – The input data to sign. This can be either a bytes object,
a file-like object or a cms.ContentInfo /
cms.EncapsulatedContentInfo object.

If a CMS content info object is passed in, the content field
will be extracted.

	signed_data – The cms.SignedData object containing the signature to verify.

	signer_validation_context – Validation context to use to verify the signer certificate’s trust.

	ts_validation_context – Validation context to use to verify the TSA certificate’s trust, if
a timestamp token is present.
By default, the same validation context as that of the signer is used.

	key_usage_settings – Key usage parameters for the signer.

	chunk_size – Chunk size to use when consuming input data.

	max_read – Maximal number of bytes to read from the input stream.

	Returns

	A description of the signature’s status.

	
pyhanko.sign.validation.validate_pdf_timestamp(embedded_sig: pyhanko.sign.validation.EmbeddedPdfSignature, validation_context: Optional[pyhanko_certvalidator.context.ValidationContext] = None, diff_policy: Optional[pyhanko.sign.diff_analysis.DiffPolicy] = None, skip_diff: bool = False) → pyhanko.sign.validation.DocumentTimestampStatus

	
Changed in version 0.9.0: Wrapper around async_validate_pdf_timestamp().

Validate a PDF document timestamp.

	Parameters

	
	embedded_sig – Embedded signature to evaluate.

	validation_context – Validation context to use to validate the timestamp’s chain of trust.

	diff_policy – Policy to evaluate potential incremental updates that were appended
to the signed revision of the document.
Defaults to
DEFAULT_DIFF_POLICY.

	skip_diff – If True, skip the difference analysis step entirely.

	Returns

	The status of the PDF timestamp in question.

	
async pyhanko.sign.validation.async_validate_pdf_timestamp(embedded_sig: pyhanko.sign.validation.EmbeddedPdfSignature, validation_context: Optional[pyhanko_certvalidator.context.ValidationContext] = None, diff_policy: Optional[pyhanko.sign.diff_analysis.DiffPolicy] = None, skip_diff: bool = False) → pyhanko.sign.validation.DocumentTimestampStatus

	
New in version 0.9.0.

Validate a PDF document timestamp.

	Parameters

	
	embedded_sig – Embedded signature to evaluate.

	validation_context – Validation context to use to validate the timestamp’s chain of trust.

	diff_policy – Policy to evaluate potential incremental updates that were appended
to the signed revision of the document.
Defaults to
DEFAULT_DIFF_POLICY.

	skip_diff – If True, skip the difference analysis step entirely.

	Returns

	The status of the PDF timestamp in question.

	
async pyhanko.sign.validation.collect_validation_info(embedded_sig: pyhanko.sign.validation.EmbeddedPdfSignature, validation_context: pyhanko_certvalidator.context.ValidationContext, skip_timestamp=False)

	Query revocation info for a PDF signature using a validation context,
and store the results in a validation context.

This works by validating the signer’s certificate against the provided
validation context, which causes revocation info to be cached for
later retrieval.

Warning

This function does not actually validate the signature, but merely
checks the signer certificate’s chain of trust.

	Parameters

	
	embedded_sig – Embedded PDF signature to operate on.

	validation_context – Validation context to use.

	skip_timestamp – If the signature has a time stamp token attached to it, also collect
revocation information for the timestamp.

	Returns

	A list of validation paths.

	
pyhanko.sign.validation.add_validation_info(embedded_sig: pyhanko.sign.validation.EmbeddedPdfSignature, validation_context: pyhanko_certvalidator.context.ValidationContext, skip_timestamp=False, add_vri_entry=True, in_place=False, output=None, force_write=False, chunk_size=4096)

	
Changed in version 0.9.0: Wrapper around async_add_validation_info()

Add validation info (CRLs, OCSP responses, extra certificates) for a
signature to the DSS of a document in an incremental update.

	Parameters

	
	embedded_sig – The signature for which the revocation information needs to be
collected.

	validation_context – The validation context to use.

	skip_timestamp – If True, do not attempt to validate the timestamp attached to
the signature, if one is present.

	add_vri_entry – Add a /VRI entry for this signature to the document security store.
Default is True.

	output – Write the output to the specified output stream.
If None, write to a new BytesIO object.
Default is None.

	in_place – Sign the original input stream in-place.
This parameter overrides output.

	chunk_size – Chunk size parameter to use when copying output to a new stream
(irrelevant if in_place is True).

	force_write – Force a new revision to be written, even if not necessary (i.e.
when all data in the validation context is already present in the DSS).

	Returns

	The (file-like) output object to which the result was written.

	
exception pyhanko.sign.validation.ValidationInfoReadingError

	Bases: ValueError

Error reading validation info.

	
exception pyhanko.sign.validation.SigSeedValueValidationError(failure_message)

	Bases: pyhanko.sign.general.SignatureValidationError

Error validating a signature’s seed value constraints.

pyhanko.config module

	
class pyhanko.config.StdLogOutput(value)

	Bases: enum.Enum

An enumeration.

	
STDERR = 1

	

	
STDOUT = 2

	

	
class pyhanko.config.LogConfig(level: Union[int, str], output: Union[pyhanko.config.StdLogOutput, str])

	Bases: object

	
level: Union[int, str]

	Logging level, should be one of the levels defined in the logging module.

	
output: Union[pyhanko.config.StdLogOutput, str]

	Name of the output file, or a standard one.

	
static parse_output_spec(spec) → Union[pyhanko.config.StdLogOutput, str]

	

	
class pyhanko.config.CLIConfig(validation_contexts: Dict[str, dict], stamp_styles: Dict[str, dict], default_validation_context: str, default_stamp_style: str, time_tolerance: datetime.timedelta, retroactive_revinfo: bool, log_config: Dict[Union[str, NoneType], pyhanko.config.LogConfig], pemder_setups: Dict[str, dict], pkcs12_setups: Dict[str, dict], pkcs11_setups: Dict[str, dict], beid_module_path: Union[str, NoneType])

	Bases: object

	
validation_contexts: Dict[str, dict]

	

	
stamp_styles: Dict[str, dict]

	

	
default_validation_context: str

	

	
default_stamp_style: str

	

	
time_tolerance: datetime.timedelta

	

	
retroactive_revinfo: bool

	

	
log_config: Dict[Optional[str], pyhanko.config.LogConfig]

	

	
pemder_setups: Dict[str, dict]

	

	
pkcs12_setups: Dict[str, dict]

	

	
pkcs11_setups: Dict[str, dict]

	

	
beid_module_path: Optional[str]

	

	
get_validation_context(name=None, as_dict=False)

	

	
get_signer_key_usages(name=None) → pyhanko.sign.general.KeyUsageConstraints

	

	
get_stamp_style(name=None) → pyhanko.stamp.TextStampStyle

	

	
get_pkcs11_config(name)

	

	
get_pkcs12_config(name)

	

	
get_pemder_config(name)

	

	
pyhanko.config.init_validation_context_kwargs(*, trust, trust_replace, other_certs, retroactive_revinfo=False, time_tolerance=None)

	

	
pyhanko.config.parse_trust_config(trust_config, time_tolerance, retroactive_revinfo) → dict

	

	
pyhanko.config.parse_logging_config(log_config_spec) → Dict[Optional[str], pyhanko.config.LogConfig]

	

	
class pyhanko.config.PKCS12SignatureConfig(pfx_file: str, other_certs: Optional[List[asn1crypto.x509.Certificate]] = None, pfx_passphrase: Optional[bytes] = None, prompt_passphrase: bool = True, prefer_pss: bool = False)

	Bases: pyhanko.pdf_utils.config_utils.ConfigurableMixin

Configuration for a signature using key material on disk, contained
in a PKCS#12 bundle.

	
pfx_file: str

	Path to the PKCS#12 file.

	
other_certs: List[asn1crypto.x509.Certificate] = None

	Other relevant certificates.

	
pfx_passphrase: bytes = None

	PKCS#12 passphrase (if relevant).

	
prompt_passphrase: bool = True

	Prompt for the PKCS#12 passphrase. Default is True.

Note

If key_passphrase is not None, this setting has no effect.

	
prefer_pss: bool = False

	Prefer PSS to PKCS#1 v1.5 padding when creating RSA signatures.

	
classmethod process_entries(config_dict)

	Hook method that can modify the configuration dictionary
to overwrite or tweak some of their values (e.g. to convert string
parameters into more complex Python objects)

Subclasses that override this method should call
super().process_entries(), and leave keys that they do not
recognise untouched.

	Parameters

	config_dict – A dictionary containing configuration values.

	Raises

	ConfigurationError – when there is a problem processing a relevant entry.

	
instantiate(provided_pfx_passphrase: Optional[bytes] = None) → pyhanko.sign.signers.pdf_cms.SimpleSigner

	

	
class pyhanko.config.PemDerSignatureConfig(key_file: str, cert_file: str, other_certs: Optional[List[asn1crypto.x509.Certificate]] = None, key_passphrase: Optional[bytes] = None, prompt_passphrase: bool = True, prefer_pss: bool = False)

	Bases: pyhanko.pdf_utils.config_utils.ConfigurableMixin

Configuration for a signature using PEM or DER-encoded key material on disk.

	
key_file: str

	Signer’s private key.

	
cert_file: str

	Signer’s certificate.

	
other_certs: List[asn1crypto.x509.Certificate] = None

	Other relevant certificates.

	
key_passphrase: bytes = None

	Signer’s key passphrase (if relevant).

	
prompt_passphrase: bool = True

	Prompt for the key passphrase. Default is True.

Note

If key_passphrase is not None, this setting has no effect.

	
prefer_pss: bool = False

	Prefer PSS to PKCS#1 v1.5 padding when creating RSA signatures.

	
classmethod process_entries(config_dict)

	Hook method that can modify the configuration dictionary
to overwrite or tweak some of their values (e.g. to convert string
parameters into more complex Python objects)

Subclasses that override this method should call
super().process_entries(), and leave keys that they do not
recognise untouched.

	Parameters

	config_dict – A dictionary containing configuration values.

	Raises

	ConfigurationError – when there is a problem processing a relevant entry.

	
instantiate(provided_key_passphrase: Optional[bytes] = None) → pyhanko.sign.signers.pdf_cms.SimpleSigner

	

	
class pyhanko.config.PKCS11SignatureConfig(module_path: str, cert_label: Optional[str] = None, cert_id: Optional[bytes] = None, signing_certificate: Optional[asn1crypto.x509.Certificate] = None, token_label: Optional[str] = None, other_certs: Optional[List[asn1crypto.x509.Certificate]] = None, key_label: Optional[str] = None, key_id: Optional[bytes] = None, slot_no: Optional[int] = None, user_pin: Optional[str] = None, prompt_pin: bool = True, other_certs_to_pull: Optional[Iterable[str]] = (), bulk_fetch: bool = True, prefer_pss: bool = False, raw_mechanism: bool = False)

	Bases: pyhanko.pdf_utils.config_utils.ConfigurableMixin

Configuration for a PKCS#11 signature.

This class is used to load PKCS#11 setup information from YAML
configuration.

	
module_path: str

	Path to the PKCS#11 module shared object.

	
cert_label: Optional[str] = None

	PKCS#11 label of the signer’s certificate.

	
cert_id: Optional[bytes] = None

	PKCS#11 ID of the signer’s certificate.

	
signing_certificate: Optional[asn1crypto.x509.Certificate] = None

	The signer’s certificate. If present, cert_id and
cert_label will not be used to obtain the signer’s certificate
from the PKCS#11 token.

Note

This can be useful in case the signer’s certificate is not available on
the token, or if you would like to present a different certificate than
the one provided on the token.

	
token_label: Optional[str] = None

	PKCS#11 token name

	
other_certs: List[asn1crypto.x509.Certificate] = None

	Other relevant certificates.

	
key_label: Optional[str] = None

	PKCS#11 label of the signer’s private key. Defaults to cert_label
if the latter is specified and key_id is not.

	
key_id: Optional[bytes] = None

	PKCS#11 key ID.

	
slot_no: Optional[int] = None

	Slot number of the PKCS#11 slot to use.

	
user_pin: Optional[str] = None

	The user’s PIN. If unspecified, the user will be prompted for a PIN
if prompt_pin is True.

Warning

Some PKCS#11 tokens do not allow the PIN code to be communicated in
this way, but manage their own authentication instead (the Belgian eID
middleware is one such example).
For such tokens, leave this setting set to None and additionally
set prompt_pin to False.

	
prompt_pin: bool = True

	Prompt for the user’s PIN. Default is True.

Note

If user_pin is not None, this setting has no effect.

	
other_certs_to_pull: Optional[Iterable[str]] = ()

	List labels of other certificates to pull from the PKCS#11 device.
Defaults to the empty tuple. If None, pull all certificates.

	
bulk_fetch: bool = True

	Boolean indicating the fetching strategy.
If True, fetch all certs and filter the unneeded ones.
If False, fetch the requested certs one by one.
Default value is True, unless other_certs_to_pull has one or
fewer elements, in which case it is always treated as False.

	
prefer_pss: bool = False

	Prefer PSS to PKCS#1 v1.5 padding when creating RSA signatures.

	
raw_mechanism: bool = False

	Invoke the raw variant of the PKCS#11 signing operation.

Note

This is currently only supported for ECDSA signatures.

	
classmethod process_entries(config_dict)

	Hook method that can modify the configuration dictionary
to overwrite or tweak some of their values (e.g. to convert string
parameters into more complex Python objects)

Subclasses that override this method should call
super().process_entries(), and leave keys that they do not
recognise untouched.

	Parameters

	config_dict – A dictionary containing configuration values.

	Raises

	ConfigurationError – when there is a problem processing a relevant entry.

	
pyhanko.config.parse_cli_config(yaml_str) → pyhanko.config.CLIConfig

	

	
pyhanko.config.process_config_dict(config_dict: dict) → dict

	

pyhanko.stamp module

Utilities for stamping PDF files.

Here ‘stamping’ loosely refers to adding small overlays (QR codes, text boxes,
etc.) on top of already existing content in PDF files.

The code in this module is also used by the sign module to render
signature appearances.

	
class pyhanko.stamp.AnnotAppearances(normal: pyhanko.pdf_utils.generic.IndirectObject, rollover: Optional[pyhanko.pdf_utils.generic.IndirectObject] = None, down: Optional[pyhanko.pdf_utils.generic.IndirectObject] = None)

	Bases: object

Convenience abstraction to set up an appearance dictionary for a PDF
annotation.

Annotations can have three appearance streams, which can be roughly
characterised as follows:

	normal: the only required one, and the default one;

	rollover: used when mousing over the annotation;

	down: used when clicking the annotation.

These are given as references to form XObjects.

Note

This class only covers the simple case of an appearance dictionary
for an annotation with only one appearance state.

See § 12.5.5 in ISO 32000-1 for further information.

	
as_pdf_object() → pyhanko.pdf_utils.generic.DictionaryObject

	Convert the AnnotationAppearances instance to a PDF
dictionary.

	Returns

	A DictionaryObject that can be plugged
into the /AP entry of an annotation dictionary.

	
class pyhanko.stamp.BaseStampStyle(border_width: int = 3, background: Optional[pyhanko.pdf_utils.content.PdfContent] = None, background_layout: pyhanko.pdf_utils.layout.SimpleBoxLayoutRule = SimpleBoxLayoutRule(x_align=<AxisAlignment.ALIGN_MID: 2>, y_align=<AxisAlignment.ALIGN_MID: 2>, margins=Margins(left=5, right=5, top=5, bottom=5), inner_content_scaling=<InnerScaling.SHRINK_TO_FIT: 4>), background_opacity: float = 0.6)

	Bases: pyhanko.pdf_utils.config_utils.ConfigurableMixin

Base class for stamp styles.

	
border_width: int = 3

	Border width in user units (for the stamp, not the text box).

	
background: pyhanko.pdf_utils.content.PdfContent = None

	PdfContent instance that will be used to render
the stamp’s background.

	
background_layout: pyhanko.pdf_utils.layout.SimpleBoxLayoutRule = SimpleBoxLayoutRule(x_align=<AxisAlignment.ALIGN_MID: 2>, y_align=<AxisAlignment.ALIGN_MID: 2>, margins=Margins(left=5, right=5, top=5, bottom=5), inner_content_scaling=<InnerScaling.SHRINK_TO_FIT: 4>)

	Layout rule to render the background inside the stamp’s bounding box.
Only used if the background has a fully specified PdfContent.box.

Otherwise, the renderer will position the cursor at
(left_margin, bottom_margin) and render the content as-is.

	
background_opacity: float = 0.6

	Opacity value to render the background at. This should be a floating-point
number between 0 and 1.

	
classmethod process_entries(config_dict)

	This implementation of process_entries() processes the
background configuration value.
This can either be a path to an image file, in which case it will
be turned into an instance of PdfImage,
or the special value __stamp__, which is an alias for
STAMP_ART_CONTENT.

	
create_stamp(writer: pyhanko.pdf_utils.writer.BasePdfFileWriter, box: pyhanko.pdf_utils.layout.BoxConstraints, text_params: dict) → pyhanko.stamp.BaseStamp

	

	
class pyhanko.stamp.TextStampStyle(border_width: int = 3, background: Optional[pyhanko.pdf_utils.content.PdfContent] = None, background_layout: pyhanko.pdf_utils.layout.SimpleBoxLayoutRule = SimpleBoxLayoutRule(x_align=<AxisAlignment.ALIGN_MID: 2>, y_align=<AxisAlignment.ALIGN_MID: 2>, margins=Margins(left=5, right=5, top=5, bottom=5), inner_content_scaling=<InnerScaling.SHRINK_TO_FIT: 4>), background_opacity: float = 0.6, text_box_style: pyhanko.pdf_utils.text.TextBoxStyle = TextBoxStyle(font=<pyhanko.pdf_utils.font.basic.SimpleFontEngineFactory object>, font_size=10, leading=None, border_width=0, box_layout_rule=None, vertical_text=False), inner_content_layout: Optional[pyhanko.pdf_utils.layout.SimpleBoxLayoutRule] = None, stamp_text: str = '%(ts)s', timestamp_format: str = '%Y-%m-%d %H:%M:%S %Z')

	Bases: pyhanko.stamp.BaseStampStyle

Style for text-based stamps.

Roughly speaking, this stamp type renders some predefined (but parametrised)
piece of text inside a text box, and possibly applies a background to it.

	
text_box_style: pyhanko.pdf_utils.text.TextBoxStyle = TextBoxStyle(font=<pyhanko.pdf_utils.font.basic.SimpleFontEngineFactory object>, font_size=10, leading=None, border_width=0, box_layout_rule=None, vertical_text=False)

	The text box style for the internal text box used.

	
inner_content_layout: pyhanko.pdf_utils.layout.SimpleBoxLayoutRule = None

	Rule determining the position and alignment of the inner text box within
the stamp.

Warning

This only affects the position of the box, not the alignment of the
text within.

	
stamp_text: str = '%(ts)s'

	Text template for the stamp. The template can contain an interpolation
parameter ts that will be replaced by the stamping time.

Additional parameters may be added if necessary. Values for these must be
passed to the __init__() method of the
TextStamp class in the text_params argument.

	
timestamp_format: str = '%Y-%m-%d %H:%M:%S %Z'

	Datetime format used to render the timestamp.

	
create_stamp(writer: pyhanko.pdf_utils.writer.BasePdfFileWriter, box: pyhanko.pdf_utils.layout.BoxConstraints, text_params: dict) → pyhanko.stamp.TextStamp

	

	
class pyhanko.stamp.QRStampStyle(border_width: int = 3, background: Optional[pyhanko.pdf_utils.content.PdfContent] = None, background_layout: pyhanko.pdf_utils.layout.SimpleBoxLayoutRule = SimpleBoxLayoutRule(x_align=<AxisAlignment.ALIGN_MID: 2>, y_align=<AxisAlignment.ALIGN_MID: 2>, margins=Margins(left=5, right=5, top=5, bottom=5), inner_content_scaling=<InnerScaling.SHRINK_TO_FIT: 4>), background_opacity: float = 0.6, text_box_style: pyhanko.pdf_utils.text.TextBoxStyle = TextBoxStyle(font=<pyhanko.pdf_utils.font.basic.SimpleFontEngineFactory object>, font_size=10, leading=None, border_width=0, box_layout_rule=None, vertical_text=False), inner_content_layout: Optional[pyhanko.pdf_utils.layout.SimpleBoxLayoutRule] = None, stamp_text: str = 'Digital version available at\nthis url: %(url)s\nTimestamp: %(ts)s', timestamp_format: str = '%Y-%m-%d %H:%M:%S %Z', innsep: int = 3, qr_inner_size: Optional[int] = None, qr_position: pyhanko.stamp.QRPosition = QRPosition.LEFT_OF_TEXT)

	Bases: pyhanko.stamp.TextStampStyle

Style for text-based stamps together with a QR code.

