pyHanko
Release 0.22.1-dev1

Matthias Valvekens

Mar 07, 2024

2

CONTENTS:

1 CLI user’s guide 3
1.1 Signing PDFfiles o . e e e e e 4
1.1.1 ~ Some background on PDF signatures 4

1.1.2 Creating signature fields L 5

1.1.3 Creating simple Signatures o v v i v v i i e e e e e e e e e e 5

1.1.4 Creating signatures with long lifetimes 8

1.1.5 Customising signature appearances« c o v vttt e et e 10

1.2 Validating PDF signatures 10
1.2.1 0 Basicuse i e 10

1.2.2 Factors in play when validating a signature oL, 11

1.3 Stamping PDFfiles e e e e e e 13
1.4 Configuration options L. L e e e e e e 13
1.4.1 Configfilelocation e 13

1.42 Configuration options e e e e e e e e e 13
Library (SDK) user’s guide 21
2.1 Reading and writing PDF files L 21
2.1.1 Readingfiles e e 21

2.1.2 Modifying files e 22

2.2 Signature fields L L e e e e e e e e e 23
2.2.1 General AP design e e e e e 23

222 Positioning e e e e 23

2.23 Seed value settings oL e e e e e e e e e e e 24

2.2.4 Document modification policy settings 25

2.3 Signing functionality L L L e e e e e e e e e e 26
2.3.1 General APIdesign e e e e e e 27

232 Asimpleexample e 27

2.3.3 Signature appearance generation i i a e e 29

234 Timestamp handling e 33

2.3.5 Creating PAdES signatures e e e 34

2.3.6 Using aiohttp fornetwork I/O e 35

2.3.7 Extending Signer L. e e 37

2.3.8 The low-level PAfCMSEmbedder APT 37

2.3.9 Interrupted signing L. 39
2.3.10 Genericdatasigningo e e e e 41

2.4 Validation functionality e e e e e e e e e e 42
2.4.1 General AP design e e e e e 43

242 Accessing signatures inadocument Lol oo 43

243 ValidatingaPDFsignature Lo e 43

244 Long-term verifiability checking L o o 44

2.4.5 Incremental update analysiS L L 45

2.4.6 Probing different aspects of the validity of asignature 47
2.5 Thepdf-utilspackage o L o e e e e e e e 47
2.5.1 Background and future perspectives oL oo 47
2.5.2 PDFobjectmodel e 48
253 PDFcontentabstractions e 48
2.6 Developing CLIPIugins 0 o i e e e e e e e e e e 49
2.6.1 General principles L e e e e e e e e 49
2.6.2 Theplugin API e e e 49
2.6.3 Plugindiscovery and registration oL oL 51
2.7 Advancedexamples L e e 51
2.7.1 A custom Signer to use AWS KMS asynchronously 51
API reference 55
3.1 pyhankopackage 55
3.1.1 Subpackages . .o .. e e e e e e e e e e 55
3.1.2 Submodules e e e 280
3.1.3 pyhankokeysmodule L 280
3.14 pyhanko.stampmodule Lo 281
3.1.5 pyhanko.versionmodule 287
3.2 pyhanko_certvalidator package e 287
3.2.1 Subpackages e e e e e e e 287
322 Submodules e e 314
3.2.3 pyhanko_certvalidator.asnl_typesmodule oL 314
3.24 pyhanko_certvalidator.authority module oL 314
3.2.5 pyhanko_certvalidator.contextmodule oL oL 317
3.2.6 pyhanko_certvalidatorerrors module L e 322
3.27 pyhanko_certvalidator.name_treesmodule oL oL oo 324
3.2.8 pyhanko_certvalidator.pathmoduleo oo 326
3.2.9 pyhanko_certvalidator.policy_declmodule00 328
3.2.10 pyhanko_certvalidator.policy_tree module oL 335
3.2.11 pyhanko_certvalidator.registry module o 336
3.2.12 pyhanko_certvalidatorutilmodule L L 341
3.2.13 pyhanko_certvalidator.validate module oL 342
3.2.14 pyhanko_certvalidator.versionmodule oL oo o 345
3.2.15 Modulecontents e e e e e e e 345
Release history 353
4.1 Dependency changes L 353
4.2 New features and enhancementsol e e e e e 353
421 Signing e e e 353
422 CLI . . o e e 353
43 Bugsfixed e e e e e e 353
44 Dependency changes L 354
4.5 New features and enhancementsol e e 354
4.5.1 Signing e e e 354
4.5.2 Validation e 354
453 CLIL . . . e e e 354
4.6 Bugsfixed e 354
4.7 Miscellaneous L e e e e 355
4.8 Dependency changes L e e e e 355
4.9 Miscellaneous e e e e e e 355
4.10 Dependency changes o it it e e e e e e e e e e e 355
4.11 Miscellaneous e e e e e e 355