This is exactly the same as a text stamp, except that the text box
is rendered with a QR code to the left of it.

	
innsep: int = 3

	Inner separation inside the stamp.

	
stamp_text: str = 'Digital version available at\nthis url: %(url)s\nTimestamp: %(ts)s'

	Text template for the stamp.
The description of TextStampStyle.stamp_text still applies, but
an additional default interpolation parameter url is available.
This parameter will be replaced with the URL that the QR code points to.

	
qr_inner_size: Optional[int] = None

	Size of the QR code in the inner layout. By default, this is in user units,
but if the stamp has a fully defined bounding box, it may be rescaled
depending on inner_content_layout.

If unspecified, a reasonable default will be used.

	
qr_position: pyhanko.stamp.QRPosition = SimpleBoxLayoutRule(x_align=<AxisAlignment.ALIGN_MIN: 1>, y_align=<AxisAlignment.ALIGN_MID: 2>, margins=Margins(left=0, right=0, top=0, bottom=0), inner_content_scaling=<InnerScaling.SHRINK_TO_FIT: 4>)

	Position of the QR code relative to the text box.

	
classmethod process_entries(config_dict)

	This implementation of process_entries() processes the
background configuration value.
This can either be a path to an image file, in which case it will
be turned into an instance of PdfImage,
or the special value __stamp__, which is an alias for
STAMP_ART_CONTENT.

	
create_stamp(writer: pyhanko.pdf_utils.writer.BasePdfFileWriter, box: pyhanko.pdf_utils.layout.BoxConstraints, text_params: dict) → pyhanko.stamp.QRStamp

	

	
class pyhanko.stamp.StaticStampStyle(border_width: int = 3, background: Optional[pyhanko.pdf_utils.content.PdfContent] = None, background_layout: pyhanko.pdf_utils.layout.SimpleBoxLayoutRule = SimpleBoxLayoutRule(x_align=<AxisAlignment.ALIGN_MID: 2>, y_align=<AxisAlignment.ALIGN_MID: 2>, margins=Margins(left=5, right=5, top=5, bottom=5), inner_content_scaling=<InnerScaling.SHRINK_TO_FIT: 4>), background_opacity: float = 1.0)

	Bases: pyhanko.stamp.BaseStampStyle

Stamp style that does not include any custom parts; it only renders
the background.

	
background_opacity: float = 1.0

	Opacity value to render the background at. This should be a floating-point
number between 0 and 1.

	
classmethod from_pdf_file(file_name, page_ix=0, **kwargs) → pyhanko.stamp.StaticStampStyle

	Create a StaticStampStyle from a page from an external PDF
document. This is a convenience wrapper around
ImportedPdfContent.

The remaining keyword arguments are passed to
StaticStampStyle’s init method.

	Parameters

	
	file_name – File name of the external PDF document.

	page_ix – Page index to import. The default is 0, i.e. the first page.

	
create_stamp(writer: pyhanko.pdf_utils.writer.BasePdfFileWriter, box: pyhanko.pdf_utils.layout.BoxConstraints, text_params: dict) → pyhanko.stamp.StaticContentStamp

	

	
class pyhanko.stamp.QRPosition(value)

	Bases: enum.Enum

QR positioning constants, with the corresponding default content layout
rule.

	
LEFT_OF_TEXT = SimpleBoxLayoutRule(x_align=<AxisAlignment.ALIGN_MIN: 1>, y_align=<AxisAlignment.ALIGN_MID: 2>, margins=Margins(left=0, right=0, top=0, bottom=0), inner_content_scaling=<InnerScaling.SHRINK_TO_FIT: 4>)

	

	
RIGHT_OF_TEXT = SimpleBoxLayoutRule(x_align=<AxisAlignment.ALIGN_MAX: 3>, y_align=<AxisAlignment.ALIGN_MID: 2>, margins=Margins(left=0, right=0, top=0, bottom=0), inner_content_scaling=<InnerScaling.SHRINK_TO_FIT: 4>)

	

	
ABOVE_TEXT = SimpleBoxLayoutRule(x_align=<AxisAlignment.ALIGN_MID: 2>, y_align=<AxisAlignment.ALIGN_MAX: 3>, margins=Margins(left=0, right=0, top=0, bottom=0), inner_content_scaling=<InnerScaling.SHRINK_TO_FIT: 4>)

	

	
BELOW_TEXT = SimpleBoxLayoutRule(x_align=<AxisAlignment.ALIGN_MID: 2>, y_align=<AxisAlignment.ALIGN_MIN: 1>, margins=Margins(left=0, right=0, top=0, bottom=0), inner_content_scaling=<InnerScaling.SHRINK_TO_FIT: 4>)

	

	
property horizontal_flow

	

	
classmethod from_config(config_str) → pyhanko.stamp.QRPosition

	Convert from a configuration string.

	Parameters

	config_str – A string: ‘left’, ‘right’, ‘top’, ‘bottom’

	Returns

	An QRPosition value.

	Raises

	ConfigurationError – on unexpected string inputs.

	
class pyhanko.stamp.BaseStamp(writer: pyhanko.pdf_utils.writer.BasePdfFileWriter, style, box: Optional[pyhanko.pdf_utils.layout.BoxConstraints] = None)

	Bases: pyhanko.pdf_utils.content.PdfContent

	
render()

	Compile the content to graphics operators.

	
register() → pyhanko.pdf_utils.generic.IndirectObject

	Register the stamp with the writer coupled to this instance, and
cache the returned reference.

This works by calling PdfContent.as_form_xobject().

	Returns

	An indirect reference to the form XObject containing the stamp.

	
apply(dest_page: int, x: int, y: int)

	Apply a stamp to a particular page in the PDF writer attached to this
BaseStamp instance.

	Parameters

	
	dest_page – Index of the page to which the stamp is to be applied
(starting at 0).

	x – Horizontal position of the stamp’s lower left corner on the page.

	y – Vertical position of the stamp’s lower left corner on the page.

	Returns

	A reference to the affected page object, together with
a (width, height) tuple describing the dimensions of the stamp.

	
as_appearances() → pyhanko.stamp.AnnotAppearances

	Turn this stamp into an appearance dictionary for an annotation
(or a form field widget), after rendering it.
Only the normal appearance will be defined.

	Returns

	An instance of AnnotAppearances.

	
class pyhanko.stamp.TextStamp(writer: pyhanko.pdf_utils.writer.BasePdfFileWriter, style, text_params=None, box: Optional[pyhanko.pdf_utils.layout.BoxConstraints] = None)

	Bases: pyhanko.stamp.BaseStamp

Class that renders a text stamp as specified by an instance
of TextStampStyle.

	
get_default_text_params()

	Compute values for the default string interpolation parameters
to be applied to the template string string specified in the he stamp
style. This method does not take into account the text_params
init parameter yet.

	Returns

	A dictionary containing the parameters and their values.

	
class pyhanko.stamp.QRStamp(writer: pyhanko.pdf_utils.writer.BasePdfFileWriter, url: str, style: pyhanko.stamp.QRStampStyle, text_params=None, box: Optional[pyhanko.pdf_utils.layout.BoxConstraints] = None)

	Bases: pyhanko.stamp.TextStamp

	
get_default_text_params()

	Compute values for the default string interpolation parameters
to be applied to the template string string specified in the he stamp
style. This method does not take into account the text_params
init parameter yet.

	Returns

	A dictionary containing the parameters and their values.

	
apply(dest_page, x, y)

	Apply a stamp to a particular page in the PDF writer attached to this
BaseStamp instance.

	Parameters

	
	dest_page – Index of the page to which the stamp is to be applied
(starting at 0).

	x – Horizontal position of the stamp’s lower left corner on the page.

	y – Vertical position of the stamp’s lower left corner on the page.

	Returns

	A reference to the affected page object, together with
a (width, height) tuple describing the dimensions of the stamp.

	
class pyhanko.stamp.StaticContentStamp(writer: pyhanko.pdf_utils.writer.BasePdfFileWriter, style: pyhanko.stamp.StaticStampStyle, box: pyhanko.pdf_utils.layout.BoxConstraints)

	Bases: pyhanko.stamp.BaseStamp

Class representing stamps with static content.

	
pyhanko.stamp.text_stamp_file(input_name: str, output_name: str, style: pyhanko.stamp.TextStampStyle, dest_page: int, x: int, y: int, text_params=None)

	Add a text stamp to a file.

	Parameters

	
	input_name – Path to the input file.

	output_name – Path to the output file.

	style – Text stamp style to use.

	dest_page – Index of the page to which the stamp is to be applied (starting at 0).

	x – Horizontal position of the stamp’s lower left corner on the page.

	y – Vertical position of the stamp’s lower left corner on the page.

	text_params – Additional parameters for text template interpolation.

	
pyhanko.stamp.qr_stamp_file(input_name: str, output_name: str, style: pyhanko.stamp.QRStampStyle, dest_page: int, x: int, y: int, url: str, text_params=None)

	Add a QR stamp to a file.

	Parameters

	
	input_name – Path to the input file.

	output_name – Path to the output file.

	style – QR stamp style to use.

	dest_page – Index of the page to which the stamp is to be applied (starting at 0).

	x – Horizontal position of the stamp’s lower left corner on the page.

	y – Vertical position of the stamp’s lower left corner on the page.

	url – URL for the QR code to point to.

	text_params – Additional parameters for text template interpolation.

	
pyhanko.stamp.STAMP_ART_CONTENT = <pyhanko.pdf_utils.content.RawContent object>

	Hardcoded stamp background that will render a stylised image of a stamp using
PDF graphics operators (see below).

[image: Standard stamp background]

Release history

0.10.0

Release date: 2021-11-28

Dependency changes

	Update pyhanko-certvalidator to 0.18.0

	Update aiohttp to 3.8.0 (optional dependency)

	Introduce python-pae==0.1.0 (tests)

New features and enhancements

Signing

	There’s a new Signer implementation
that allows pyHanko to be used with remote signing services that implement the
Cloud Signature Consortium API. Since auth handling differs from vendor to vendor, using
this feature requires still the caller to supply an authentication handler implementation;
see pyhanko.sign.signers.csc_signer for more information.
This feature is currently incubating.

Validation

	Add CLI option to skip diff analysis.

	Add CLI flag to disable strict syntax checks.

	Use chunked digests while validating.

	Improved difference analysis logging.

Miscellaneous

	Better handling of nonexistent objects: clearer errors in strict mode, better fallback behaviour
in nonstrict mode. This applies to both regular object dereferencing and xref history analysis.

	Added many new tests for various edge cases, mainly in validation code.

	Added Python :: 3 and Python :: 3.10 classifiers to distribution.

Bugs fixed

	Fix bug in output handler in timestamp updater that caused empty output in some configurations.

	Fix a config parsing error when no stamp styles are defined in the configuration file.

0.9.0

Release date: 2021-10-31

Dependency changes

	Update pyhanko-certvalidator to 0.17.3

	Update fontTools to 4.27.1

	Update certomancer to 0.6.0 (tests)

	Introduce pytest-aiohttp~=0.3.0 and aiohttp>=3.7.4 (tests)

API-breaking changes

This is a pretty big release, with a number of far-reaching changes in the
lower levels of the API that may cause breakage.
Much of pyHanko’s internal logic has been refactored to prefer asynchronous I/O
wherever possible (pyhanko-certvalidator was also refactored accordingly).
Some compromises were made to allow non-async-aware code to continue working as-is.

If you’d like a quick overview of how you can take advantage of the new
asynchronous library functions, take a look at
this section in the signing docs.

Here’s an overview of low-level functionality that changed:

	CMS signing logic was refactored and made asynchronous
(only relevant if you implemented your own custom signers)

	Time stamp client API was refactored and made asynchronous
(only relevant if you implemented your own time stamping clients)

	The interrupted signing workflow now involves more
asyncio as well.

	perform_presign_validation()
was made asynchronous.

	prepare_tbs_document(): the
bytes_reserved parameter is mandatory now.

	post_signature_processing()
was made asynchronous.

	collect_validation_info() was made asynchronous

Other functions have been deprecated in favour of asynchronous equivalents;
such deprecations are documented in the API reference.
The section on extending Signer
has also been updated.

Warning

Even though we have pretty good test coverage, due to the volume of changes,
some instability may ensue. Please do not hesitate to report bugs on
the issue tracker [https://github.com/MatthiasValvekens/pyHanko/issues]!

New features and enhancements

Signing

	Async-first signing API

	Relax token-label requirements in PKCS#11 config, allowing slot-no
as an alternative

	Allow selecting keys and certificates by ID in the PKCS#11 signer

	Allow the signer’s certificate to be sourced from a file in the PKCS#11 signer

	Allow BeID module path to be specified in config

	Tweak cert querying logic in PKCS#11 signer

	Add support for raw ECDSA to the PKCS#11 signer

	Basic DSA support (for completeness w.r.t. ISO 32000)

	Choose a default message digest more cleverly, based on the signing algorithm
and key size

	Fail loudly when trying to add a certifying signature to an already-signed
document using the high-level signing API

	Provide a flag to skip embedding root certificates

Validation

	Async-first validation API

	Use non-zero exit code on failed CLI validation

Miscellaneous

	Minor reorganisation of config.py functions

	Move PKCS#11 pin prompt logic to cli.py

	Improve font embedding efficiency (better stream management)

	Ensure idempotence of object stream flushing

	Improve PKCS#11 signer logging

	Make stream_xrefs=False by default in copy_into_new_writer()

	Removed a piece of fallback logic for md_algorithm that relied on
obsolete parts of the standard

	Fixed a number of issues related to unexpected cycles in PDF structures

Bugs fixed

	Treat ASCII form feed (\f) as PDF whitespace

	Fix a corner case with null incremental updates

	Fix some font compatibility issues (relax assumptions about the presence of
certain tables/entries)

	Be more tolerant when parsing name objects

	Correct some issues related to DSS update validation

	Correct pdf_date() output for negative
UTC offsets

0.8.0

Release date: 2021-08-23

Dependency changes

	Update pyhanko-certvalidator to 0.16.0.

API-breaking changes

Some fields and method names in the config API misspelled pkcs11` as ``pcks11. This has been
corrected in this release. This is unlikely to cause issues for library users (since the config API
is primarily used by the CLI code), but it’s a breaking change all the same.
If you do have code that relies on the config API, simply substituting s/pcks/pkcs/g should fix
things.

New features and enhancements

Signing

	Make certificate fetching in the PKCS#11 signer more flexible.

	Allow passing in the signer’s certificate from outside the token.

	Improve certificate registry initialisation.

	Give more control over updating the DSS in complex signature workflows.
By default, pyHanko now tries to update the DSS in the revision that adds a document timestamp,
after the signature (if applicable). In the absence of a timestamp, the old behaviour persists.

	Added a flag to (attempt to) produce CMS signature containers without any padding.

	Use signing-certificate-v2 instead of signing-certificate when producing signatures.

	Default to empty appearance streams for empty signature fields.

	Much like the pkcs11-setups config entry, there are now pemder-setups and
pkcs12-setups at the top level of pyHanko’s config file. You can use those to store arguments
for the pemder and pkcs12 subcommands of pyHanko’s addsig command, together with
passphrases for non-interactive use. See Named setups for on-disk key material.

Validation

	Enforce the end-entity cert constraint imposed by the signing-certificate or
signing-certificate-v2 attribute (if present).

	Improve issuer-serial matching logic.

	Improve CMS attribute lookup routines.

Encryption

	Add a flag to suppress creating “legacy compatibility” entries in the encryption dictionary
if they aren’t actually required or meaningful (for now, this only applies to /Length).

Miscellaneous

	Lazily load the version entry in the catalog.

	Minor internal I/O handling improvements.

	Allow constructing an IncrementalPdfFileWriter
from a PdfFileReader object.

	Expose common API to modify (most) trailer entries.

	Automatically recurse into all configurable fields when processing configuration data.

	Replace some certificate storage/indexing classes by references to their corresponding classes
in pyhanko-certvalidator.

Bugs fixed

	Add /NeedAppearances in the AcroForm dictionary to the whitelist for incremental update
analysis.

	Fixed several bugs related to difference analysis on encrypted files.

	Improve behaviour of dev extensions in difference analysis.

	Fix encoding issues with SignedDigestAlgorithm, in particular ensuring that the signature
mechanism encodes the relevant digest when using ECDSA.

	Process passfile contents more robustly in the CLI.

	Correct timestamp revinfo fetching (by ensuring that a dummy response is present)

0.7.0

Release date: 2021-07-25

Dependency changes

Warning

If you used OTF/TTF fonts with pyHanko prior to the 0.7.0 release, you’ll need HarfBuzz
going forward. Install pyHanko with the [opentype] optional dependency group to grab
everything you need.

	Update pyhanko-certvalidator to 0.15.3

	TrueType/OpenType support moved to new optional dependency group labelled [opentype].

	Dependency on fontTools moved from core dependencies to [opentype] group.

	We now use HarfBuzz (uharfbuzz==0.16.1) for text shaping with OTF/TTF fonts.

API-breaking changes

Warning

If you use any of pyHanko’s lower-level APIs, review this section carefully before updating.

Signing code refactor

This release includes a refactor of the pyhanko.sign.signers module into a
package with several submodules. The original API exposed by this
module is reexported in full at the package level, so existing code using pyHanko’s publicly
documented signing APIs should continue to work without modification.

There is one notable exception: as part of this refactor, the low-level
PdfCMSEmbedder protocol was tweaked slightly, to support
the new interrupted signing workflow (see below). The required changes to existing code should be
minimal; have a look at the relevant section in the library
documentation for a concrete description of the changes, and an updated usage example.

In addition, if you extended the PdfSigner
class, then you’ll have to adapt to the new internal signing workflow as well. This may be
tricky due to the fact that the separation of concerns between different steps in the signing
process is now enforced more strictly.
I’m not aware of use cases requiring PdfSigner
to be extended, but if you’re having trouble migrating your custom subclass to the new API
structure, feel free to open an issue [https://github.com/MatthiasValvekens/pyHanko/issues].
Merely having subclassed Signer shouldn’t require
you to change anything.

Fonts

The low-level font loading API has been refactored to make font resource handling less painful,
to provide smoother HarfBuzz integration and to expose more OpenType tweaks in the API.

To this end, the old pyhanko.pdf_utils.font module was turned into a package containing three
modules: api, basic and
opentype. The api
module contains the definitions for the general FontEngine and FontEngineFactory classes,
together with some other general plumbing logic.
The basic module provides a minimalist implementation with a
(non-embedded) monospaced font.
If you need TrueType/OpenType support, you’ll need the opentype
module together with the optional dependencies in the [opentype] dependency group (currently
fontTools and uharfbuzz, see above).
Take a look at the section for pyhanko.pdf_utils.font in
the API reference documentation for further details.

For the time being, there are no plans to support embedding Type1 fonts, or to offer support for
Type3 fonts at all.

Miscellaneous

	The content_stream parameter was removed from
import_page_as_xobject().
Content streams are now merged automatically, since treating a page content stream array
non-atomically is a bad idea.

	PdfSigner is no longer a subclass of
PdfTimeStamper.

New features and enhancements

Signing

	Interrupted signing workflow: segmented signing workflow that can be
interrupted partway through and resumed later (possibly in a different process or on a different
machine). Useful for dealing with signing processes that rely on user interaction and/or remote
signing services.

	Generic data signing support: construct CMS signedData objects for
arbitrary data (not necessarily for use in PDF signature fields).

	Experimental API for signing individual embedded files (nonstandard).

	PKCS#11 settings can now be set in the configuration file.

Validation

	Add support for validating CMS signedData structures against arbitrary payloads
(see also: Generic data signing)

	Streamline CMS timestamp validation.

	Support reporting on (CAdES) content timestamps in addition to signature timestamps.

	Allow signer certificates to be identified by the subjectKeyIdentifier extension.

Encryption

	Support granular crypt filters for embedded files

	Add convenient API to encrypt and wrap a PDF document as a binary blob. The resulting file
will open as usual in a viewer that supports PDF collections; a fallback page with alternative
instructions is shown otherwise.