4.12
4.13
4.14

4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22

4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30

4.31
4.32
4.33

4.34
4.35
4.36
4.37
4.38
4.39
4.40

4.41
4.42
4.43
4.44
4.45

4.46
4.47
4.48
4.49
4.50
4.51

Dependency changes e e e e e e e e e e e e 356

Breaking changes L e e e e e e e e e e 356
New features and enhancements e e e e e e e 356
4.14.1 Encryption e e e e 356
4142 CLIL . . . oo e 356
Bugsfixed e 356
Dependency changes o i e e e e e e e e e e e e 357
NOte . . o e e e 357
Breaking changes L. e e e e 357
Organisational changes L e 359
Dependency changes L e e e e e 359
Bugsfixed e e e e e 359
New features and enhancements L 360
4221 Signing e e e e e 360
4222 Validation e e e e e e e 360
NOte . . o o e 360
Bugsfixed e e e e e e 360
NOte . . o o e e e 360
Bugsfixed e e e e 361
NOte . . . o 361
Dependency updateso e e e e e e 361
Breaking changes L 361
New features and enhancements oL 362
4.30.1 Validation e e e e 362
Dependency updates L. e e e 362
Breaking changes e 362
New features and enhancements oL e e 362
4.33.1 Signing . . . oL . e e e e e e e e e e 362
4332 Validation e e e 362
Bugsfixed e e e e 362
NOtE . . o e e e e e 363
Dependency updateso e e e e e e 363
Bugsfixed e 363
NOte . . o o e e 363
Bugsfixed e e e e 363
New features and enhancements L e e 363
4.40.1 Signing e 363
4.40.2 Validation e 364
NOtE . . o e e 364
Breaking changes e e e e e e e 364
Dependency updates e e e e 364
Bugsfixed e 365
New features and enhancements oL e e e 365
4.45.1 Signing . . . oL e e e e e e e e e 365
4452 Validation oL e e e 365
4453 EnCryption L. e e e e e e e e e e 366
4454 Layout e e e 366
4455 Miscellaneous L. e 366
NOte . . . o e e 366
Dependency updates e e e e e e e e e e e e e e e e 366
Bugsfixed e e e 367
NOte . . . o e e 367
Dependency updates e 367
NOte . . o o e 367