Miscellaneous

	Complete overhaul of appearance generation & layout system. Most of these changes are internal,
except for some font loading mechanics (see above). All use of OpenType / TrueType fonts now
requires the [opentype] optional dependency group. New features:

	Use HarfBuzz for shaping (incl. complex scripts)

	Support TrueType fonts and OpenType fonts without a CFF table.

	Support vertical writing (among other OpenType features).

	Use ActualText marked content in addition to ToUnicode.

	Introduce simple box layout & alignment rules, and apply them uniformly across all layout
decisions where possible. See pyhanko.stamp and pyhanko.pdf_utils.layout for
API documentation.

	Refactored stamp style dataclass hierarchy. This should not affect existing code.

	Allow externally generated PDF content to be used as a stamp appearance.

	Utility API for embedding files into PDF documents.

	Added support for PDF developer extension declarations.

Bugs fixed

Signing

	Declare ESIC extension when producing a PAdES signature on a PDF 1.x file.

Validation

	Fix handling of orphaned objects in diff analysis.

	Tighten up tolerances for (visible) signature field creation.

	Fix typo in BaseFieldModificationRule

	Deal with some VRI-related corner cases in the DSS diffing logic.

Encryption

	Improve identity crypt filter behaviour when applied to text strings.

	Correct handling of non-default public-key crypt filters.

Miscellaneous

	Promote stream manipulation methods to base writer.

	Correct some edge cases w.r.t. PDF content import

	Use floats for MediaBox.

	Handle escapes in PDF name objects.

	Correct ToUnicode CMap formatting.

	Do not close over GSUB when computing font subsets.

	Fix output_version handling oversight.

	Misc. export list & type annotation corrections.

0.6.1

Release date: 2021-05-22

Dependency changes

	Update pyhanko-certvalidator to 0.15.2

	Replace constraint on certomancer and pyhanko-certvalidator by
soft minor version constraint (~=)

	Set version bound for freezegun

Bugs fixed

	Add /Q and /DA keys to the whitelist for incremental update analysis
on form fields.

0.6.0

Release date: 2021-05-15

Dependency changes

Warning

pyHanko’s 0.6.0 release includes quite a few changes to dependencies, some of which may
break compatibility with existing code. Review this section carefully before updating.

The pyhanko-certvalidator dependency was updated to 0.15.1.
This update adds support for name constraints, RSASSA-PSS and EdDSA for the purposes of X.509 path
validation, OCSP checking and CRL validation.

Warning

Since pyhanko-certvalidator has considerably diverged from “mainline” certvalidator,
the Python package containing its modules was also renamed from certvalidator to
pyhanko_certvalidator, to avoid potential namespace conflicts down the line. You should
update your code to reflect this change.

Concretely,

from certvalidator import ValidationContext

turns into

from pyhanko_certvalidator import ValidationContext

in the new release.

There were several changes to dependencies with native binary components:

	The Pillow dependency has been relaxed to >=7.2.0, and is now optional.
The same goes for python-barcode. Image & 1D barcode support now needs to be installed
explicitly using the [image-support] installation parameter.

	PKCS#11 support has also been made optional, and can be added using the [pkcs11]
installation parameter.

The test suite now makes use of Certomancer [https://github.com/MatthiasValvekens/certomancer].
This also removed the dependency on ocspbuilder.

New features and enhancements

Signing

	Make preferred hash inference more robust.

	Populate /AP when creating an empty visible signature field (necessary in PDF 2.0)

Validation

	Timestamp and DSS handling tweaks:

	Preserve OCSP resps / CRLs from validation kwargs when reading the DSS.

	Gracefully process revisions that don’t have a DSS.

	When creating document timestamps, the validation_context parameter is now optional.

	Enforce certvalidator’s weak_hash_algos when validating PDF signatures as well.
Previously, this setting only applied to certificate validation.
By default, MD5 and SHA-1 are considered weak (for digital signing purposes).

	Expose DocTimeStamp/Sig distinction in a more user-friendly manner.

	The sig_object_type property on EmbeddedPdfSignature
now returns the signature’s type as a PDF name object.

	PdfFileReader now has two extra convenience properties
named embedded_regular_signatures and embedded_timestamp_signatures, that return a
list of all regular signatures and document timestamps, respectively.

Encryption

	Refactor internal APIs in pyHanko’s security handler implementation to make them easier to
extend. Note that while anyone is free to register their own crypt filters for whatever purpose,
pyHanko’s security handler is still considered internal API, so behaviour is subject to change
between minor version upgrades (even after 1.0.0).

Miscellaneous

	Broaden the scope of --soft-revocation-check.

	Corrected a typo in the signature of validate_sig_integrity.

	Less opaque error message on missing PKCS#11 key handle.

	Ad-hoc hash selection now relies on pyca/cryptography rather than hashlib.

Bugs fixed

	Correct handling of DocMDP permissions in approval signatures.

	Refactor & correct handling of SigFlags when signing prepared form fields in unsigned files.

	Fixed issue with trailing whitespace and/or NUL bytes in array literals.

	Corrected the export lists of various modules.

0.5.1

Release date: 2021-03-24

Bugs fixed

	Fixed a packaging blunder that caused an import error on fresh installs.

0.5.0

Release date: 2021-03-22

Dependency changes

Update pyhanko-certvalidator dependency to 0.13.0.
Dependency on cryptography is now mandatory, and oscrypto has been marked optional.
This is because we now use the cryptography library for all signing and encryption operations,
but some cryptographic algorithms listed in the PDF standard are not available in cryptography,
so we rely on oscrypto for those. This is only relevant for the decryption of files encrypted
with a public-key security handler that uses DES, triple DES or RC2 to encrypt the key seed.

In the public API, we exclusively work with asn1crypto representations of ASN.1 objects, to
remain as backend-independent as possible.

Note: While oscrypto is listed as optional in pyHanko’s dependency list, it is still
required in practice, since pyhanko-certvalidator depends on it.

New features and enhancements

Encryption

	Enforce keyEncipherment key extension by default when using public-key encryption

	Show a warning when signing a document using public-key encryption through the CLI.
We currently don’t support using separate encryption credentials in the CLI, and using the same
key pair for decryption and signing is bad practice.

	Several minor CLI updates.

Signing

	Allow customisation of key usage requirements in signer & validator, also in the CLI.

	Actively preserve document timestamp chain in new PAdES-LTA signatures.

	Support setups where fields and annotations are separate (i.e. unmerged).

	Set the lock bit in the annotation flags by default.

	Tolerate signing fields that don’t have any annotation associated with them.

	Broader support for PAdES / CAdES signed attributes.

Validation

	Support validating PKCS #7 signatures that don’t use signedAttrs. Nowadays, those are rare in
the wild, but there’s at least one common commercial PDF library that outputs such signatures by
default (vendor name redacted to protect the guilty).

	
	Timestamp-related fixes:
	
	Improve signature vs. document timestamp handling in the validation CLI.

	Improve & test handling of malformed signature dictionaries in PDF files.

	Align document timestamp updating logic with validation logic.

	Correct key usage check for time stamp validation.

	Allow customisation of key usage requirements in signer & validator, also in the CLI.

	Allow LTA update function to be used to start the timestamp chain as well as continue it.

	Tolerate indirect references in signature reference dictionaries.

	Improve some potential ambiguities in the PAdES-LT and PAdES-LTA validation logic.

	
	Revocation info handling changes:
	
	Support “retroactive” mode for revocation info (i.e. treat revocation info as valid in the
past).

	Added functionality to append current revocation information to existing signatures.

	Related CLI updates.

Miscellaneous

	Some key material loading functions were cleaned up a little to make them easier to use.

	I/O tweaks: use chunked writes with a fixed buffer when copying data for an incremental update

	Warn when revocation info is embedded with an offline validation context.

	Improve SV validation reporting.

Bugs fixed

	Fix issue with /Certs not being properly dereferenced in the DSS (#4).

	Fix loss of precision on FloatObject serialisation (#5).

	Add missing dunders to BooleanObject.

	Do not use .dump() with force=True in validation.

	Corrected digest algorithm selection in timestamp validation.

	Correct handling of writes with empty user password.

	Do not automatically add xref streams to the object cache. This avoids a class of bugs with
some kinds of updates to files with broken xref streams.

	Due to a typo, the /Annots array of a page would not get updated correctly if it was an
indirect object. This has been corrected.

0.4.0

Release date: 2021-02-14

New features and enhancements

Encryption

	Expose permission flags outside security handler

	Make file encryption key straightforward to grab

Signing

	Mildly refactor PdfSignedData for non-signing uses

	
	Make DSS API more flexible
	
	Allow direct input of cert/ocsp/CRL objects as opposed to only certvalidator output

	Allow input to not be associated with any concrete VRI.

	
	Greatly improved PKCS#11 support
	
	Added support for RSASSA-PSS and ECDSA.

	Added tests for RSA functionality using SoftHSMv2.

	Added a command to the CLI for generic PKCS#11.

	Note: Tests don’t run in CI, and ECDSA is not included in the test suite yet (SoftHSMv2 doesn’t seem to expose all the necessary mechanisms).

	Factor out unsigned_attrs in signer, added a digest_algorithm parameter to signed_attrs.

	Allow signing with any BasePdfFileWriter (in particular, this allows creating signatures in the initial revision of a PDF file)

	Add CMSAlgorithmProtection attribute when possible
* Note: Not added to PAdES signatures for the time being.

	Improved support for deep fields in the form hierarchy (arguably orthogonal to the standard, but it doesn’t hurt to be flexible)

Validation

	
	Path handling improvements:
	
	Paths in the structure tree are also simplified.

	Paths can be resolved relative to objects in a file.

	
	Limited support for tagged PDF in the validator.
	
	Existing form fields can be filled in without tripping up the modification analysis module.

	Adding new form fields to the structure tree after signing is not allowed for the time being.

	
	Internal refactoring in CMS validation logic:
	
	Isolate cryptographic integrity validation from trust validation

	Rename externally_invalid API parameter to encap_data_invalid

	Validate CMSAlgorithmProtection when present.

	Improved support for deep fields in the form hierarchy (arguably orthogonal to the standard, but it doesn’t hurt to be flexible).

	Added

Miscellaneous

	Export copy_into_new_writer.

	Transparently handle non-seekable output streams in the signer.

	Remove unused __iadd__ implementation from VRI class.

	Clean up some corner cases in container_ref handling.

	Refactored SignatureFormField initialisation (internal API).

Bugs fixed

	Deal with some XRef processing edge cases.

	Make signed_revision on embedded signatures more robust.

	Fix an issue where DocTimeStamp additions would trigger /All-type field locks.

	Fix some issues with modification_level handling in validation status reports.

	Fix a few logging calls.

	Fix some minor issues with signing API input validation logic.

0.3.0

Release date: 2021-01-26

New features and enhancements

Encryption

	Reworked internal crypto API.

	Added support for PDF 2.0 encryption.

	Added support for public key encryption.

	Got rid of the homegrown RC4 class (not that it matters all to much, RC4 isn’t secure anyhow); all cryptographic operations in crypt.py are now delegated to oscrypto.

Signing

	Encrypted files can now be signed from the CLI.

	With the optional cryptography dependency, pyHanko can now create RSASSA-PSS signatures.

	Factored out a low-level PdfCMSEmbedder API to cater to remote signing needs.

Miscellaneous

	The document ID can now be accessed more conveniently.

	The version number is now single-sourced in version.py.

	Initialising the page tree in a PdfFileWriter is now optional.

	Added a convenience function for copying files.

Validation

	With the optional cryptography dependency, pyHanko can now validate RSASSA-PSS signatures.

	Difference analysis checker was upgraded with capabilities to handle multiply referenced objects in a more straightforward way. This required API changes, and it comes at a significant performance cost, but the added cost is probably justified. The changes to the API are limited to the diff_analysis module itself, and do not impact the general validation API whatsoever.

Bugs fixed

	Allow /DR and /Version updates in diff analysis

	Fix revision handling in trailer.flatten()

0.2.0

Release date: 2021-01-10

New features and enhancements

Signing

	Allow the caller to specify an output stream when signing.

Validation

	The incremental update analysis functionality has been heavily refactored
into something more rule-based and modular. The new difference analysis system
is also much more user-configurable, and a (sufficiently motivated) library
user could even plug in their own implementation.

	The new validation system treats /Metadata updates more correctly, and fixes
a number of other minor stability problems.

	Improved validation logging and status reporting mechanisms.

	Improved seed value constraint enforcement support: this includes added
support for /V, /MDP, /LockDocument, /KeyUsage
and (passive) support for /AppearanceFilter and /LegalAttestation.

CLI

	You can now specify negative page numbers on the command line to refer to the
pages of a document in reverse order.

General PDF API

	Added convenience functions to retrieve references from dictionaries and
arrays.

	Tweaked handling of object freeing operations; these now produce PDF null
objects instead of (Python) None.

Bugs fixed

	root_ref now consistently returns a Reference object

	Corrected wrong usage of @freeze_time in tests that caused some failures
due to certificate expiry issues.

	Fixed a gnarly caching bug in HistoricalResolver that sometimes leaked
state from later revisions into older ones.

	Prevented cross-reference stream updates from accidentally being saved with
the same settings as their predecessor in the file. This was a problem when
updating files generated by other PDF processing software.

0.1.0

Release date: 2020-12-30

Initial release.

Known issues

This page lists some TODOs and known limitations of pyHanko.

	Expand, polish and rigorously test the validation functionality.
The test suite covers a variety of scenarios already, but the difference
checker in particular is still far from perfect.

	LTV validation was implemented ad-hoc, and likely does not fully adhere to
the PAdES specification. This will require some effort to implement correctly.
In the meantime, you should treat the result as a pyHanko-specific
interpretation of the validity of the chain of trust based on the validation
info present in the file, not as a final judgment on whether the signature
complies with any particular PAdES profile.

	The most lenient document modification policy (i.e. addition of comments and
annotations) is not supported.
Comments added to a signed PDF will therefore be considered “unsafe” changes,
regardless of the policy set by the signer.

	There is currently no support for signing and stamping PDF/A and PDF/UA files.
That is to say, pyHanko treats these as any other PDF file and will produce
output that may not comply with the provisions of these standards.

	CLI support for signing files encrypted using PDF’s public-key encryption
functionality is limited.

Licenses

pyHanko License

MIT License

Copyright (c) 2020-2021 Matthias Valvekens

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Original PyPDF2 license

This package contains various elements based on code from the
PyPDF2 [https://github.com/mstamy2/PyPDF2] project,
of which we reproduce the license below.

This package contains various elements based on code from the PyPDF2 project, of which we reproduce the license below.

Copyright (c) 2006-2008, Mathieu Fenniak
Some contributions copyright (c) 2007, Ashish Kulkarni <kulkarni.ashish@gmail.com>
Some contributions copyright (c) 2014, Steve Witham <switham_github@mac-guyver.com>

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* The name of the author may not be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyhanko	

 	
 	
 pyhanko.config	

 	
 	
 pyhanko.pdf_utils.barcodes	

 	
 	
 pyhanko.pdf_utils.config_utils	

 	
 	
 pyhanko.pdf_utils.content	

 	
 	
 pyhanko.pdf_utils.crypt	

 	
 	
 pyhanko.pdf_utils.embed	

 	
 	
 pyhanko.pdf_utils.filters	

 	
 	
 pyhanko.pdf_utils.font.api	

 	
 	
 pyhanko.pdf_utils.font.basic	

 	
 	
 pyhanko.pdf_utils.font.opentype	

 	
 	
 pyhanko.pdf_utils.generic	

 	
 	
 pyhanko.pdf_utils.images	

 	
 	
 pyhanko.pdf_utils.incremental_writer	

 	
 	
 pyhanko.pdf_utils.layout	

 	
 	
 pyhanko.pdf_utils.misc	

 	
 	
 pyhanko.pdf_utils.reader	

 	
 	
 pyhanko.pdf_utils.rw_common	

 	
 	
 pyhanko.pdf_utils.text	

 	
 	
 pyhanko.pdf_utils.writer	

 	
 	
 pyhanko.sign.ades.api	

 	
 	
 pyhanko.sign.ades.asn1_util	

 	
 	
 pyhanko.sign.ades.cades_asn1	

 	
 	
 pyhanko.sign.beid	

 	
 	
 pyhanko.sign.diff_analysis	

 	
 	
 pyhanko.sign.fields	

 	
 	
 pyhanko.sign.general	

 	
 	
 pyhanko.sign.pkcs11	

 	
 	
 pyhanko.sign.signers.cms_embedder	

 	
 	
 pyhanko.sign.signers.constants	

 	
 	
 pyhanko.sign.signers.csc_signer	

 	
 	
 pyhanko.sign.signers.functions	

 	
 	
 pyhanko.sign.signers.pdf_byterange	

 	
 	
 pyhanko.sign.signers.pdf_cms	

 	
 	
 pyhanko.sign.signers.pdf_signer	

 	
 	
 pyhanko.sign.timestamps.aiohttp_client	

 	
 	
 pyhanko.sign.timestamps.api	

 	
 	
 pyhanko.sign.timestamps.common_utils	

 	
 	
 pyhanko.sign.timestamps.dummy_client	

 	
 	
 pyhanko.sign.timestamps.requests_client	

 	
 	
 pyhanko.sign.validation	

 	
 	
 pyhanko.stamp	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y

A

 	
 	ABOVE_TEXT (pyhanko.stamp.QRPosition attribute)

 	action (pyhanko.sign.fields.FieldMDPSpec attribute)

 	add_content_to_page() (pyhanko.pdf_utils.writer.BasePdfFileWriter method)

 	add_crypt_filter() (pyhanko.pdf_utils.generic.StreamObject method)

 	add_dss() (pyhanko.sign.validation.DocumentSecurityStore class method)

 	add_object() (pyhanko.pdf_utils.writer.BasePdfFileWriter method)

 	(pyhanko.pdf_utils.writer.ObjectStream method)

 	add_recipients() (pyhanko.pdf_utils.crypt.PubKeyCryptFilter method)

 	(pyhanko.pdf_utils.crypt.PubKeySecurityHandler method)

 	ADD_REV_INFO (pyhanko.sign.fields.SigSeedValFlags attribute)

 	add_rev_info (pyhanko.sign.fields.SigSeedValueSpec attribute)

 	add_stream_to_page() (pyhanko.pdf_utils.writer.BasePdfFileWriter method)

 	add_subset() (pyhanko.pdf_utils.font.api.FontSubsetCollection method)

 	add_validation_info() (in module pyhanko.sign.validation)

 	ADOBE_PKCS7_DETACHED (pyhanko.sign.fields.SigSeedSubFilter attribute)

 	adobe_revinfo_attr (pyhanko.sign.signers.pdf_cms.PdfCMSSignedAttributes attribute)

 	(pyhanko.sign.signers.pdf_signer.PreSignValidationStatus attribute)

 	ADOBE_STYLE (pyhanko.sign.validation.RevocationInfoValidationType attribute)

 	AES256 (pyhanko.pdf_utils.crypt.SecurityHandlerVersion attribute)

 	(pyhanko.pdf_utils.crypt.StandardSecuritySettingsRevision attribute)

 	AESCryptFilterMixin (class in pyhanko.pdf_utils.crypt)

 	af_relationship (pyhanko.pdf_utils.embed.FileSpec attribute)

 	AIOHttpTimeStamper (class in pyhanko.sign.timestamps.aiohttp_client)

 	align() (pyhanko.pdf_utils.layout.AxisAlignment method)

 	ALIGN_MAX (pyhanko.pdf_utils.layout.AxisAlignment attribute)

 	ALIGN_MID (pyhanko.pdf_utils.layout.AxisAlignment attribute)

 	ALIGN_MIN (pyhanko.pdf_utils.layout.AxisAlignment attribute)

 	ALL (pyhanko.sign.fields.FieldMDPAction attribute)

 	allocate_placeholder() (pyhanko.pdf_utils.writer.BasePdfFileWriter method)

 	ALWAYS (pyhanko.pdf_utils.writer.DevExtensionMultivalued attribute)

 	AnnotAppearances (class in pyhanko.stamp)

 	ANNOTATE (pyhanko.sign.fields.MDPPerm attribute)

 	ANNOTATIONS (pyhanko.sign.diff_analysis.ModificationLevel attribute)

 	api_ver (pyhanko.sign.signers.csc_signer.CSCServiceSessionInfo attribute)

 	appearance (pyhanko.sign.fields.SigSeedValueSpec attribute)

 	APPEARANCE_FILTER (pyhanko.sign.fields.SigSeedValFlags attribute)

 	appearance_setup (pyhanko.sign.signers.cms_embedder.SigObjSetup attribute)

 	append_signature_field() (in module pyhanko.sign.fields)

 	apply() (pyhanko.sign.diff_analysis.BaseFieldModificationRule method)

 	(pyhanko.sign.diff_analysis.DiffPolicy method)

 	(pyhanko.sign.diff_analysis.DocInfoRule method)

 	(pyhanko.sign.diff_analysis.DSSCompareRule method)

 	(pyhanko.sign.diff_analysis.FieldMDPRule method)

 	(pyhanko.sign.diff_analysis.FormUpdatingRule method)

 	(pyhanko.sign.diff_analysis.MetadataUpdateRule method)

 	(pyhanko.sign.diff_analysis.ObjectStreamRule method)

 	(pyhanko.sign.diff_analysis.SigFieldCreationRule method)

 	(pyhanko.sign.diff_analysis.StandardDiffPolicy method)

 	(pyhanko.sign.diff_analysis.WhitelistRule method)

 	(pyhanko.sign.diff_analysis.XrefStreamRule method)

 	(pyhanko.sign.signers.cms_embedder.SigAppearanceSetup method)

 	(pyhanko.sign.signers.cms_embedder.SigMDPSetup method)

 	(pyhanko.stamp.BaseStamp method)

 	(pyhanko.stamp.QRStamp method)

 	apply_adobe_revocation_info() (in module pyhanko.sign.validation)

 	apply_filter() (pyhanko.pdf_utils.generic.StreamObject method)

 	apply_qualified() (pyhanko.sign.diff_analysis.CatalogModificationRule method)

 	(pyhanko.sign.diff_analysis.QualifiedWhitelistRule method)

 	ArrayObject (class in pyhanko.pdf_utils.generic)

 	as_appearances() (pyhanko.stamp.BaseStamp method)

 	as_cert_store() (pyhanko.sign.signers.csc_signer.CSCCredentialInfo method)

 	as_cm() (pyhanko.pdf_utils.layout.Positioning method)

 	as_form_xobject() (pyhanko.pdf_utils.content.PdfContent method)

 	as_numeric() (pyhanko.pdf_utils.generic.FloatObject method)

 	(pyhanko.pdf_utils.generic.NumberObject method)

 	as_pdf_object() (pyhanko.pdf_utils.content.PdfResources method)

 	(pyhanko.pdf_utils.crypt.CryptFilter method)

 	(pyhanko.pdf_utils.crypt.CryptFilterConfiguration method)

 	(pyhanko.pdf_utils.crypt.IdentityCryptFilter method)

 	(pyhanko.pdf_utils.crypt.PubKeyCryptFilter method)

 	(pyhanko.pdf_utils.crypt.PubKeySecurityHandler method)

 	(pyhanko.pdf_utils.crypt.SecurityHandler method)

 	(pyhanko.pdf_utils.crypt.SecurityHandlerVersion method)

 	(pyhanko.pdf_utils.crypt.StandardCryptFilter method)

 	(pyhanko.pdf_utils.crypt.StandardSecurityHandler method)

 	(pyhanko.pdf_utils.crypt.StandardSecuritySettingsRevision method)

 	(pyhanko.pdf_utils.embed.FileSpec method)

 	(pyhanko.pdf_utils.writer.DeveloperExtension method)

 	(pyhanko.pdf_utils.writer.ObjectStream method)

 	(pyhanko.sign.fields.FieldMDPSpec method)

 	(pyhanko.sign.fields.SigCertConstraints method)

 	(pyhanko.sign.fields.SigSeedValueSpec method)

 	(pyhanko.sign.validation.DocumentSecurityStore method)

 	(pyhanko.sign.validation.VRI method)

 	(pyhanko.stamp.AnnotAppearances method)

 	
 	as_qualified() (pyhanko.sign.diff_analysis.WhitelistRule method)

 	as_resource() (pyhanko.pdf_utils.font.api.FontEngine method)

 	(pyhanko.pdf_utils.font.basic.SimpleFontEngine method)

 	(pyhanko.pdf_utils.font.opentype.GlyphAccumulator method)

 	as_set_of() (in module pyhanko.sign.ades.asn1_util)

 	as_sig_field_lock() (pyhanko.sign.fields.FieldMDPSpec method)

 	as_signing_certificate() (in module pyhanko.sign.general)

 	as_signing_certificate_v2() (in module pyhanko.sign.general)

 	as_transform_params() (pyhanko.sign.fields.FieldMDPSpec method)

 	as_tuple() (pyhanko.sign.validation.RevocationInfoValidationType class method)

 	as_validation_context() (pyhanko.sign.validation.DocumentSecurityStore method)

 	ASCII85Decode (class in pyhanko.pdf_utils.filters)

 	ASCIIHexDecode (class in pyhanko.pdf_utils.filters)

 	asn1 (pyhanko.sign.ades.api.GenericCommitment property)

 	aspect_ratio (pyhanko.pdf_utils.layout.BoxConstraints property)

 	aspect_ratio_defined (pyhanko.pdf_utils.layout.BoxConstraints property)

 	assert_viable() (pyhanko.sign.signers.pdf_signer.DSSContentSettings method)

 	(pyhanko.sign.signers.pdf_signer.TimestampDSSContentSettings method)

 	assert_writable_and_random_access() (in module pyhanko.pdf_utils.misc)

 	async_digest_doc_for_signing() (pyhanko.sign.signers.pdf_signer.PdfSigner method)

 	async_dummy_response() (pyhanko.sign.timestamps.api.TimeStamper method)

 	async_finish_signing() (pyhanko.sign.signers.pdf_signer.PdfTBSDocument class method)

 	async_request_headers() (pyhanko.sign.timestamps.aiohttp_client.AIOHttpTimeStamper method)

 	async_request_tsa_response() (pyhanko.sign.timestamps.aiohttp_client.AIOHttpTimeStamper method)

 	(pyhanko.sign.timestamps.api.TimeStamper method)

 	(pyhanko.sign.timestamps.dummy_client.DummyTimeStamper method)

 	(pyhanko.sign.timestamps.requests_client.HTTPTimeStamper method)

 	async_sign() (pyhanko.sign.signers.pdf_cms.Signer method)

 	async_sign_general_data() (pyhanko.sign.signers.pdf_cms.Signer method)

 	async_sign_pdf() (in module pyhanko.sign.signers.functions)

 	(pyhanko.sign.signers.pdf_signer.PdfSigner method)

 	async_sign_prescribed_attributes() (pyhanko.sign.signers.pdf_cms.Signer method)

 	async_sign_raw() (pyhanko.sign.pkcs11.PKCS11Signer method)

 	(pyhanko.sign.signers.csc_signer.CSCSigner method)

 	(pyhanko.sign.signers.pdf_cms.ExternalSigner method)

 	(pyhanko.sign.signers.pdf_cms.Signer method)

 	(pyhanko.sign.signers.pdf_cms.SimpleSigner method)

 	async_timestamp() (pyhanko.sign.timestamps.aiohttp_client.AIOHttpTimeStamper method)

 	(pyhanko.sign.timestamps.api.TimeStamper method)

 	async_timestamp_pdf() (pyhanko.sign.signers.pdf_signer.PdfTimeStamper method)

 	async_update_archival_timestamp_chain() (pyhanko.sign.signers.pdf_signer.PdfTimeStamper method)

 	async_validate_cms_signature() (in module pyhanko.sign.validation)

 	async_validate_detached_cms() (in module pyhanko.sign.validation)

 	async_validate_pdf_ltv_signature() (in module pyhanko.sign.validation)

 	async_validate_pdf_signature() (in module pyhanko.sign.validation)

 	async_validate_pdf_timestamp() (in module pyhanko.sign.validation)

 	asyncify_signer() (in module pyhanko.sign.signers.pdf_cms)

 	attached_timestamp_data (pyhanko.sign.validation.EmbeddedPdfSignature property)

 	auth_headers (pyhanko.sign.signers.csc_signer.CSCAuthorizationManager property)

 	(pyhanko.sign.signers.csc_signer.CSCServiceSessionInfo property)

 	authenticate() (pyhanko.pdf_utils.crypt.PubKeyCryptFilter method)

 	(pyhanko.pdf_utils.crypt.PubKeySecurityHandler method)

 	(pyhanko.pdf_utils.crypt.SecurityHandler method)

 	(pyhanko.pdf_utils.crypt.StandardSecurityHandler method)

 	author_sig (pyhanko.sign.validation.DocMDPInfo property)

 	authorize_signature() (pyhanko.sign.signers.csc_signer.CSCAuthorizationManager method)

 	(pyhanko.sign.signers.csc_signer.PrefetchedSADAuthorizationManager method)

 	AuthResult (class in pyhanko.pdf_utils.crypt)

 	AuthStatus (class in pyhanko.pdf_utils.crypt)

 	autodetect_pdfdocencoding (pyhanko.pdf_utils.generic.TextStringObject attribute)

 	autodetect_utf16 (pyhanko.pdf_utils.generic.TextStringObject attribute)

 	AxisAlignment (class in pyhanko.pdf_utils.layout)

B

 	
 	background (pyhanko.stamp.BaseStampStyle attribute)

 	background_layout (pyhanko.stamp.BaseStampStyle attribute)

 	background_opacity (pyhanko.stamp.BaseStampStyle attribute)

 	(pyhanko.stamp.StaticStampStyle attribute)

 	BarcodeBox (class in pyhanko.pdf_utils.barcodes)

 	base_postscript_name (pyhanko.pdf_utils.font.api.FontSubsetCollection attribute)

 	base_version (pyhanko.pdf_utils.writer.DeveloperExtension attribute)

 	BaseFieldModificationRule (class in pyhanko.sign.diff_analysis)

 	BasePdfFileWriter (class in pyhanko.pdf_utils.writer)

 	BaseStamp (class in pyhanko.stamp)

 	BaseStampStyle (class in pyhanko.stamp)

 	beid_module_path (pyhanko.config.CLIConfig attribute)

 	BEIDSigner (class in pyhanko.sign.beid)

 	BELOW_TEXT (pyhanko.stamp.QRPosition attribute)

 	blanket_approve (pyhanko.sign.diff_analysis.ReferenceUpdate attribute)

 	BooleanObject (class in pyhanko.pdf_utils.generic)

 	border_width (pyhanko.pdf_utils.text.TextBoxStyle attribute)

 	(pyhanko.stamp.BaseStampStyle attribute)

 	
 	bottom (pyhanko.pdf_utils.layout.Margins attribute)

 	bottom_line (pyhanko.sign.validation.PdfSignatureStatus property)

 	(pyhanko.sign.validation.StandardCMSSignatureStatus property)

 	box (pyhanko.sign.fields.SigFieldSpec attribute)

 	box_layout_rule (pyhanko.pdf_utils.text.TextBoxStyle attribute)

 	BoxConstraints (class in pyhanko.pdf_utils.layout)

 	BoxSpecificationError

 	build() (pyhanko.pdf_utils.crypt.SecurityHandler static method)

 	build_crypt_filter() (in module pyhanko.pdf_utils.crypt)

 	build_from_certs() (pyhanko.pdf_utils.crypt.PubKeySecurityHandler class method)

 	build_from_pw() (pyhanko.pdf_utils.crypt.StandardSecurityHandler class method)

 	build_from_pw_legacy() (pyhanko.pdf_utils.crypt.StandardSecurityHandler class method)

 	build_timestamper() (pyhanko.sign.fields.SigSeedValueSpec method)

 	bulk_fetch (pyhanko.config.PKCS11SignatureConfig attribute)

 	ByteDot (pyhanko.pdf_utils.generic.NumberObject attribute)

 	ByteStringObject (class in pyhanko.pdf_utils.generic)

C

 	
 	cache_get_indirect_object() (pyhanko.pdf_utils.reader.PdfFileReader method)

 	cache_indirect_object() (pyhanko.pdf_utils.reader.PdfFileReader method)

 	cades_signed_attr_spec (pyhanko.sign.signers.pdf_signer.PdfSignatureMetadata attribute)

 	cades_signed_attrs (pyhanko.sign.signers.pdf_cms.PdfCMSSignedAttributes attribute)

 	CAdESSignedAttrSpec (class in pyhanko.sign.ades.api)

 	CatalogModificationRule (class in pyhanko.sign.diff_analysis)

 	cert (pyhanko.sign.fields.SigSeedValueSpec attribute)

 	cert_file (pyhanko.config.PemDerSignatureConfig attribute)

 	cert_id (pyhanko.config.PKCS11SignatureConfig attribute)

 	cert_label (pyhanko.config.PKCS11SignatureConfig attribute)

 	cert_registry (pyhanko.sign.pkcs11.PKCS11Signer property)

 	(pyhanko.sign.signers.csc_signer.CSCSigner attribute)

 	(pyhanko.sign.signers.pdf_cms.ExternalSigner attribute)

 	(pyhanko.sign.signers.pdf_cms.Signer attribute)

 	CertificateStore (class in pyhanko.sign.general)

 	certify (pyhanko.sign.signers.cms_embedder.SigMDPSetup attribute)

 	(pyhanko.sign.signers.pdf_signer.PdfSignatureMetadata attribute)

 	certs (pyhanko.sign.validation.VRI attribute)

 	chain (pyhanko.sign.signers.csc_signer.CSCCredentialInfo attribute)

 	changed_form_fields (pyhanko.sign.diff_analysis.DiffResult attribute)

 	check_config_keys() (in module pyhanko.pdf_utils.config_utils)

 	check_form_field() (pyhanko.sign.diff_analysis.BaseFieldModificationRule method)

 	(pyhanko.sign.diff_analysis.GenericFieldModificationRule method)

 	(pyhanko.sign.diff_analysis.SigFieldModificationRule method)

 	check_key_length() (pyhanko.pdf_utils.crypt.SecurityHandlerVersion method)

 	chunk_size (pyhanko.sign.signers.cms_embedder.SigIOSetup attribute)

 	chunk_stream() (in module pyhanko.pdf_utils.misc)

 	chunked_digest() (in module pyhanko.pdf_utils.misc)

 	chunked_write() (in module pyhanko.pdf_utils.misc)

 	CLIConfig (class in pyhanko.config)

 	collect_dependencies() (pyhanko.pdf_utils.reader.HistoricalResolver method)

 	collect_validation_info() (in module pyhanko.sign.validation)

 	COLOR_SPACE (pyhanko.pdf_utils.content.ResourceType attribute)

 	combine_annotation (pyhanko.sign.fields.SigFieldSpec attribute)

 	command_stream (pyhanko.pdf_utils.barcodes.PdfStreamBarcodeWriter property)

 	commit() (pyhanko.sign.signers.csc_signer.CSCSigner method)

 	commitment_type (pyhanko.sign.ades.api.CAdESSignedAttrSpec attribute)

 	CommitmentTypeIdentifier (class in pyhanko.sign.ades.cades_asn1)

 	CommitmentTypeIndication (class in pyhanko.sign.ades.cades_asn1)

 	
 	CommitmentTypeQualifier (class in pyhanko.sign.ades.cades_asn1)

 	CommitmentTypeQualifiers (class in pyhanko.sign.ades.cades_asn1)

 	compare_by_level (pyhanko.pdf_utils.writer.DeveloperExtension attribute)

 	compare_fields() (pyhanko.sign.diff_analysis.BaseFieldModificationRule method)

 	compress() (pyhanko.pdf_utils.generic.StreamObject method)

 	compute_digest() (pyhanko.sign.validation.EmbeddedPdfSignature method)

 	compute_integrity_info() (pyhanko.sign.validation.EmbeddedPdfSignature method)

 	compute_tst_digest() (pyhanko.sign.validation.EmbeddedPdfSignature method)

 	ConfigurableMixin (class in pyhanko.pdf_utils.config_utils)

 	ConfigurationError

 	cons() (pyhanko.pdf_utils.misc.ConsList method)

 	ConsList (class in pyhanko.pdf_utils.misc)

 	container_ref (pyhanko.pdf_utils.generic.PdfObject attribute)

 	content (pyhanko.pdf_utils.text.TextBox property)

 	content_lines (pyhanko.pdf_utils.text.TextBox property)

 	content_timestamp_validity (pyhanko.sign.validation.StandardCMSSignatureStatus attribute)

 	CONTIGUOUS_BLOCK_FROM_START (pyhanko.sign.validation.SignatureCoverageLevel attribute)

 	copy_into_new_writer() (in module pyhanko.pdf_utils.writer)

 	coverage (pyhanko.sign.validation.ModificationInfo attribute)

 	create_font_engine() (pyhanko.pdf_utils.font.api.FontEngineFactory method)

 	(pyhanko.pdf_utils.font.basic.SimpleFontEngineFactory method)

 	(pyhanko.pdf_utils.font.opentype.GlyphAccumulatorFactory method)

 	create_objstream_if_needed (pyhanko.pdf_utils.font.opentype.GlyphAccumulatorFactory attribute)

 	create_stamp() (pyhanko.stamp.BaseStampStyle method)

 	(pyhanko.stamp.QRStampStyle method)

 	(pyhanko.stamp.StaticStampStyle method)

 	(pyhanko.stamp.TextStampStyle method)

 	creation_date (pyhanko.pdf_utils.embed.EmbeddedFileParams attribute)

 	credential_id (pyhanko.sign.signers.csc_signer.CSCServiceSessionInfo attribute)

 	crls (pyhanko.sign.validation.VRI attribute)

 	crls_to_embed (pyhanko.sign.signers.pdf_signer.PreSignValidationStatus attribute)

 	CryptFilter (class in pyhanko.pdf_utils.crypt)

 	CryptFilterBuilder (in module pyhanko.pdf_utils.crypt)

 	CryptFilterConfiguration (class in pyhanko.pdf_utils.crypt)

 	CSCAuthorizationInfo (class in pyhanko.sign.signers.csc_signer)

 	CSCAuthorizationManager (class in pyhanko.sign.signers.csc_signer)

 	CSCCredentialInfo (class in pyhanko.sign.signers.csc_signer)

 	CSCServiceSessionInfo (class in pyhanko.sign.signers.csc_signer)

 	CSCSigner (class in pyhanko.sign.signers.csc_signer)

 	curry_ref() (pyhanko.sign.diff_analysis.ReferenceUpdate class method)

D

 	
 	data (pyhanko.pdf_utils.generic.StreamObject property)

 	decode() (pyhanko.pdf_utils.filters.ASCII85Decode method)

 	(pyhanko.pdf_utils.filters.ASCIIHexDecode method)

 	(pyhanko.pdf_utils.filters.Decoder method)

 	(pyhanko.pdf_utils.filters.FlateDecode method)

 	Decoder (class in pyhanko.pdf_utils.filters)

 	decrypt() (pyhanko.pdf_utils.crypt.AESCryptFilterMixin method)

 	(pyhanko.pdf_utils.crypt.CryptFilter method)

 	(pyhanko.pdf_utils.crypt.EnvelopeKeyDecrypter method)

 	(pyhanko.pdf_utils.crypt.IdentityCryptFilter method)

 	(pyhanko.pdf_utils.crypt.RC4CryptFilterMixin method)

 	(pyhanko.pdf_utils.crypt.SimpleEnvelopeKeyDecrypter method)

 	(pyhanko.pdf_utils.reader.PdfFileReader method)

 	decrypt_pubkey() (pyhanko.pdf_utils.reader.PdfFileReader method)

 	DEFAULT_CHUNK_SIZE (in module pyhanko.pdf_utils.misc)

 	DEFAULT_CRYPT_FILTER (in module pyhanko.pdf_utils.crypt)

 	DEFAULT_DIFF_POLICY (in module pyhanko.sign.diff_analysis)

 	default_factory() (pyhanko.pdf_utils.font.basic.SimpleFontEngineFactory static method)

 	DEFAULT_MD (in module pyhanko.sign.signers.constants)

 	default_md_for_signer (pyhanko.sign.signers.pdf_signer.PdfSigner property)

 	DEFAULT_SIG_SUBFILTER (in module pyhanko.sign.signers.constants)

 	DEFAULT_SIGNER_KEY_USAGE (in module pyhanko.sign.signers.constants)

 	DEFAULT_SIGNING_STAMP_STYLE (in module pyhanko.sign.signers.constants)

 	default_stamp_style (pyhanko.config.CLIConfig attribute)

 	default_validation_context (pyhanko.config.CLIConfig attribute)