4.52
4.53
4.54

4.55
4.56
4.57
4.58

4.59
4.60
4.61
4.62

4.63
4.64
4.65

4.66
4.67
4.68
4.69

4.70
4.71
4.72
4.73

4.74
4.75
4.76

4.77

4.78

Dependency updates e e e e e e e e e e e e e e 367

Bugsfixed e e e e e e 368
New features and enhancements ot it it e e e e e e e e e e e e 368
4.54.1 Miscellaneous e e e e e e e e e e 368
4.54.2 Encryption e 368
4543 Signing e e 368
4.54.4 Validation e e e e e e e e e e e e e 368
Dependency updates e e e e e e e e e e e e e 369
Bugsfixed e e e 369
NOte . . e e e e e e e 369
New features and enhancements ittt e e e e e 369
4.58.1 Miscellaneous e e e e e e e e e e e e 369
Bugsfixed e e e e 370
Dependency changes L e e e e e e e e 370
Breaking changes e 370
New features and enhancements it e e e 371
4.62.1 Signing e e 371
4.62.2 Validation e e e e e e e e e e e 371
4.62.3 Miscellaneous e e e e e e e e e e e e e e e 371
Bugsfixed e 371
Dependency changes L e 372
New features and enhancementst ittt e e e e e e 372
4.65.1 Signing e e e e e e e 372
4.65.2 Validation e e e e e e e e e e e e e e 372
4.65.3 Miscellaneous e e e e e e e e e e e e e e e e e 372
Bugsfixed 373
Dependency changes 373
API-breaking changes e e e e e e e e e e 373
New features and enhancements it it i e e e e e e e e e e e e e 374
4.69.1 Signing e e e e 374
4.69.2 Validation e e e e e 374
4.69.3 Miscellaneous e e e e 374
Bugsfixed e 375
Dependency changes o o o e e e e e e e e e e e e e e e e 375
API-breaking changes L e e e e 375
New features and enhancementst i vttt e e e e e e e e e e 375
4731 Signing e 375
4.73.2 Validation e e e e e e e e 376
4733 ENCryption o i e e e e e e e e e e e e e e e 376
4.73.4 Miscellaneous e e e e e e e e e e e e e e e 376
Bugsfixed e e e 376
Dependency changes L e 376
API-breaking changes e 377
4.76.1 Signingcoderefactor e e e e e e 377
4762 FONnts o e e e e e e 377
4763 Miscellaneous e e e e e e e e e e e e e e e e e 377
New features and enhancements e e e e e e e 378
477.1 Signing e e e e e e e e 378
4772 Validation e e e e e e e e e e e 378
4.77.3 ENnCryption o i e e e e e e e e e e e e e e e e 378
4774 Miscellaneous e e e e e e e e e e e e e e e e 378
Bugsfixed e e e 379
4781 Signing e e 379
4782 Validation e e e e e e e 379

478.3 ENCryption o i e e e e e e e e e e e e e e 379
4784 Miscellaneous e e e e 379
479 Dependency changes e e e e 379
4.80 Bugsfixed e 380
4.81 Dependency chan@es o . i e e e e e e e e e 380
4.82 New features and enhancementso Ll e e e e e 380
4.82.1 Signing e e e e e e e e e e e 380
4.82.2 Validation e e e 381
4.82.3 EnCryption i e e e e e e e e e e e e 381
4.82.4 Miscellaneous e e e e e e e e e 381
4.83 Bugsfixed e e e 381
4.84 Bugsfixed e e 382
4.85 Dependency changes o i i e e e e e e e e e e e e e e 382
4.86 New features and enhancementsl oo 382
4.86.1 Encryption e e 382
4.86.2 Signing o e e e e e e e e 382
4.86.3 Validation e 383
4.86.4 Miscellaneous L 383
4.87 Bugsfixed e e e e 383
4.88 New features and enhancements L Lo 384
4.88.1 Encryption e 384
4.88.2 Signing e 384
4.88.3 Validation e 384
4.88.4 Miscellaneous e e 385
489 Bugsfixed e e e e 385
490 New features and enhancements oL oL e e e e e 385
4.90.1 Encryption e e 385
4.90.2 Signing e e e e e e e e e e 385
490.3 Miscellaneous L e e e 386
4.90.4 Validation e e 386
491 Bugsfixed e 386
4.92 New features and enhancementso L L e e e 386
4.92.1 Signing e e 386
4922 Validation e 386
4923 CLI o e 387
4924 General PDFAPIL e 387
493 Bugsfixed e 387
Frequently asked questions (FAQ) 389
5.1 Errors and other unexpected behaviour 000 oo 389
5.1.1 I'm getting an error about hybrid reference files when trying to sign / validate a file. What
IVEST . e e 389
5.1.2 Why am I getting path building errors? 389
5.2 Features & customisation e 390
5.2.1 How do I use pyHanko to sign PDFs with a remote signing service? 390
5.2.2 Ican’t get pyHanko to work with <insert PKCS#11 device here>. Can you help me? 390
5.2.3 I want to put Unicode text in my signatures, but I'm only seeing blanks. What gives? . 390
Known issues 391
Release artifact authenticity 393
T OVeIVIEW . . . L o o e e e e e e e 393
7.2 PGPsignatures e e e 393
721 Scope e 393