 	DELIMITER_PATTERN (pyhanko.pdf_utils.generic.NameObject attribute)

 	Dereferenceable (class in pyhanko.pdf_utils.generic)

 	derive_object_key() (pyhanko.pdf_utils.crypt.AESCryptFilterMixin method)

 	(pyhanko.pdf_utils.crypt.CryptFilter method)

 	(pyhanko.pdf_utils.crypt.IdentityCryptFilter method)

 	(pyhanko.pdf_utils.crypt.RC4CryptFilterMixin method)

 	derive_shared_encryption_key() (pyhanko.pdf_utils.crypt.CryptFilter method)

 	(pyhanko.pdf_utils.crypt.IdentityCryptFilter method)

 	(pyhanko.pdf_utils.crypt.PubKeyCryptFilter method)

 	(pyhanko.pdf_utils.crypt.StandardCryptFilter method)

 	
 	describe_timestamp_trust() (pyhanko.sign.timestamps.api.TimestampSignatureStatus method)

 	description (pyhanko.pdf_utils.embed.FileSpec attribute)

 	DeveloperExtension (class in pyhanko.pdf_utils.writer)

 	DevExtensionMultivalued (class in pyhanko.pdf_utils.writer)

 	DictionaryObject (class in pyhanko.pdf_utils.generic)

 	diff_result (pyhanko.sign.validation.ModificationInfo attribute)

 	DiffPolicy (class in pyhanko.sign.diff_analysis)

 	DiffResult (class in pyhanko.sign.diff_analysis)

 	digest_doc_for_signing() (pyhanko.sign.signers.pdf_signer.PdfSigner method)

 	DIGEST_METHOD (pyhanko.sign.fields.SigSeedValFlags attribute)

 	digest_methods (pyhanko.sign.fields.SigSeedValueSpec attribute)

 	digest_tbs_document() (pyhanko.sign.signers.pdf_signer.PdfTBSDocument method)

 	DisplayText (class in pyhanko.sign.ades.cades_asn1)

 	DO_NOT_LOCK (pyhanko.sign.fields.SeedLockDocument attribute)

 	doc_mdp_update_value (pyhanko.sign.fields.SigFieldSpec attribute)

 	DocInfoRule (class in pyhanko.sign.diff_analysis)

 	docmdp_level (pyhanko.sign.validation.EmbeddedPdfSignature property)

 	docmdp_ok (pyhanko.sign.validation.PdfSignatureStatus attribute)

 	docmdp_permissions (pyhanko.sign.signers.pdf_signer.PdfSignatureMetadata attribute)

 	docmdp_perms (pyhanko.sign.signers.cms_embedder.SigMDPSetup attribute)

 	DocMDPInfo (class in pyhanko.sign.validation)

 	document_digest (pyhanko.sign.signers.pdf_byterange.PreparedByteRangeDigest attribute)

 	document_id (pyhanko.pdf_utils.reader.HistoricalResolver property)

 	(pyhanko.pdf_utils.reader.PdfFileReader property)

 	(pyhanko.pdf_utils.rw_common.PdfHandler property)

 	(pyhanko.pdf_utils.writer.BasePdfFileWriter property)

 	DocumentSecurityStore (class in pyhanko.sign.validation)

 	DocumentTimestamp (class in pyhanko.sign.signers.pdf_byterange)

 	DocumentTimestampStatus (class in pyhanko.sign.validation)

 	dss_settings (pyhanko.sign.signers.pdf_signer.PdfSignatureMetadata attribute)

 	(pyhanko.sign.signers.pdf_signer.PostSignInstructions attribute)

 	DSSCompareRule (class in pyhanko.sign.diff_analysis)

 	DSSContentSettings (class in pyhanko.sign.signers.pdf_signer)

 	dummy_digest() (in module pyhanko.sign.timestamps.common_utils)

 	DummyTimeStamper (class in pyhanko.sign.timestamps.dummy_client)

E

 	
 	effective() (pyhanko.pdf_utils.layout.Margins static method)

 	effective_height() (pyhanko.pdf_utils.layout.Margins method)

 	effective_width() (pyhanko.pdf_utils.layout.Margins method)

 	embed_checksum (pyhanko.pdf_utils.embed.EmbeddedFileParams attribute)

 	embed_file() (in module pyhanko.pdf_utils.embed)

 	embed_payload_with_cms() (in module pyhanko.sign.signers.functions)

 	embed_roots (pyhanko.sign.signers.pdf_signer.PostSignInstructions attribute)

 	embed_size (pyhanko.pdf_utils.embed.EmbeddedFileParams attribute)

 	embed_validation_info (pyhanko.sign.signers.pdf_signer.PdfSignatureMetadata attribute)

 	embedded_data (pyhanko.pdf_utils.embed.FileSpec attribute)

 	(pyhanko.pdf_utils.embed.RelatedFileSpec attribute)

 	embedded_file_filter_name (pyhanko.pdf_utils.crypt.CryptFilterConfiguration property)

 	embedded_regular_signatures (pyhanko.pdf_utils.reader.PdfFileReader property)

 	embedded_signatures (pyhanko.pdf_utils.reader.PdfFileReader property)

 	embedded_timestamp_signatures (pyhanko.pdf_utils.reader.PdfFileReader property)

 	EmbeddedFileObject (class in pyhanko.pdf_utils.embed)

 	EmbeddedFileParams (class in pyhanko.pdf_utils.embed)

 	EmbeddedPdfSignature (class in pyhanko.sign.validation)

 	empty() (pyhanko.pdf_utils.misc.ConsList static method)

 	empty_field_appearance (pyhanko.sign.fields.SigFieldSpec attribute)

 	encode() (pyhanko.pdf_utils.filters.ASCII85Decode method)

 	(pyhanko.pdf_utils.filters.ASCIIHexDecode method)

 	(pyhanko.pdf_utils.filters.Decoder method)

 	(pyhanko.pdf_utils.filters.FlateDecode method)

 	encode_to_sv_string() (pyhanko.sign.fields.SigCertKeyUsage method)

 	encoded_data (pyhanko.pdf_utils.generic.StreamObject property)

 	encrypt() (pyhanko.pdf_utils.crypt.AESCryptFilterMixin method)

 	(pyhanko.pdf_utils.crypt.CryptFilter method)

 	(pyhanko.pdf_utils.crypt.IdentityCryptFilter method)

 	(pyhanko.pdf_utils.crypt.RC4CryptFilterMixin method)

 	(pyhanko.pdf_utils.incremental_writer.IncrementalPdfFileWriter method)

 	(pyhanko.pdf_utils.writer.PdfFileWriter method)

 	
 	encrypt_pubkey() (pyhanko.pdf_utils.incremental_writer.IncrementalPdfFileWriter method)

 	(pyhanko.pdf_utils.writer.PdfFileWriter method)

 	encrypted (pyhanko.pdf_utils.reader.PdfFileReader property)

 	endpoint_url() (pyhanko.sign.signers.csc_signer.CSCServiceSessionInfo method)

 	ensure_objects_loaded() (pyhanko.sign.pkcs11.PKCS11Signer method)

 	ensure_output_version() (pyhanko.pdf_utils.incremental_writer.IncrementalPdfFileWriter method)

 	(pyhanko.pdf_utils.writer.BasePdfFileWriter method)

 	ensure_sig_flags() (in module pyhanko.sign.fields)

 	ENTIRE_FILE (pyhanko.sign.validation.SignatureCoverageLevel attribute)

 	ENTIRE_REVISION (pyhanko.sign.validation.SignatureCoverageLevel attribute)

 	enumerate_sig_fields() (in module pyhanko.sign.fields)

 	EnvelopeKeyDecrypter (class in pyhanko.pdf_utils.crypt)

 	estimate_signature_container_size() (pyhanko.sign.signers.pdf_signer.PdfSigningSession method)

 	ETSI_RFC3161 (pyhanko.sign.fields.SigSeedSubFilter attribute)

 	evaluate_modifications() (pyhanko.sign.validation.EmbeddedPdfSignature method)

 	evaluate_signature_coverage() (pyhanko.sign.validation.EmbeddedPdfSignature method)

 	EXCLUDE (pyhanko.sign.fields.FieldMDPAction attribute)

 	expected_paths() (pyhanko.sign.diff_analysis.FieldComparisonSpec method)

 	expires_at (pyhanko.sign.signers.csc_signer.CSCAuthorizationInfo attribute)

 	explicit_extd_key_usage_required (pyhanko.sign.general.KeyUsageConstraints attribute)

 	explicit_refs_in_revision() (pyhanko.pdf_utils.reader.HistoricalResolver method)

 	EXT_G_STATE (pyhanko.pdf_utils.content.ResourceType attribute)

 	extd_key_usage (pyhanko.sign.general.KeyUsageConstraints attribute)

 	(pyhanko.sign.general.SignatureStatus attribute)

 	(pyhanko.sign.timestamps.api.TimestampSignatureStatus attribute)

 	extension_level (pyhanko.pdf_utils.writer.DeveloperExtension attribute)

 	extension_revision (pyhanko.pdf_utils.writer.DeveloperExtension attribute)

 	ExternalSigner (class in pyhanko.sign.signers.pdf_cms)

 	extract_message_digest() (in module pyhanko.sign.general)

 	extract_ts_certs() (in module pyhanko.sign.timestamps.common_utils)

F

 	
 	f_related_files (pyhanko.pdf_utils.embed.FileSpec attribute)

 	FAILED (pyhanko.pdf_utils.crypt.AuthStatus attribute)

 	fetch_certs_in_csc_credential() (in module pyhanko.sign.signers.csc_signer)

 	field_lock (pyhanko.sign.signers.cms_embedder.SigMDPSetup attribute)

 	field_mdp_spec (pyhanko.sign.fields.SigFieldSpec attribute)

 	field_name (pyhanko.sign.diff_analysis.FormUpdate attribute)

 	(pyhanko.sign.signers.pdf_signer.PdfSignatureMetadata attribute)

 	(pyhanko.sign.signers.pdf_signer.PdfTimeStamper property)

 	(pyhanko.sign.validation.EmbeddedPdfSignature property)

 	field_specs (pyhanko.sign.diff_analysis.FieldComparisonContext attribute)

 	field_type (pyhanko.sign.diff_analysis.FieldComparisonSpec attribute)

 	FieldComparisonContext (class in pyhanko.sign.diff_analysis)

 	FieldComparisonSpec (class in pyhanko.sign.diff_analysis)

 	fieldmdp (pyhanko.sign.validation.EmbeddedPdfSignature property)

 	FieldMDPAction (class in pyhanko.sign.fields)

 	FieldMDPRule (class in pyhanko.sign.diff_analysis)

 	FieldMDPSpec (class in pyhanko.sign.fields)

 	fields (pyhanko.sign.fields.FieldMDPSpec attribute)

 	file_name (pyhanko.pdf_utils.embed.FileSpec attribute)

 	file_spec_string (pyhanko.pdf_utils.embed.FileSpec attribute)

 	FileSpec (class in pyhanko.pdf_utils.embed)

 	fill() (pyhanko.sign.signers.pdf_byterange.PdfByteRangeDigest method)

 	FILL_FORMS (pyhanko.sign.fields.MDPPerm attribute)

 	fill_reserved_region() (pyhanko.sign.signers.pdf_byterange.PreparedByteRangeDigest method)

 	fill_with_cms() (pyhanko.sign.signers.pdf_byterange.PreparedByteRangeDigest method)

 	FILTER (pyhanko.sign.fields.SigSeedValFlags attribute)

 	filters() (pyhanko.pdf_utils.crypt.CryptFilterConfiguration method)

 	finalise_output() (in module pyhanko.pdf_utils.misc)

 	find_cms_attribute() (in module pyhanko.sign.general)

 	find_page_container() (pyhanko.pdf_utils.rw_common.PdfHandler method)

 	find_page_for_modification() (pyhanko.pdf_utils.rw_common.PdfHandler method)

 	find_unique_cms_attribute() (in module pyhanko.sign.general)

 	finish_signing() (pyhanko.sign.signers.pdf_signer.PdfTBSDocument class method)

 	fit() (pyhanko.pdf_utils.layout.SimpleBoxLayoutRule method)

 	flags (pyhanko.sign.fields.SigCertConstraints attribute)

 	(pyhanko.sign.fields.SigSeedValueSpec attribute)

 	FlateDecode (class in pyhanko.pdf_utils.filters)

 	
 	flipped (pyhanko.pdf_utils.layout.AxisAlignment property)

 	FloatObject (class in pyhanko.pdf_utils.generic)

 	fmt_related_files() (pyhanko.pdf_utils.embed.RelatedFileSpec class method)

 	FONT (pyhanko.pdf_utils.content.ResourceType attribute)

 	font (pyhanko.pdf_utils.text.TextStyle attribute)

 	font_file (pyhanko.pdf_utils.font.opentype.GlyphAccumulatorFactory attribute)

 	font_size (pyhanko.pdf_utils.font.opentype.GlyphAccumulatorFactory attribute)

 	(pyhanko.pdf_utils.text.TextStyle attribute)

 	FontEngine (class in pyhanko.pdf_utils.font.api)

 	FontEngineFactory (class in pyhanko.pdf_utils.font.api)

 	FontSubsetCollection (class in pyhanko.pdf_utils.font.api)

 	forbidden_set() (pyhanko.sign.fields.SigCertKeyUsage method)

 	FORM_FILLING (pyhanko.sign.diff_analysis.ModificationLevel attribute)

 	format_attributes() (in module pyhanko.sign.signers.pdf_cms)

 	format_csc_auth_request() (pyhanko.sign.signers.csc_signer.CSCAuthorizationManager method)

 	format_csc_signing_req() (pyhanko.sign.signers.csc_signer.CSCSigner method)

 	format_lock_dictionary() (pyhanko.sign.fields.SigFieldSpec method)

 	format_revinfo() (pyhanko.sign.signers.pdf_cms.Signer static method)

 	format_signed_attributes() (in module pyhanko.sign.signers.pdf_cms)

 	FormUpdate (class in pyhanko.sign.diff_analysis)

 	FormUpdatingRule (class in pyhanko.sign.diff_analysis)

 	from_certs() (pyhanko.sign.general.SimpleCertificateStore class method)

 	from_config() (pyhanko.pdf_utils.config_utils.ConfigurableMixin class method)

 	(pyhanko.pdf_utils.layout.InnerScaling class method)

 	(pyhanko.pdf_utils.layout.Margins class method)

 	(pyhanko.stamp.QRPosition class method)

 	from_file_data() (pyhanko.pdf_utils.embed.EmbeddedFileObject class method)

 	from_number() (pyhanko.pdf_utils.crypt.SecurityHandlerVersion class method)

 	(pyhanko.pdf_utils.crypt.StandardSecuritySettingsRevision class method)

 	from_pdf_file() (pyhanko.stamp.StaticStampStyle class method)

 	from_pdf_object() (pyhanko.sign.fields.FieldMDPSpec class method)

 	(pyhanko.sign.fields.SigCertConstraints class method)

 	(pyhanko.sign.fields.SigSeedValueSpec class method)

 	from_reader() (pyhanko.pdf_utils.incremental_writer.IncrementalPdfFileWriter class method)

 	from_sets() (pyhanko.sign.fields.SigCertKeyUsage class method)

 	from_x_align() (pyhanko.pdf_utils.layout.AxisAlignment class method)

 	from_y_align() (pyhanko.pdf_utils.layout.AxisAlignment class method)

G

 	
 	gather_encryption_metadata() (pyhanko.pdf_utils.crypt.StandardSecurityHandler class method)

 	gather_pub_key_metadata() (pyhanko.pdf_utils.crypt.PubKeySecurityHandler class method)

 	GeneralDSSContentSettings (class in pyhanko.sign.signers.pdf_signer)

 	generation (pyhanko.pdf_utils.generic.IndirectObject property)

 	(pyhanko.pdf_utils.generic.Reference attribute)

 	GenericCommitment (class in pyhanko.sign.ades.api)

 	GenericFieldModificationRule (class in pyhanko.sign.diff_analysis)

 	get_and_apply() (in module pyhanko.pdf_utils.misc)

 	(pyhanko.pdf_utils.generic.DictionaryObject method)

 	get_container_ref() (pyhanko.pdf_utils.generic.PdfObject method)

 	get_courier() (in module pyhanko.pdf_utils.misc)

 	get_default_text_params() (pyhanko.stamp.QRStamp method)

 	(pyhanko.stamp.TextStamp method)

 	get_embedded_file_filter() (pyhanko.pdf_utils.crypt.SecurityHandler method)

 	get_file_encryption_key() (pyhanko.pdf_utils.crypt.PubKeySecurityHandler method)

 	(pyhanko.pdf_utils.crypt.SecurityHandler method)

 	(pyhanko.pdf_utils.crypt.StandardSecurityHandler method)

 	get_for_embedded_file() (pyhanko.pdf_utils.crypt.CryptFilterConfiguration method)

 	get_for_stream() (pyhanko.pdf_utils.crypt.CryptFilterConfiguration method)

 	get_for_string() (pyhanko.pdf_utils.crypt.CryptFilterConfiguration method)

 	get_generic_decoder() (in module pyhanko.pdf_utils.filters)

 	get_historical_resolver() (pyhanko.pdf_utils.reader.PdfFileReader method)

 	get_historical_root() (pyhanko.pdf_utils.reader.PdfFileReader method)

 	get_name() (pyhanko.pdf_utils.crypt.PubKeySecurityHandler class method)

 	(pyhanko.pdf_utils.crypt.SecurityHandler class method)

 	(pyhanko.pdf_utils.crypt.StandardSecurityHandler class method)

 	get_nonce() (in module pyhanko.sign.timestamps.common_utils)

 	get_object() (pyhanko.pdf_utils.generic.Dereferenceable method)

 	(pyhanko.pdf_utils.generic.IndirectObject method)

 	(pyhanko.pdf_utils.generic.PdfObject method)

 	(pyhanko.pdf_utils.generic.Reference method)

 	(pyhanko.pdf_utils.generic.TrailerReference method)

 	(pyhanko.pdf_utils.incremental_writer.IncrementalPdfFileWriter method)

 	(pyhanko.pdf_utils.reader.HistoricalResolver method)

 	(pyhanko.pdf_utils.reader.PdfFileReader method)

 	(pyhanko.pdf_utils.rw_common.PdfHandler method)

 	(pyhanko.pdf_utils.writer.BasePdfFileWriter method)

 	
 	get_pdf_handler() (pyhanko.pdf_utils.generic.Dereferenceable method)

 	(pyhanko.pdf_utils.generic.IndirectObject method)

 	(pyhanko.pdf_utils.generic.Reference method)

 	(pyhanko.pdf_utils.generic.TrailerReference method)

 	get_pemder_config() (pyhanko.config.CLIConfig method)

 	get_pkcs11_config() (pyhanko.config.CLIConfig method)

 	get_pkcs12_config() (pyhanko.config.CLIConfig method)

 	get_pyca_cryptography_hash() (in module pyhanko.sign.general)

 	get_session() (pyhanko.sign.timestamps.aiohttp_client.AIOHttpTimeStamper method)

 	get_settings_for_ts() (pyhanko.sign.signers.pdf_signer.DSSContentSettings method)

 	get_signature_mechanism() (pyhanko.sign.signers.csc_signer.CSCSigner method)

 	(pyhanko.sign.signers.pdf_cms.Signer method)

 	get_signer_key_usages() (pyhanko.config.CLIConfig method)

 	get_stamp_style() (pyhanko.config.CLIConfig method)

 	get_stream_filter() (pyhanko.pdf_utils.crypt.SecurityHandler method)

 	get_string_filter() (pyhanko.pdf_utils.crypt.SecurityHandler method)

 	get_subset_collection() (pyhanko.pdf_utils.writer.BasePdfFileWriter method)

 	get_timestamp_chain() (in module pyhanko.sign.validation)

 	get_validation_context() (pyhanko.config.CLIConfig method)

 	get_value_as_reference() (pyhanko.pdf_utils.generic.DictionaryObject method)

 	GlyphAccumulator (class in pyhanko.pdf_utils.font.opentype)

 	GlyphAccumulatorFactory (class in pyhanko.pdf_utils.font.opentype)

 	graphics_ops (pyhanko.pdf_utils.font.api.ShapeResult attribute)