7.2.2 Verifying PGP signatures using GnuPG oo 0oL,
7.3 SIgStOre SIZNATUTES . . v v v v v v v e
T3 1 SCOPE . o v v e e e e e
7.3.2 Verifying Sigstore signatures issued through GitHub Actions OIDC
7.4 SLSA provenance data e e e e e e e
TATL SCOPE . o v v e e e e e e e
7.4.2 Verifying SLSA provenance data onrelease builds
8 Licenses
8.1 pyHankoLicense e e e
8.2 Original PyPDF2 license 0 e e e e e e e e e
9 Indices and tables
Python Module Index
Index

397
397
397

399

401

403

vi

pyHanko, Release 0.22.1-dev1

PyHanko is a tool for signing and stamping PDF files.

CONTENTS: 1

https://github.com/MatthiasValvekens/pyHanko
https://github.com/MatthiasValvekens/pyHanko
https://img.shields.io/codecov/c/github/MatthiasValvekens/pyHanko
https://pypi.org/project/pyHanko/

pyHanko, Release 0.22.1-dev1

2 CONTENTS:

CHAPTER
ONE

CLI USER’S GUIDE

This guide offers a high-level overview of pyHanko as a command-line tool.
(Under construction)

If you installed pyHanko using pip, you should be able to invoke pyHanko using the pyhanko command, like so:

[pyhanko --help }

If the pyhanko package is on your PYTHONPATH but the pyhanko executable isn’t on your PATH for whatever reason,
you can also invoke the CLI through

[python -m pyhanko --help J

This guide will adopt the former calling convention.

You can run pyhanko in verbose mode by passing the --verbose flag before specifying the subcommand to invoke.

[pyhanko --verbose <subcommand>]

Note: The CLI portion of pyHanko was implemented using Click. In particular, this means that it comes with a
built-in help function, which can be accessed through pyhanko --help.

Caution: The pyHanko CLI makes heavy use of Click’s subcommand functionality. Due to the way this works, the
precise position of a command-line parameter sometimes matters. In general, double-dash options (e.g. --option)
should appear after the subcommand to which they apply, but before the next one.

Right now, the pyHanko CLI offers two subcommand groups, for sign and stamp, respectively. Additional configuration
options are available in an optional YAML config file.

Warning: This guide assumes that pyHanko is installed with all optional dependencies, including those required
for PKCS#11 support and image support.

https://click.palletsprojects.com

pyHanko, Release 0.22.1-dev1

1.1 Signing PDF files

Signing PDF files using pyHanko can be very simple or somewhat complicated, depending on the specific requirements
of your use case. PyHanko offers support for both visible and invisible signatures, several baseline PAdES profiles,
seed values, and creating signatures using PKCS#11 devices.

1.1.1 Some background on PDF signatures

In order to properly understand the way pyHanko operates, having some background on the way PDF signatures work
is useful. The goal of this subsection is to provide a bird’s eye view, and covers only the bare minimum. For further
details, please refer to the relevant sections of the ISO 32000 standard(s).

A PDF signature is always contained in a signature field in the PDF’s form structure. Freeware PDF readers that do
not have form editing functionality will typically not allow you to manipulate signature fields directly, but might allow
you to fill existing form fields with a signature, or create a signature together with its corresponding form field. Using
pyHanko, you can both insert new (empty) signature fields, and fill in existing ones.