H

 	
 	handle_tsp_response() (in module pyhanko.sign.timestamps.common_utils)

 	has_seed_values (pyhanko.sign.validation.PdfSignatureStatus attribute)

 	has_xref_stream (pyhanko.pdf_utils.reader.PdfFileReader attribute)

 	hash_pinning_required (pyhanko.sign.signers.csc_signer.CSCCredentialInfo attribute)

 	head (pyhanko.pdf_utils.misc.ConsList attribute)

 	
 	height (pyhanko.pdf_utils.layout.BoxConstraints property)

 	height_defined (pyhanko.pdf_utils.layout.BoxConstraints property)

 	HistoricalResolver (class in pyhanko.pdf_utils.reader)

 	horizontal_flow (pyhanko.stamp.QRPosition property)

 	HTTPTimeStamper (class in pyhanko.sign.timestamps.requests_client)

I

 	
 	IDENTITY (in module pyhanko.pdf_utils.crypt)

 	IdentityCryptFilter (class in pyhanko.pdf_utils.crypt)

 	idnum (pyhanko.pdf_utils.generic.IndirectObject property)

 	(pyhanko.pdf_utils.generic.Reference attribute)

 	image_ref (pyhanko.pdf_utils.images.PdfImage property)

 	import_object() (pyhanko.pdf_utils.writer.BasePdfFileWriter method)

 	import_page_as_xobject() (pyhanko.pdf_utils.writer.BasePdfFileWriter method)

 	import_resources() (pyhanko.pdf_utils.content.PdfContent method)

 	ImportedPdfPage (class in pyhanko.pdf_utils.content)

 	in_place (pyhanko.sign.signers.cms_embedder.SigIOSetup attribute)

 	INCLUDE (pyhanko.sign.fields.FieldMDPAction attribute)

 	include_vri (pyhanko.sign.signers.pdf_signer.GeneralDSSContentSettings attribute)

 	IncrementalPdfFileWriter (class in pyhanko.pdf_utils.incremental_writer)

 	IndirectObject (class in pyhanko.pdf_utils.generic)

 	IndirectObjectExpected

 	info_url (pyhanko.sign.fields.SigCertConstraints attribute)

 	init_signing_session() (pyhanko.sign.signers.pdf_signer.PdfSigner method)

 	init_validation_context_kwargs() (in module pyhanko.config)

 	init_xobject_dictionary() (in module pyhanko.pdf_utils.writer)

 	inner_content_layout (pyhanko.stamp.TextStampStyle attribute)

 	
 	inner_content_scaling (pyhanko.pdf_utils.layout.SimpleBoxLayoutRule attribute)

 	InnerScaling (class in pyhanko.pdf_utils.layout)

 	innsep (pyhanko.stamp.QRStampStyle attribute)

 	input_version (pyhanko.pdf_utils.reader.PdfFileReader property)

 	insert_page() (pyhanko.pdf_utils.writer.BasePdfFileWriter method)

 	instance_test() (in module pyhanko.pdf_utils.misc)

 	instantiate() (pyhanko.config.PemDerSignatureConfig method)

 	(pyhanko.config.PKCS12SignatureConfig method)

 	instantiate_from_pdf_object() (pyhanko.pdf_utils.crypt.PubKeySecurityHandler class method)

 	(pyhanko.pdf_utils.crypt.SecurityHandler class method)

 	(pyhanko.pdf_utils.crypt.StandardSecurityHandler class method)

 	intact (pyhanko.sign.general.SignatureStatus attribute)

 	IO_CHUNK_SIZE (pyhanko.pdf_utils.incremental_writer.IncrementalPdfFileWriter attribute)

 	is_embedded_file_stream (pyhanko.pdf_utils.generic.StreamObject property)

 	is_locked() (pyhanko.sign.fields.FieldMDPSpec method)

 	is_ref_available() (pyhanko.pdf_utils.reader.HistoricalResolver method)

 	is_regular_character() (in module pyhanko.pdf_utils.misc)

 	is_well_formed_xml() (pyhanko.sign.diff_analysis.MetadataUpdateRule static method)

 	ISSUER (pyhanko.sign.fields.SigCertConstraintFlags attribute)

 	issuers (pyhanko.sign.fields.SigCertConstraints attribute)

K

 	
 	key_file (pyhanko.config.PemDerSignatureConfig attribute)

 	key_id (pyhanko.config.PKCS11SignatureConfig attribute)

 	key_label (pyhanko.config.PKCS11SignatureConfig attribute)

 	key_passphrase (pyhanko.config.PemDerSignatureConfig attribute)

 	KEY_USAGE (pyhanko.sign.fields.SigCertConstraintFlags attribute)

 	key_usage (pyhanko.sign.fields.SigCertConstraints attribute)

 	(pyhanko.sign.general.KeyUsageConstraints attribute)

 	(pyhanko.sign.general.SignatureStatus attribute)

 	(pyhanko.sign.timestamps.api.TimestampSignatureStatus attribute)

 	
 	key_usage_forbidden (pyhanko.sign.general.KeyUsageConstraints attribute)

 	keylen (pyhanko.pdf_utils.crypt.AESCryptFilterMixin attribute)

 	(pyhanko.pdf_utils.crypt.CryptFilter property)

 	(pyhanko.pdf_utils.crypt.IdentityCryptFilter attribute)

 	(pyhanko.pdf_utils.crypt.RC4CryptFilterMixin attribute)

 	KeyUsageConstraints (class in pyhanko.sign.general)

L

 	
 	last_startxref (pyhanko.pdf_utils.reader.PdfFileReader attribute)

 	LayoutError

 	leading (pyhanko.pdf_utils.text.TextBox property)

 	(pyhanko.pdf_utils.text.TextStyle attribute)

 	left (pyhanko.pdf_utils.layout.Margins attribute)

 	LEFT_OF_TEXT (pyhanko.stamp.QRPosition attribute)

 	legacy_derive_object_key() (in module pyhanko.pdf_utils.crypt)

 	LEGAL_ATTESTATION (pyhanko.sign.fields.SigSeedValFlags attribute)

 	legal_attestations (pyhanko.sign.fields.SigSeedValueSpec attribute)

 	level (pyhanko.config.LogConfig attribute)

 	load() (pyhanko.pdf_utils.crypt.SimpleEnvelopeKeyDecrypter static method)

 	(pyhanko.sign.signers.pdf_cms.SimpleSigner class method)

 	
 	load_cert_from_pemder() (in module pyhanko.sign.general)

 	load_certs_from_pemder() (in module pyhanko.sign.general)

 	load_pkcs12() (pyhanko.pdf_utils.crypt.SimpleEnvelopeKeyDecrypter class method)

 	(pyhanko.sign.signers.pdf_cms.SimpleSigner class method)

 	load_private_key_from_pemder() (in module pyhanko.sign.general)

 	location (pyhanko.sign.signers.pdf_signer.PdfSignatureMetadata attribute)

 	LOCK (pyhanko.sign.fields.SeedLockDocument attribute)

 	LOCK_DOCUMENT (pyhanko.sign.fields.SigSeedValFlags attribute)

 	lock_document (pyhanko.sign.fields.SigSeedValueSpec attribute)

 	log_config (pyhanko.config.CLIConfig attribute)

 	LogConfig (class in pyhanko.config)

 	LTA_UPDATES (pyhanko.sign.diff_analysis.ModificationLevel attribute)

M

 	
 	Margins (class in pyhanko.pdf_utils.layout)

 	margins (pyhanko.pdf_utils.layout.SimpleBoxLayoutRule attribute)

 	mark_update() (pyhanko.pdf_utils.incremental_writer.IncrementalPdfFileWriter method)

 	(pyhanko.pdf_utils.writer.BasePdfFileWriter method)

 	marked_content_property_list() (pyhanko.pdf_utils.font.opentype.GlyphAccumulator method)

 	match_all_key_usages (pyhanko.sign.general.KeyUsageConstraints attribute)

 	match_issuer_serial() (in module pyhanko.sign.general)

 	max_batch_size (pyhanko.sign.signers.csc_signer.CSCCredentialInfo attribute)

 	MAYBE (pyhanko.pdf_utils.writer.DevExtensionMultivalued attribute)

 	md_algorithm (pyhanko.sign.general.SignatureStatus attribute)

 	(pyhanko.sign.signers.cms_embedder.SigIOSetup attribute)

 	(pyhanko.sign.signers.cms_embedder.SigMDPSetup attribute)

 	(pyhanko.sign.signers.pdf_byterange.PreparedByteRangeDigest attribute)

 	(pyhanko.sign.signers.pdf_signer.PdfSignatureMetadata attribute)

 	mdp_setup (pyhanko.sign.signers.cms_embedder.SigObjSetup attribute)

 	MDPPerm (class in pyhanko.sign.fields)

 	merge_resources() (pyhanko.pdf_utils.writer.BasePdfFileWriter method)

 	MetadataUpdateRule (class in pyhanko.sign.diff_analysis)

 	method (pyhanko.pdf_utils.crypt.AESCryptFilterMixin attribute)

 	(pyhanko.pdf_utils.crypt.CryptFilter property)

 	(pyhanko.pdf_utils.crypt.IdentityCryptFilter attribute)

 	(pyhanko.pdf_utils.crypt.RC4CryptFilterMixin attribute)

 	modification_date (pyhanko.pdf_utils.embed.EmbeddedFileParams attribute)

 	modification_level (pyhanko.sign.diff_analysis.DiffResult attribute)

 	(pyhanko.sign.validation.ModificationInfo property)

 	ModificationInfo (class in pyhanko.sign.validation)

 	ModificationLevel (class in pyhanko.sign.diff_analysis)

 	modified (pyhanko.sign.validation.DocumentSecurityStore property)

 	
 module

 	pyhanko.config

 	pyhanko.pdf_utils.barcodes

 	pyhanko.pdf_utils.config_utils

 	pyhanko.pdf_utils.content

 	pyhanko.pdf_utils.crypt

 	pyhanko.pdf_utils.embed

 	pyhanko.pdf_utils.filters

 	pyhanko.pdf_utils.font.api

 	pyhanko.pdf_utils.font.basic

 	pyhanko.pdf_utils.font.opentype

 	pyhanko.pdf_utils.generic

 	pyhanko.pdf_utils.images

 	pyhanko.pdf_utils.incremental_writer

 	pyhanko.pdf_utils.layout

 	pyhanko.pdf_utils.misc

 	pyhanko.pdf_utils.reader

 	pyhanko.pdf_utils.rw_common

 	pyhanko.pdf_utils.text

 	pyhanko.pdf_utils.writer

 	pyhanko.sign.ades.api

 	pyhanko.sign.ades.asn1_util

 	pyhanko.sign.ades.cades_asn1

 	pyhanko.sign.beid

 	pyhanko.sign.diff_analysis

 	pyhanko.sign.fields

 	pyhanko.sign.general

 	pyhanko.sign.pkcs11

 	pyhanko.sign.signers.cms_embedder

 	pyhanko.sign.signers.constants

 	pyhanko.sign.signers.csc_signer

 	pyhanko.sign.signers.functions

 	pyhanko.sign.signers.pdf_byterange

 	pyhanko.sign.signers.pdf_cms

 	pyhanko.sign.signers.pdf_signer

 	pyhanko.sign.timestamps.aiohttp_client

 	pyhanko.sign.timestamps.api

 	pyhanko.sign.timestamps.common_utils

 	pyhanko.sign.timestamps.dummy_client

 	pyhanko.sign.timestamps.requests_client

 	pyhanko.sign.validation

 	pyhanko.stamp

 	
 	module_path (pyhanko.config.PKCS11SignatureConfig attribute)

 	multivalued (pyhanko.pdf_utils.writer.DeveloperExtension attribute)

 	MultivaluedAttributeError

 	must_have_set() (pyhanko.sign.fields.SigCertKeyUsage method)

N

 	
 	name (pyhanko.pdf_utils.embed.RelatedFileSpec attribute)

 	(pyhanko.sign.signers.cms_embedder.SigAppearanceSetup attribute)

 	(pyhanko.sign.signers.pdf_signer.PdfSignatureMetadata attribute)

 	NameObject (class in pyhanko.pdf_utils.generic)

 	NEVER (pyhanko.pdf_utils.writer.DevExtensionMultivalued attribute)

 	new (pyhanko.sign.diff_analysis.FieldComparisonContext attribute)

 	new_field (pyhanko.sign.diff_analysis.FieldComparisonSpec property)

 	new_field_ref (pyhanko.sign.diff_analysis.FieldComparisonSpec attribute)

 	next_ts_settings (pyhanko.sign.signers.pdf_signer.DSSContentSettings attribute)

 	
 	NO_CHANGES (pyhanko.sign.fields.MDPPerm attribute)

 	NO_CHANGES_DIFF_POLICY (in module pyhanko.sign.diff_analysis)

 	NO_SCALING (pyhanko.pdf_utils.layout.InnerScaling attribute)

 	NONE (pyhanko.sign.diff_analysis.ModificationLevel attribute)

 	NonexistentAttributeError

 	NoticeNumbers (class in pyhanko.sign.ades.cades_asn1)

 	NoticeReference (class in pyhanko.sign.ades.cades_asn1)

 	NullObject (class in pyhanko.pdf_utils.generic)

 	NumberObject (class in pyhanko.pdf_utils.generic)

 	NumberPattern (pyhanko.pdf_utils.generic.NumberObject attribute)

O

 	
 	oauth_token (pyhanko.sign.signers.csc_signer.CSCServiceSessionInfo attribute)

 	object_streams (pyhanko.pdf_utils.writer.PdfFileWriter attribute)

 	object_streams_used() (pyhanko.pdf_utils.reader.HistoricalResolver method)

 	ObjectStream (class in pyhanko.pdf_utils.writer)

 	ObjectStreamRule (class in pyhanko.sign.diff_analysis)

 	ocsps (pyhanko.sign.validation.VRI attribute)

 	ocsps_to_embed (pyhanko.sign.signers.pdf_signer.PreSignValidationStatus attribute)

 	OID (pyhanko.sign.fields.SigCertConstraintFlags attribute)

 	old (pyhanko.sign.diff_analysis.FieldComparisonContext attribute)

 	old_canonical_path (pyhanko.sign.diff_analysis.FieldComparisonSpec attribute)

 	old_field (pyhanko.sign.diff_analysis.FieldComparisonSpec property)

 	old_field_ref (pyhanko.sign.diff_analysis.FieldComparisonSpec attribute)

 	on_page (pyhanko.sign.fields.SigFieldSpec attribute)

 	open_beid_session() (in module pyhanko.sign.beid)

 	open_pkcs11_session() (in module pyhanko.sign.pkcs11)

 	optimal_pss_params() (in module pyhanko.sign.general)

 	
 	OrderedEnum (class in pyhanko.pdf_utils.misc)

 	original_bytes (pyhanko.pdf_utils.generic.ByteStringObject property)

 	(pyhanko.pdf_utils.generic.TextStringObject property)

 	ot_language_tag (pyhanko.pdf_utils.font.opentype.GlyphAccumulatorFactory attribute)

 	ot_script_tag (pyhanko.pdf_utils.font.opentype.GlyphAccumulatorFactory attribute)

 	OTHER (pyhanko.pdf_utils.crypt.SecurityHandlerVersion attribute)

 	(pyhanko.pdf_utils.crypt.StandardSecuritySettingsRevision attribute)

 	(pyhanko.sign.diff_analysis.ModificationLevel attribute)

 	other_certs (pyhanko.config.PemDerSignatureConfig attribute)

 	(pyhanko.config.PKCS11SignatureConfig attribute)

 	(pyhanko.config.PKCS12SignatureConfig attribute)

 	other_certs_to_pull (pyhanko.config.PKCS11SignatureConfig attribute)

 	output (pyhanko.config.LogConfig attribute)

 	(pyhanko.sign.signers.cms_embedder.SigIOSetup attribute)

 	output_version (pyhanko.pdf_utils.writer.BasePdfFileWriter attribute)

 	OWNER (pyhanko.pdf_utils.crypt.AuthStatus attribute)

P

 	
 	PADES (pyhanko.sign.fields.SigSeedSubFilter attribute)

 	PADES_LT (pyhanko.sign.validation.RevocationInfoValidationType attribute)

 	PADES_LTA (pyhanko.sign.validation.RevocationInfoValidationType attribute)

 	PageObject (class in pyhanko.pdf_utils.writer)

 	parse_catalog_version() (in module pyhanko.pdf_utils.reader)

 	parse_cli_config() (in module pyhanko.config)

 	parse_csc_auth_response() (pyhanko.sign.signers.csc_signer.CSCAuthorizationManager static method)

 	parse_logging_config() (in module pyhanko.config)

 	parse_output_spec() (pyhanko.config.LogConfig static method)

 	parse_trust_config() (in module pyhanko.config)

 	paths_checked (pyhanko.sign.diff_analysis.ReferenceUpdate attribute)

 	PATTERN (pyhanko.pdf_utils.content.ResourceType attribute)

 	pdf (pyhanko.pdf_utils.generic.Reference attribute)

 	PDF_1_5 (pyhanko.sign.fields.SeedValueDictVersion attribute)

 	PDF_1_7 (pyhanko.sign.fields.SeedValueDictVersion attribute)

 	PDF_2_0 (pyhanko.sign.fields.SeedValueDictVersion attribute)

 	pdf_date() (in module pyhanko.pdf_utils.generic)

 	pdf_name (in module pyhanko.pdf_utils.generic)

 	pdf_string() (in module pyhanko.pdf_utils.generic)

 	PdfByteRangeDigest (class in pyhanko.sign.signers.pdf_byterange)

 	PdfCMSEmbedder (class in pyhanko.sign.signers.cms_embedder)

 	PdfCMSSignedAttributes (class in pyhanko.sign.signers.pdf_cms)

 	PdfContent (class in pyhanko.pdf_utils.content)

 	PdfError

 	PdfFileReader (class in pyhanko.pdf_utils.reader)

 	PdfFileWriter (class in pyhanko.pdf_utils.writer)

 	PdfHandler (class in pyhanko.pdf_utils.rw_common)

 	PdfImage (class in pyhanko.pdf_utils.images)

 	PdfObject (class in pyhanko.pdf_utils.generic)

 	PdfPostSignatureDocument (class in pyhanko.sign.signers.pdf_signer)

 	PdfReadError

 	PdfResources (class in pyhanko.pdf_utils.content)

 	PdfSignatureMetadata (class in pyhanko.sign.signers.pdf_signer)

 	PdfSignatureStatus (class in pyhanko.sign.validation)

 	PdfSignedData (class in pyhanko.sign.signers.pdf_byterange)

 	PdfSigner (class in pyhanko.sign.signers.pdf_signer)

 	PdfSigningSession (class in pyhanko.sign.signers.pdf_signer)

 	PdfStreamBarcodeWriter (class in pyhanko.pdf_utils.barcodes)

 	PdfStreamError

 	PdfTBSDocument (class in pyhanko.sign.signers.pdf_signer)

 	PdfTimeStamper (class in pyhanko.sign.signers.pdf_signer)

 	PdfWriteError

 	peek() (in module pyhanko.pdf_utils.misc)

 	pemder_setups (pyhanko.config.CLIConfig attribute)

 	PemDerSignatureConfig (class in pyhanko.config)

 	perform_presign_validation() (pyhanko.sign.signers.pdf_signer.PdfSigningSession method)

 	perform_signature() (pyhanko.sign.signers.pdf_signer.PdfTBSDocument method)

 	permission (pyhanko.sign.validation.DocMDPInfo property)

 	permission_flags (pyhanko.pdf_utils.crypt.AuthResult attribute)

 	pfx_file (pyhanko.config.PKCS12SignatureConfig attribute)

 	pfx_passphrase (pyhanko.config.PKCS12SignatureConfig attribute)

 	pil_image() (in module pyhanko.pdf_utils.images)

 	pkcs11_setups (pyhanko.config.CLIConfig attribute)

 	PKCS11SignatureConfig (class in pyhanko.config)

 	PKCS11Signer (class in pyhanko.sign.pkcs11)

 	PKCS11SigningContext (class in pyhanko.sign.pkcs11)

 	pkcs12_setups (pyhanko.config.CLIConfig attribute)

 	PKCS12SignatureConfig (class in pyhanko.config)

 	pkcs7_signature_mechanism (pyhanko.sign.general.SignatureStatus attribute)

 	placement (pyhanko.sign.signers.pdf_signer.DSSContentSettings attribute)

 	Positioning (class in pyhanko.pdf_utils.layout)

 	post_signature_processing() (pyhanko.sign.signers.pdf_signer.PdfPostSignatureDocument method)

 	PostSignInstructions (class in pyhanko.sign.signers.pdf_signer)

 	prefer_pss (pyhanko.config.PemDerSignatureConfig attribute)

 	(pyhanko.config.PKCS11SignatureConfig attribute)

 	(pyhanko.config.PKCS12SignatureConfig attribute)

 	PrefetchedSADAuthorizationManager (class in pyhanko.sign.signers.csc_signer)

 	prefix_name (pyhanko.pdf_utils.writer.DeveloperExtension attribute)

 	prepare_object_stream() (pyhanko.pdf_utils.writer.BasePdfFileWriter method)

 	prepare_providers() (pyhanko.sign.ades.api.CAdESSignedAttrSpec method)

 	prepare_rw_output_stream() (in module pyhanko.pdf_utils.misc)

 	prepare_sig_field() (in module pyhanko.sign.fields)

 	prepare_tbs_document() (pyhanko.sign.signers.pdf_signer.PdfSigningSession method)

 	prepare_write() (pyhanko.pdf_utils.font.api.FontEngine method)

 	(pyhanko.pdf_utils.font.opentype.GlyphAccumulator method)

 	PreparedByteRangeDigest (class in pyhanko.sign.signers.pdf_byterange)

 	PreSignValidationStatus (class in pyhanko.sign.signers.pdf_signer)

 	pretty_print_details() (pyhanko.sign.validation.StandardCMSSignatureStatus method)

 	pretty_print_sections() (pyhanko.sign.validation.PdfSignatureStatus method)

 	(pyhanko.sign.validation.StandardCMSSignatureStatus method)

 	process_bit_string_flags() (in module pyhanko.pdf_utils.config_utils)

 	process_config_dict() (in module pyhanko.config)

 	process_crypt_filters() (pyhanko.pdf_utils.crypt.PubKeySecurityHandler class method)

 	(pyhanko.pdf_utils.crypt.SecurityHandler class method)

 	process_entries() (pyhanko.config.PemDerSignatureConfig class method)

 	(pyhanko.config.PKCS11SignatureConfig class method)

 	(pyhanko.config.PKCS12SignatureConfig class method)

 	(pyhanko.pdf_utils.config_utils.ConfigurableMixin class method)

 	(pyhanko.pdf_utils.layout.SimpleBoxLayoutRule class method)

 	(pyhanko.pdf_utils.text.TextStyle class method)

 	(pyhanko.sign.general.KeyUsageConstraints class method)

 	(pyhanko.stamp.BaseStampStyle class method)

 	(pyhanko.stamp.QRStampStyle class method)

 	process_oid() (in module pyhanko.pdf_utils.config_utils)

 	process_oids() (in module pyhanko.pdf_utils.config_utils)

 	prompt_passphrase (pyhanko.config.PemDerSignatureConfig attribute)

 	(pyhanko.config.PKCS12SignatureConfig attribute)

 	
 	prompt_pin (pyhanko.config.PKCS11SignatureConfig attribute)

 	PROOF_OF_APPROVAL (pyhanko.sign.ades.api.GenericCommitment attribute)

 	PROOF_OF_CREATION (pyhanko.sign.ades.api.GenericCommitment attribute)

 	PROOF_OF_DELIVERY (pyhanko.sign.ades.api.GenericCommitment attribute)

 	PROOF_OF_ORIGIN (pyhanko.sign.ades.api.GenericCommitment attribute)

 	PROOF_OF_RECEIPT (pyhanko.sign.ades.api.GenericCommitment attribute)

 	PROOF_OF_SENDER (pyhanko.sign.ades.api.GenericCommitment attribute)

 	PROPERTIES (pyhanko.pdf_utils.content.ResourceType attribute)

 	PubKeyAdbeSubFilter (class in pyhanko.pdf_utils.crypt)

 	PubKeyAESCryptFilter (class in pyhanko.pdf_utils.crypt)

 	PubKeyCryptFilter (class in pyhanko.pdf_utils.crypt)

 	PubKeyRC4CryptFilter (class in pyhanko.pdf_utils.crypt)

 	PubKeySecurityHandler (class in pyhanko.pdf_utils.crypt)

 	put_string_line() (pyhanko.pdf_utils.text.TextBox method)

 	
 pyhanko.config

 	module

 	
 pyhanko.pdf_utils.barcodes

 	module

 	
 pyhanko.pdf_utils.config_utils

 	module

 	
 pyhanko.pdf_utils.content

 	module

 	
 pyhanko.pdf_utils.crypt

 	module

 	
 pyhanko.pdf_utils.embed

 	module

 	
 pyhanko.pdf_utils.filters

 	module

 	
 pyhanko.pdf_utils.font.api

 	module

 	
 pyhanko.pdf_utils.font.basic

 	module

 	
 pyhanko.pdf_utils.font.opentype

 	module

 	
 pyhanko.pdf_utils.generic

 	module

 	
 pyhanko.pdf_utils.images

 	module

 	
 pyhanko.pdf_utils.incremental_writer

 	module

 	
 pyhanko.pdf_utils.layout

 	module

 	
 pyhanko.pdf_utils.misc

 	module

 	
 pyhanko.pdf_utils.reader

 	module

 	
 pyhanko.pdf_utils.rw_common

 	module

 	
 pyhanko.pdf_utils.text

 	module

 	
 pyhanko.pdf_utils.writer

 	module

 	
 pyhanko.sign.ades.api

 	module

 	
 pyhanko.sign.ades.asn1_util

 	module

 	
 pyhanko.sign.ades.cades_asn1

 	module

 	
 pyhanko.sign.beid

 	module

 	
 pyhanko.sign.diff_analysis

 	module

 	
 pyhanko.sign.fields

 	module

 	
 pyhanko.sign.general

 	module

 	
 pyhanko.sign.pkcs11

 	module

 	
 pyhanko.sign.signers.cms_embedder

 	module

 	
 pyhanko.sign.signers.constants

 	module

 	
 pyhanko.sign.signers.csc_signer

 	module

 	
 pyhanko.sign.signers.functions

 	module

 	
 pyhanko.sign.signers.pdf_byterange

 	module

 	
 pyhanko.sign.signers.pdf_cms

 	module

 	
 pyhanko.sign.signers.pdf_signer

 	module

 	
 pyhanko.sign.timestamps.aiohttp_client

 	module

 	
 pyhanko.sign.timestamps.api

 	module

 	
 pyhanko.sign.timestamps.common_utils

 	module

 	
 pyhanko.sign.timestamps.dummy_client

 	module

 	
 pyhanko.sign.timestamps.requests_client

 	module

 	
 pyhanko.sign.validation

 	module

 	
 pyhanko.stamp

 	module

Q

 	
 	qr_inner_size (pyhanko.stamp.QRStampStyle attribute)

 	qr_position (pyhanko.stamp.QRStampStyle attribute)

 	qr_stamp_file() (in module pyhanko.stamp)

 	QRPosition (class in pyhanko.stamp)

 	
 	QRStamp (class in pyhanko.stamp)

 	QRStampStyle (class in pyhanko.stamp)

 	QualifiedWhitelistRule (class in pyhanko.sign.diff_analysis)

 	qualify() (in module pyhanko.sign.diff_analysis)

R

 	
 	raw_get() (pyhanko.pdf_utils.generic.ArrayObject method)

 	(pyhanko.pdf_utils.generic.DictionaryObject method)

 	raw_mechanism (pyhanko.config.PKCS11SignatureConfig attribute)

 	RawContent (class in pyhanko.pdf_utils.content)

 	RC4_40 (pyhanko.pdf_utils.crypt.SecurityHandlerVersion attribute)

 	RC4_BASIC (pyhanko.pdf_utils.crypt.StandardSecuritySettingsRevision attribute)

 	RC4_EXTENDED (pyhanko.pdf_utils.crypt.StandardSecuritySettingsRevision attribute)

 	RC4_LONGER_KEYS (pyhanko.pdf_utils.crypt.SecurityHandlerVersion attribute)

 	RC4_OR_AES128 (pyhanko.pdf_utils.crypt.SecurityHandlerVersion attribute)

 	(pyhanko.pdf_utils.crypt.StandardSecuritySettingsRevision attribute)

 	RC4CryptFilterMixin (class in pyhanko.pdf_utils.crypt)

 	rd() (in module pyhanko.pdf_utils.misc)

 	read() (pyhanko.pdf_utils.reader.PdfFileReader method)

 	read_certification_data() (in module pyhanko.sign.validation)

 	read_cf_dictionary() (pyhanko.pdf_utils.crypt.PubKeySecurityHandler class method)

 	(pyhanko.pdf_utils.crypt.SecurityHandler class method)

 	read_dss() (pyhanko.sign.validation.DocumentSecurityStore class method)

 	read_from_stream() (pyhanko.pdf_utils.generic.ArrayObject static method)

 	(pyhanko.pdf_utils.generic.BooleanObject static method)

 	(pyhanko.pdf_utils.generic.DictionaryObject static method)

 	(pyhanko.pdf_utils.generic.IndirectObject static method)

 	(pyhanko.pdf_utils.generic.NameObject static method)

 	(pyhanko.pdf_utils.generic.NullObject static method)

 	(pyhanko.pdf_utils.generic.NumberObject static method)

 	read_from_sv_string() (pyhanko.sign.fields.SigCertKeyUsage class method)

 	read_non_whitespace() (in module pyhanko.pdf_utils.misc)

 	read_object() (in module pyhanko.pdf_utils.generic)

 	read_until_regex() (in module pyhanko.pdf_utils.misc)

 	read_until_whitespace() (in module pyhanko.pdf_utils.misc)

 	reason (pyhanko.sign.signers.pdf_signer.PdfSignatureMetadata attribute)

 	REASONS (pyhanko.sign.fields.SigSeedValFlags attribute)

 	reasons (pyhanko.sign.fields.SigSeedValueSpec attribute)

 	Reference (class in pyhanko.pdf_utils.generic)

 	ReferenceUpdate (class in pyhanko.sign.diff_analysis)

 	refs_freed_in_revision() (pyhanko.pdf_utils.reader.HistoricalResolver method)

 	register() (pyhanko.pdf_utils.crypt.SecurityHandler static method)

 	(pyhanko.sign.general.CertificateStore method)

 	(pyhanko.sign.general.SimpleCertificateStore method)

 	(pyhanko.stamp.BaseStamp method)

 	register_and_emit() (pyhanko.pdf_utils.writer.ObjectStream method)

 	register_annotation() (pyhanko.pdf_utils.writer.BasePdfFileWriter method)

 	register_cms_attribute() (in module pyhanko.sign.ades.asn1_util)

 	register_crypt_filter() (pyhanko.pdf_utils.crypt.SecurityHandler class method)

 	
 	register_extension() (pyhanko.pdf_utils.writer.BasePdfFileWriter method)

 	register_multiple() (pyhanko.sign.general.CertificateStore method)

 	register_vri() (pyhanko.sign.validation.DocumentSecurityStore method)

 	register_widget_annotation() (pyhanko.sign.fields.SignatureFormField method)

 	RelatedFileSpec (class in pyhanko.pdf_utils.embed)

 	render() (pyhanko.pdf_utils.barcodes.BarcodeBox method)

 	(pyhanko.pdf_utils.content.ImportedPdfPage method)

 	(pyhanko.pdf_utils.content.PdfContent method)

 	(pyhanko.pdf_utils.content.RawContent method)

 	(pyhanko.pdf_utils.images.PdfImage method)

 	(pyhanko.pdf_utils.text.TextBox method)

 	(pyhanko.stamp.BaseStamp method)

 	request_cms() (pyhanko.sign.timestamps.api.TimeStamper method)

 	request_headers() (pyhanko.sign.timestamps.requests_client.HTTPTimeStamper method)

 	request_tsa_response() (pyhanko.sign.timestamps.dummy_client.DummyTimeStamper method)

 	RESERVED (pyhanko.sign.fields.SigCertConstraintFlags attribute)

 	reserved_region_end (pyhanko.sign.signers.pdf_byterange.PreparedByteRangeDigest attribute)

 	reserved_region_start (pyhanko.sign.signers.pdf_byterange.PreparedByteRangeDigest attribute)

 	ResourceManagementError

 	resources (pyhanko.pdf_utils.content.PdfContent property)

 	ResourceType (class in pyhanko.pdf_utils.content)

 	response_data (pyhanko.sign.signers.csc_signer.CSCCredentialInfo attribute)

 	resume_signing() (pyhanko.sign.signers.pdf_signer.PdfTBSDocument class method)

 	retrieve_by_issuer_serial() (pyhanko.sign.general.SimpleCertificateStore method)

 	retrieve_by_name() (pyhanko.sign.general.SimpleCertificateStore method)

 	retrieve_many_by_key_identifier() (pyhanko.sign.general.SimpleCertificateStore method)

 	retroactive_revinfo (pyhanko.config.CLIConfig attribute)

 	review_file() (pyhanko.sign.diff_analysis.DiffPolicy method)

 	(pyhanko.sign.diff_analysis.StandardDiffPolicy method)

 	RevocationInfoValidationType (class in pyhanko.sign.validation)

 	revoked (pyhanko.sign.general.SignatureStatus attribute)

 	
 RFC

 	RFC 3161, [1], [2], [3], [4], [5], [6]

 	RFC 5126

 	RFC 5280, [1], [2], [3], [4], [5], [6], [7]

 	RFC 5652, [1], [2], [3]

 	RFC 8933, [1], [2]

 	right (pyhanko.pdf_utils.layout.Margins attribute)

 	RIGHT_OF_TEXT (pyhanko.stamp.QRPosition attribute)

 	root (pyhanko.pdf_utils.rw_common.PdfHandler property)

 	root_ref (pyhanko.pdf_utils.reader.HistoricalResolver property)

 	(pyhanko.pdf_utils.reader.PdfFileReader property)

 	(pyhanko.pdf_utils.rw_common.PdfHandler property)

 	(pyhanko.pdf_utils.writer.BasePdfFileWriter property)

S

 	
 	S3 (pyhanko.pdf_utils.crypt.PubKeyAdbeSubFilter attribute)

 	S4 (pyhanko.pdf_utils.crypt.PubKeyAdbeSubFilter attribute)

 	S5 (pyhanko.pdf_utils.crypt.PubKeyAdbeSubFilter attribute)

 	sad (pyhanko.sign.signers.csc_signer.CSCAuthorizationInfo attribute)

 	satisfied_by() (pyhanko.sign.fields.SigCertConstraints method)

 	save() (pyhanko.pdf_utils.barcodes.PdfStreamBarcodeWriter method)

 	security_handler (pyhanko.pdf_utils.writer.PdfFileWriter attribute)

 	SecurityHandler (class in pyhanko.pdf_utils.crypt)

 	SecurityHandlerVersion (class in pyhanko.pdf_utils.crypt)

 	seed_signature_type (pyhanko.sign.fields.SigSeedValueSpec attribute)

 	seed_value_constraint_error (pyhanko.sign.validation.PdfSignatureStatus attribute)

 	seed_value_dict (pyhanko.sign.fields.SigFieldSpec attribute)

 	seed_value_ok (pyhanko.sign.validation.PdfSignatureStatus property)

 	seed_value_spec (pyhanko.sign.validation.EmbeddedPdfSignature property)

 	SeedLockDocument (class in pyhanko.sign.fields)

 	SeedValueDictVersion (class in pyhanko.sign.fields)

 	select_suitable_signing_md() (in module pyhanko.sign.signers.pdf_cms)

 	self_reported_timestamp (pyhanko.sign.validation.EmbeddedPdfSignature property)

 	SEPARATE_REVISION (pyhanko.sign.signers.pdf_signer.SigDSSPlacementPreference attribute)

 	service_url (pyhanko.sign.signers.csc_signer.CSCServiceSessionInfo attribute)

 	set_custom_trailer_entry() (pyhanko.pdf_utils.incremental_writer.IncrementalPdfFileWriter method)

 	(pyhanko.pdf_utils.writer.BasePdfFileWriter method)

 	(pyhanko.pdf_utils.writer.PdfFileWriter method)

 	set_embedded_only() (pyhanko.pdf_utils.crypt.CryptFilter method)

 	set_info() (pyhanko.pdf_utils.incremental_writer.IncrementalPdfFileWriter method)

 	(pyhanko.pdf_utils.writer.BasePdfFileWriter method)

 	set_resource() (pyhanko.pdf_utils.content.PdfContent method)

 	set_security_handler() (pyhanko.pdf_utils.crypt.CryptFilterConfiguration method)

 	set_tsp_headers() (in module pyhanko.sign.timestamps.common_utils)

 	set_writer() (pyhanko.pdf_utils.content.PdfContent method)

 	setdefault() (pyhanko.pdf_utils.generic.DictionaryObject method)

 	SHADING (pyhanko.pdf_utils.content.ResourceType attribute)

 	shape() (pyhanko.pdf_utils.font.api.FontEngine method)

 	(pyhanko.pdf_utils.font.basic.SimpleFontEngine method)

 	(pyhanko.pdf_utils.font.opentype.GlyphAccumulator method)

 	ShapeResult (class in pyhanko.pdf_utils.font.api)

 	shared_key (pyhanko.pdf_utils.crypt.CryptFilter property)

 	SHRINK_TO_FIT (pyhanko.pdf_utils.layout.InnerScaling attribute)

 	sig_content_identifier() (pyhanko.sign.validation.DocumentSecurityStore static method)

 	SIG_DETAILS_DEFAULT_TEMPLATE (in module pyhanko.sign.signers.constants)

 	sig_field (pyhanko.sign.validation.EmbeddedPdfSignature attribute)

 	sig_field_name (pyhanko.sign.fields.SigFieldSpec attribute)

 	sig_object (pyhanko.sign.validation.EmbeddedPdfSignature attribute)

 	sig_object_type (pyhanko.sign.validation.EmbeddedPdfSignature property)

 	sig_placeholder (pyhanko.sign.signers.cms_embedder.SigObjSetup attribute)

 	SigAppearanceSetup (class in pyhanko.sign.signers.cms_embedder)

 	SigCertConstraintFlags (class in pyhanko.sign.fields)

 	SigCertConstraints (class in pyhanko.sign.fields)

 	SigCertKeyUsage (class in pyhanko.sign.fields)

 	SigDSSPlacementPreference (class in pyhanko.sign.signers.pdf_signer)

 	SigFieldCreationRule (class in pyhanko.sign.diff_analysis)

 	SigFieldModificationRule (class in pyhanko.sign.diff_analysis)

 	SigFieldSpec (class in pyhanko.sign.fields)

 	SigIOSetup (class in pyhanko.sign.signers.cms_embedder)

 	SigMDPSetup (class in pyhanko.sign.signers.cms_embedder)

 	sign() (pyhanko.sign.signers.pdf_cms.Signer method)

 	sign_general_data() (pyhanko.sign.signers.pdf_cms.Signer method)

 	sign_pdf() (in module pyhanko.sign.signers.functions)

 	(pyhanko.sign.signers.pdf_signer.PdfSigner method)

 	sign_prescribed_attributes() (pyhanko.sign.signers.pdf_cms.Signer method)

 	sign_raw() (pyhanko.sign.signers.pdf_cms.SimpleSigner method)

 	signature_mechanism (pyhanko.sign.signers.pdf_cms.Signer attribute)

 	signature_policy_identifier (pyhanko.sign.ades.api.CAdESSignedAttrSpec attribute)

 	SignatureCoverageLevel (class in pyhanko.sign.validation)

 	SignatureFormField (class in pyhanko.sign.fields)

 	SignatureObject (class in pyhanko.sign.signers.pdf_byterange)

 	SignaturePolicyDocument (class in pyhanko.sign.ades.cades_asn1)

 	SignaturePolicyId (class in pyhanko.sign.ades.cades_asn1)

 	SignaturePolicyIdentifier (class in pyhanko.sign.ades.cades_asn1)

 	SignaturePolicyStore (class in pyhanko.sign.ades.cades_asn1)

 	SignatureStatus (class in pyhanko.sign.general)

 	SignatureValidationError

 	signed_attrs() (pyhanko.sign.signers.pdf_cms.Signer method)

 	signed_data (pyhanko.sign.validation.EmbeddedPdfSignature attribute)

 	Signer (class in pyhanko.sign.signers.pdf_cms)

 	signer_cert (pyhanko.sign.validation.EmbeddedPdfSignature attribute)