Separate from the signature field containing it, a signature may or may not have an appearance associated with it.
Signatures without such an appearance are referred to as invisible signatures. Invisible signatures have the advantage of
being comparatively simpler to implement and configure, but when a PDF containing an invisible signature is opened
in a reader application without signature support, it may not be visually obvious that the PDF file even contains a
signature at all.

The signature object itself contains some PDF-specific metadata, such as
* the byte range of the file that it covers;
¢ the hash function used to compute the document hash to be signed;
* a modification policy that indicates the ways in which the file can still be modified.

The actual cryptographic signature is embedded as a CMS object. General CMS objects are defined in RFC 5652, but
only a limited subset is meaningful in PDF. When creating a signature, the signer is authenticated using the private key
associated with an X.509 certificate, as issued by most common PKI authorities nowadays. The precise way this private
key is provisioned is immaterial: it can be read from a file on disk, or the signature can be generated by a hardware
token; this has no impact on the structure of the signature object in the file.

In a typical signed PDF file with only one signature, the signed byte range covers the entire document, except for the
area containing the actual CMS data of the signature. However, there are a number of legitimate reasons why this may
not be the case:

* documents containing multiple signatures and/or timestamps;
* signatures that allow further modification, such as form filling or annotation.
Generally speaking, the signer decides what modifications are still permitted after a signature is made'.

The cryptographically informed reader might ask how it is at all possible to modify a file without invalidating the
signature. After all, hash functions are supposed to prevent exactly this kind of thing. The answer here lies in the
incremental update feature of the PDF standard. The specification allows for updating files by appending data to the
end of the file, keeping the original bytes in place. These incremental update sections can create and modify existing
objects in the file, while still preserving the original version in some form. Such changes are typically opaque to the
user that views the file. The byte range attached to the signature ensures that the document hash can still be computed
over the original data, and thus the integrity of the signature can still be validated.

However, since incremental updates allow the final rendered document to be modified in essentially arbitrary ways,
the onus is on the validator to ensure that all such incremental updates made after a signature was created actually

! There are some legitimate modifications that cannot be prohibited by any document modification policy, such as the addition of document
timestamps and updates to the document security store.

4 Chapter 1. CLI user’s guide

https://datatracker.ietf.org/doc/html/rfc5652.html

pyHanko, Release 0.22.1-dev1

are “legitimate” changes. What precisely constitutes a “legitimate” change depends on the signature’s modification
policy, but is not rigorously defined in the standard’®. It goes without saying that this has led to various exploits where
PDF readers could be duped into allowing illicit modifications to signed PDF files without raising suspicion. As a
consequence of this, some signature validation tools do not even bother to do any such validation, and simply reject all
signatures in documents that have been modified through incremental updates.

See Validating PDF signatures for an overview of pyHanko’s signature validation features.

Note: By default, pyHanko uses incremental updates for all operations, regardless of the presence of earlier signatures
in the file.

1.1.2 Creating signature fields

Adding new (empty) signature fields is done through the addfields subcommand of pyhanko sign. The CLI only
allows you to specify the page and coordinates of the field, but more advanced properties and metadata can be manip-
ulated through the API.

The syntax of the addfields subcommand is as follows:

[pyhanko sign addfields --field PAGE/X1,Y1,X2,Y2/NAME input.pdf output.pdf

This is what the fields mean.
* PAGE is the page number, with the page numbering starting at 1.

* X1,Y1,X2,Y2 represent the coordinates of two opposing corners of the bounding box of the signature field. The
coordinates are Cartesian, i.e. the y-coordinate increases from bottom to top.

* NAME is the name of the signature field to create.

Multiple signature fields may be created in one command, by passing the last argument multiple times.

Note: You can specify page numbers “in reverse” by providing a negative number for the PAGE entry. With this
convention, page -1 refers to the last page of the document, page -2 the second-to-last, etc.