 	SIGNER_DISCRETION (pyhanko.sign.fields.SeedLockDocument attribute)

 	signer_info() (pyhanko.sign.signers.pdf_cms.Signer method)

 	signer_key_usage (pyhanko.sign.signers.pdf_signer.PdfSignatureMetadata attribute)

 	signer_path (pyhanko.sign.signers.pdf_signer.PreSignValidationStatus attribute)

 	signer_reported_dt (pyhanko.sign.validation.StandardCMSSignatureStatus attribute)

 	signing_cert (pyhanko.sign.general.SignatureStatus attribute)

 	(pyhanko.sign.pkcs11.PKCS11Signer property)

 	(pyhanko.sign.signers.csc_signer.CSCCredentialInfo attribute)

 	(pyhanko.sign.signers.csc_signer.CSCSigner attribute)

 	(pyhanko.sign.signers.pdf_cms.ExternalSigner attribute)

 	(pyhanko.sign.signers.pdf_cms.Signer attribute)

 	
 	signing_certificate (pyhanko.config.PKCS11SignatureConfig attribute)

 	signing_key (pyhanko.sign.signers.pdf_cms.SimpleSigner attribute)

 	signing_time (pyhanko.sign.signers.pdf_cms.PdfCMSSignedAttributes attribute)

 	SigningError

 	SigObjSetup (class in pyhanko.sign.signers.cms_embedder)

 	SigPolicyQualifierId (class in pyhanko.sign.ades.cades_asn1)

 	SigPolicyQualifierInfo (class in pyhanko.sign.ades.cades_asn1)

 	SigPolicyQualifierInfos (class in pyhanko.sign.ades.cades_asn1)

 	SigSeedSubFilter (class in pyhanko.sign.fields)

 	SigSeedValFlags (class in pyhanko.sign.fields)

 	SigSeedValueSpec (class in pyhanko.sign.fields)

 	SigSeedValueValidationError

 	simple_cms_attribute() (in module pyhanko.sign.general)

 	SimpleBoxLayoutRule (class in pyhanko.pdf_utils.layout)

 	SimpleCertificateStore (class in pyhanko.sign.general)

 	SimpleEnvelopeKeyDecrypter (class in pyhanko.pdf_utils.crypt)

 	SimpleFontEngine (class in pyhanko.pdf_utils.font.basic)

 	SimpleFontEngineFactory (class in pyhanko.pdf_utils.font.basic)

 	SimpleSigner (class in pyhanko.sign.signers.pdf_cms)

 	sing() (pyhanko.pdf_utils.misc.ConsList static method)

 	Singleton (class in pyhanko.pdf_utils.misc)

 	skip_if_unneeded (pyhanko.sign.signers.pdf_signer.GeneralDSSContentSettings attribute)

 	skip_over_comment() (in module pyhanko.pdf_utils.misc)

 	skip_over_whitespace() (in module pyhanko.pdf_utils.misc)

 	slot_no (pyhanko.config.PKCS11SignatureConfig attribute)

 	SPDocSpecification (class in pyhanko.sign.ades.cades_asn1)

 	SPUserNotice (class in pyhanko.sign.ades.cades_asn1)

 	STAMP_ART_CONTENT (in module pyhanko.stamp)

 	stamp_styles (pyhanko.config.CLIConfig attribute)

 	stamp_text (pyhanko.stamp.QRStampStyle attribute)

 	(pyhanko.stamp.TextStampStyle attribute)

 	standard_filters() (pyhanko.pdf_utils.crypt.CryptFilterConfiguration method)

 	StandardAESCryptFilter (class in pyhanko.pdf_utils.crypt)

 	StandardCMSSignatureStatus (class in pyhanko.sign.validation)

 	StandardCryptFilter (class in pyhanko.pdf_utils.crypt)

 	StandardDiffPolicy (class in pyhanko.sign.diff_analysis)

 	StandardRC4CryptFilter (class in pyhanko.pdf_utils.crypt)

 	StandardSecurityHandler (class in pyhanko.pdf_utils.crypt)

 	StandardSecuritySettingsRevision (class in pyhanko.pdf_utils.crypt)

 	StaticContentStamp (class in pyhanko.stamp)

 	StaticStampStyle (class in pyhanko.stamp)

 	status (pyhanko.pdf_utils.crypt.AuthResult attribute)

 	STD_CF (in module pyhanko.pdf_utils.crypt)

 	STDERR (pyhanko.config.StdLogOutput attribute)

 	StdLogOutput (class in pyhanko.config)

 	STDOUT (pyhanko.config.StdLogOutput attribute)

 	stream_filter_name (pyhanko.pdf_utils.crypt.CryptFilterConfiguration property)

 	stream_xrefs (pyhanko.pdf_utils.incremental_writer.IncrementalPdfFileWriter attribute)

 	(pyhanko.pdf_utils.writer.BasePdfFileWriter attribute)

 	(pyhanko.pdf_utils.writer.PdfFileWriter attribute)

 	StreamObject (class in pyhanko.pdf_utils.generic)

 	STRETCH_FILL (pyhanko.pdf_utils.layout.InnerScaling attribute)

 	STRETCH_TO_FIT (pyhanko.pdf_utils.layout.InnerScaling attribute)

 	string_filter_name (pyhanko.pdf_utils.crypt.CryptFilterConfiguration property)

 	strip_filters() (pyhanko.pdf_utils.generic.StreamObject method)

 	style (pyhanko.sign.signers.cms_embedder.SigAppearanceSetup attribute)

 	SUBFILTER (pyhanko.sign.fields.SigSeedValFlags attribute)

 	subfilter (pyhanko.sign.signers.pdf_signer.PdfSignatureMetadata attribute)

 	subfilters (pyhanko.sign.fields.SigSeedValueSpec attribute)

 	SUBJECT (pyhanko.sign.fields.SigCertConstraintFlags attribute)

 	SUBJECT_DN (pyhanko.sign.fields.SigCertConstraintFlags attribute)

 	subject_dn (pyhanko.sign.fields.SigCertConstraints attribute)

 	subject_name (pyhanko.sign.signers.pdf_cms.Signer property)

 	subjects (pyhanko.sign.fields.SigCertConstraints attribute)

 	subsets (pyhanko.pdf_utils.font.api.FontSubsetCollection attribute)

 	substitute_margins() (pyhanko.pdf_utils.layout.SimpleBoxLayoutRule method)

 	subsumed_by (pyhanko.pdf_utils.writer.DeveloperExtension attribute)

 	subsumes (pyhanko.pdf_utils.writer.DeveloperExtension attribute)

 	summarise_integrity_info() (pyhanko.sign.validation.EmbeddedPdfSignature method)

 	summary() (pyhanko.sign.general.SignatureStatus method)

 	summary_fields() (pyhanko.sign.general.SignatureStatus method)

 	(pyhanko.sign.validation.PdfSignatureStatus method)

 	(pyhanko.sign.validation.StandardCMSSignatureStatus method)

 	supply_dss_in_writer() (pyhanko.sign.validation.DocumentSecurityStore class method)

 	support_generic_subfilters() (pyhanko.pdf_utils.crypt.PubKeySecurityHandler class method)

 	(pyhanko.pdf_utils.crypt.SecurityHandler class method)

 	supported_mechanisms (pyhanko.sign.signers.csc_signer.CSCCredentialInfo attribute)

 	SuspiciousModification

 	sv_dict_version (pyhanko.sign.fields.SigSeedValueSpec attribute)

T

 	
 	tail (pyhanko.pdf_utils.misc.ConsList attribute)

 	text_box_style (pyhanko.stamp.TextStampStyle attribute)

 	text_params (pyhanko.sign.signers.cms_embedder.SigAppearanceSetup attribute)

 	text_stamp_file() (in module pyhanko.stamp)

 	TextBox (class in pyhanko.pdf_utils.text)

 	TextBoxStyle (class in pyhanko.pdf_utils.text)

 	TextStamp (class in pyhanko.stamp)

 	TextStampStyle (class in pyhanko.stamp)

 	TextStringObject (class in pyhanko.pdf_utils.generic)

 	TextStyle (class in pyhanko.pdf_utils.text)

 	tight_size_estimates (pyhanko.sign.signers.pdf_signer.PdfSignatureMetadata attribute)

 	(pyhanko.sign.signers.pdf_signer.PostSignInstructions attribute)

 	time_tolerance (pyhanko.config.CLIConfig attribute)

 	timestamp (pyhanko.sign.signers.cms_embedder.SigAppearanceSetup attribute)

 	(pyhanko.sign.timestamps.api.TimestampSignatureStatus attribute)

 	timestamp_content (pyhanko.sign.ades.api.CAdESSignedAttrSpec attribute)

 	timestamp_field_name (pyhanko.sign.signers.pdf_signer.PdfSignatureMetadata attribute)

 	(pyhanko.sign.signers.pdf_signer.PostSignInstructions attribute)

 	timestamp_format (pyhanko.stamp.TextStampStyle attribute)

 	timestamp_md_algorithm (pyhanko.sign.signers.pdf_signer.PostSignInstructions attribute)

 	
 	timestamp_pdf() (pyhanko.sign.signers.pdf_signer.PdfTimeStamper method)

 	timestamp_required (pyhanko.sign.fields.SigSeedValueSpec attribute)

 	timestamp_server_url (pyhanko.sign.fields.SigSeedValueSpec attribute)

 	timestamp_validity (pyhanko.sign.validation.StandardCMSSignatureStatus attribute)

 	TimestampDSSContentSettings (class in pyhanko.sign.signers.pdf_signer)

 	TimeStamper (class in pyhanko.sign.timestamps.api)

 	timestamper (pyhanko.sign.signers.pdf_signer.PostSignInstructions attribute)

 	TimestampRequestError

 	TimestampSignatureStatus (class in pyhanko.sign.timestamps.api)

 	TOGETHER_WITH_NEXT_TS (pyhanko.sign.signers.pdf_signer.SigDSSPlacementPreference attribute)

 	TOGETHER_WITH_SIGNATURE (pyhanko.sign.signers.pdf_signer.SigDSSPlacementPreference attribute)

 	token_label (pyhanko.config.PKCS11SignatureConfig attribute)

 	top (pyhanko.pdf_utils.layout.Margins attribute)

 	total_revisions (pyhanko.pdf_utils.reader.PdfFileReader property)

 	trailer_view (pyhanko.pdf_utils.reader.HistoricalResolver property)

 	(pyhanko.pdf_utils.reader.PdfFileReader property)

 	(pyhanko.pdf_utils.rw_common.PdfHandler property)

 	(pyhanko.pdf_utils.writer.BasePdfFileWriter property)

 	TrailerReference (class in pyhanko.pdf_utils.generic)

 	trusted (pyhanko.sign.general.SignatureStatus attribute)

 	ts_validation_paths (pyhanko.sign.signers.pdf_signer.PreSignValidationStatus attribute)

U

 	
 	uf_related_files (pyhanko.pdf_utils.embed.FileSpec attribute)

 	UnacceptableSignerError

 	UNCLEAR (pyhanko.sign.validation.SignatureCoverageLevel attribute)

 	uniform() (pyhanko.pdf_utils.layout.Margins class method)

 	unsigned_attrs() (pyhanko.sign.signers.pdf_cms.Signer method)

 	UNSUPPORTED (pyhanko.sign.fields.SigCertConstraintFlags attribute)

 	update_archival_timestamp_chain() (pyhanko.sign.signers.pdf_signer.PdfTimeStamper method)

 	update_before_ts (pyhanko.sign.signers.pdf_signer.TimestampDSSContentSettings attribute)

 	update_container() (pyhanko.pdf_utils.incremental_writer.IncrementalPdfFileWriter method)

 	(pyhanko.pdf_utils.writer.BasePdfFileWriter method)

 	
 	update_root() (pyhanko.pdf_utils.incremental_writer.IncrementalPdfFileWriter method)

 	(pyhanko.pdf_utils.writer.BasePdfFileWriter method)

 	updated_ref (pyhanko.sign.diff_analysis.ReferenceUpdate attribute)

 	url (pyhanko.pdf_utils.writer.DeveloperExtension attribute)

 	URL (pyhanko.sign.fields.SigCertConstraintFlags attribute)

 	url_type (pyhanko.sign.fields.SigCertConstraints attribute)

 	use_pades_lta (pyhanko.sign.signers.pdf_signer.PdfSignatureMetadata attribute)

 	USER (pyhanko.pdf_utils.crypt.AuthStatus attribute)

 	user_pin (pyhanko.config.PKCS11SignatureConfig attribute)

 	uses_complex_positioning (pyhanko.pdf_utils.font.api.FontEngine property)

 	(pyhanko.pdf_utils.font.basic.SimpleFontEngine property)

V

 	
 	V (pyhanko.sign.fields.SigSeedValFlags attribute)

 	valid (pyhanko.sign.general.SignatureStatus attribute)

 	valid_when_certifying (pyhanko.sign.diff_analysis.FormUpdate attribute)

 	valid_when_locked (pyhanko.sign.diff_analysis.FormUpdate attribute)

 	validate() (pyhanko.sign.general.KeyUsageConstraints method)

 	validate_cert_usage() (pyhanko.sign.general.SignatureStatus class method)

 	validate_cms_signature() (in module pyhanko.sign.validation)

 	validate_detached_cms() (in module pyhanko.sign.validation)

 	validate_pdf_ltv_signature() (in module pyhanko.sign.validation)

 	validate_pdf_signature() (in module pyhanko.sign.validation)

 	
 	validate_pdf_timestamp() (in module pyhanko.sign.validation)

 	validate_sig_integrity() (in module pyhanko.sign.general)

 	validation_context (pyhanko.sign.signers.pdf_signer.PdfSignatureMetadata attribute)

 	validation_contexts (pyhanko.config.CLIConfig attribute)

 	validation_info (pyhanko.sign.signers.pdf_signer.PostSignInstructions attribute)

 	validation_path (pyhanko.sign.general.SignatureStatus attribute)

 	validation_paths (pyhanko.sign.signers.pdf_signer.PreSignValidationStatus attribute)

 	validation_paths() (pyhanko.sign.timestamps.api.TimeStamper method)

 	ValidationInfoReadingError

 	vertical_text (pyhanko.pdf_utils.text.TextBoxStyle attribute)

 	VRI (class in pyhanko.sign.validation)

W

 	
 	WeakHashAlgorithmError

 	WhitelistRule (class in pyhanko.sign.diff_analysis)

 	width (pyhanko.pdf_utils.layout.BoxConstraints property)

 	width_defined (pyhanko.pdf_utils.layout.BoxConstraints property)

 	wrap_encrypted_payload() (in module pyhanko.pdf_utils.embed)

 	write() (pyhanko.pdf_utils.barcodes.PdfStreamBarcodeWriter method)

 	(pyhanko.pdf_utils.incremental_writer.IncrementalPdfFileWriter method)

 	(pyhanko.pdf_utils.writer.BasePdfFileWriter method)

 	write_cms() (pyhanko.sign.signers.cms_embedder.PdfCMSEmbedder method)

 	write_in_place() (pyhanko.pdf_utils.incremental_writer.IncrementalPdfFileWriter method)

 	write_to_stream() (pyhanko.pdf_utils.embed.EmbeddedFileObject method)

 	(pyhanko.pdf_utils.generic.ArrayObject method)

 	(pyhanko.pdf_utils.generic.BooleanObject method)

 	(pyhanko.pdf_utils.generic.ByteStringObject method)

 	(pyhanko.pdf_utils.generic.DictionaryObject method)

 	(pyhanko.pdf_utils.generic.FloatObject method)

 	(pyhanko.pdf_utils.generic.IndirectObject method)

 	(pyhanko.pdf_utils.generic.NameObject method)

 	(pyhanko.pdf_utils.generic.NullObject method)

 	(pyhanko.pdf_utils.generic.NumberObject method)

 	(pyhanko.pdf_utils.generic.PdfObject method)

 	(pyhanko.pdf_utils.generic.StreamObject method)

 	(pyhanko.pdf_utils.generic.TextStringObject method)

 	
 	write_updated_section() (pyhanko.pdf_utils.incremental_writer.IncrementalPdfFileWriter method)

 	writer (pyhanko.pdf_utils.content.PdfContent attribute)

 	writing_direction (pyhanko.pdf_utils.font.opentype.GlyphAccumulatorFactory attribute)

X

 	
 	x_advance (pyhanko.pdf_utils.font.api.ShapeResult attribute)

 	x_align (pyhanko.pdf_utils.layout.SimpleBoxLayoutRule attribute)

 	x_pos (pyhanko.pdf_utils.layout.Positioning attribute)

 	
 	x_scale (pyhanko.pdf_utils.layout.Positioning attribute)

 	XOBJECT (pyhanko.pdf_utils.content.ResourceType attribute)

 	XrefStreamRule (class in pyhanko.sign.diff_analysis)

Y

 	
 	y_advance (pyhanko.pdf_utils.font.api.ShapeResult attribute)

 	y_align (pyhanko.pdf_utils.layout.SimpleBoxLayoutRule attribute)

 	
 	y_pos (pyhanko.pdf_utils.layout.Positioning attribute)

 	y_scale (pyhanko.pdf_utils.layout.Positioning attribute)

 _images/qr-stamp-basic.png
%3 E

Signed by: Alice <alice@example.com>
Time: 2021-06-24 08:00:00 CEST
URL: https://example.com

_images/static-stamp-basic.png
Test test

_images/text-stamp-basic.png
This is custom text!

Signed by: Alice<alice@example.com>
Time: 2021-06;24 08:00:00 CEST

_static/file.png

_static/minus.png

_images/default-signature-appearance.png
Digitally signed by Lord Testerino <test@example.com>.
Timestamp: 2020-12-06 23:15:24 CET.

_static/plus.png

nav.xhtml

 Table of Contents

 		
 pyHanko

 		
 CLI user’s guide

 		
 Signing PDF files

 		
 Some background on PDF signatures

 		
 Creating signature fields

 		
 Creating simple signatures

 		
 Creating signatures with long lifetimes

 		
 Customising signature appearances

 		
 Validating PDF signatures

 		
 Basic use

 		
 Factors in play when validating a signature

 		
 Stamping PDF files

 		
 Configuration options

 		
 Config file location

 		
 Configuration options

 		
 Library (SDK) user’s guide

 		
 Reading and writing PDF files

 		
 Reading files

 		
 Modifying files

 		
 Signature fields

 		
 General API design

 		
 Positioning

 		
 Seed value settings

 		
 Document modification policy settings

 		
 Signing functionality

 		
 General API design

 		
 A simple example

 		
 Signature appearance generation

 		
 Timestamp handling

 		
 Creating PAdES signatures

 		
 Using aiohttp for network I/O

 		
 Extending Signer

 		
 The low-level PdfCMSEmbedder API

 		
 Interrupted signing

 		
 Generic data signing

 		
 Validation functionality

 		
 General API design

 		
 Accessing signatures in a document

 		
 Validating a PDF signature

 		
 Long-term verifiability checking

 		
 Incremental update analysis

 		
 Probing different aspects of the validity of a signature

 		
 The pdf-utils package

 		
 Background and future perspectives

 		
 PDF object model

 		
 PDF content abstractions

 		
 Advanced examples

 		
 A custom Signer to use AWS KMS asynchronously

 		
 API reference

 		
 pyhanko package

 		
 Subpackages

 		
 Submodules

 		
 Release history

 		
 0.10.0

 		
 Dependency changes

 		
 New features and enhancements

 		
 Bugs fixed

 		
 0.9.0

 		
 Dependency changes

 		
 API-breaking changes

 		
 New features and enhancements

 		
 Bugs fixed

 		
 0.8.0

 		
 Dependency changes

 		
 API-breaking changes

 		
 New features and enhancements

 		
 Bugs fixed

 		
 0.7.0

 		
 Dependency changes

 		
 API-breaking changes

 		
 New features and enhancements

 		
 Bugs fixed

 		
 0.6.1

 		
 Dependency changes

 		
 Bugs fixed

 		
 0.6.0

 		
 Dependency changes

 		
 New features and enhancements

 		
 Bugs fixed

 		
 0.5.1

 		
 Bugs fixed

 		
 0.5.0

 		
 Dependency changes

 		
 New features and enhancements

 		
 Bugs fixed

 		
 0.4.0

 		
 New features and enhancements

 		
 Bugs fixed

 		
 0.3.0

 		
 New features and enhancements

 		
 Bugs fixed

 		
 0.2.0

 		
 New features and enhancements

 		
 Bugs fixed

 		
 0.1.0

 		
 Known issues

 		
 Licenses

 		
 pyHanko License

 		
 Original PyPDF2 license