Note: Creating empty signature fields ahead of time isn’t always necessary. PyHanko’s signing functionality can also
create them together with a signature, and Adobe Reader offers similar conveniences. As such, this feature is mainly
useful to create fields for other people to sign.

1.1.3 Creating simple signatures

All operations relating to digital signatures are performed using the pyhanko sign subcommand. The relevant com-
mand group for adding signatures is pyhanko sign addsig.

Warning: The commands explained in this subsection do not attempt to validate the signer’s certificate by default.
You’ll have to take care of that yourself, either through your PDF reader of choice, or the validation functionality
in pyHanko.

2 The author has it on good authority that a rigorous incremental update validation specification is beyond the scope of the PDF standard itself.

1.1. Signing PDF files 5

https://pdf-insecurity.org/

pyHanko, Release 0.22.1-dev1

Signing a PDF file using key material on disk

There are two ways to sign a PDF file using a key and a certificate stored on disk. The signing is performed in the exact
same way in either case, but the format in which the key material is stored differs somewhat.

To sign a file with key material sourced from loose PEM or DER-encoded files, the pemder subcommand is used.

pyhanko sign addsig --field Sigl pemder \
--key key.pem --cert cert.pem input.pdf output.pdf

This would create a signature in input.pdf in the signature field Sig1l (which will be created if it doesn’t exist), with
a private key loaded from key.pem, and a corresponding certificate loaded from cert.pem. The result is then saved
to output.pdf. Note that the --field parameter is optional if the input file contains a single unfilled signature field.

Note: The --field parameter also accepts parameters of the form passed to addfields, see Creating signature
fields.

You will be prompted for a passphrase to unlock the private key, which can be read from another file using --passfile.

The same result can be obtained using data from a PKCS#12 file (these usually have a .pfx or .pl2 extension) as
follows:

pyhanko sign addsig --field Sigl pkcsi2 \
input.pdf output.pdf secrets.pfx

By default, these calls create invisible signature fields, but if the field specified using the --field parameter exists
and has a widget associated with it, a simple default appearance will be generated (see Fig. 1.1). You can also use the
extended syntax from addfields to create visible signature fields on-the-fly, e.g. like so:

pyhanko sign addsig --field PAGE/X1,Y1,X2,Y2/NAME pkcsl2 \
input.pdf output.pdf secrets.pfx

In many cases, you may want to embed extra certificates (e.g. for intermediate certificate authorities) into your signature,
to facilitate validation. This can be accomplished using the --chain flag to either subcommand. When using the
pkcs12 subcommand, pyHanko will automatically embed any extra certificates found in the PKCS#12 archive passed
in.

Digitally signed by Lord Testerino <test@example.com>.
Timestamp: 2020-12-06 23:15:24 CET.

Fig. 1.1: The default appearance of a (visible) signature in pyHanko.

6 Chapter 1. CLI user’s guide

pyHanko, Release 0.22.1-dev1

Signing a PDF file using a PKCS#11 token

PyHanko also supports creating signatures using PKCS#11 devices. In order to do so, you’ll need the following infor-
mation:

* The path to the PKCS#11 module, which is typically a shared object library (.so, .d11 or .dylib, depending
on your operating system)

* The label of the PKCS#11 token you’re accessing (unless the token selection criteria are specified in the config-
uration file).

* The PKCS#11 label(s) of the certificate and key you’re using, stored in the token. If the key and certificate labels
are the same, you can omit the key label.

Most of these settings can be stored in the configuration file as well, see Named PKCS#11 setups. In fact, there are
quite a few advanced settings that are not exposed as command-line switches, but can be specified in the configuration
file. These include selecting tokens by serial number and selecting keys and certificates by ID.

With this information, producing a basic signature isn’t very hard:

pyhanko sign addsig pkcsll --1lib /path/to/module.so \
--token-label testrsa --cert-label signer document.pdf output.pdf

Have a look at pyhanko sign addsig pkcsll --help for a full list of options.

Signing a PDF file using a Belgian elD card

To sign a PDF file using your eID card, use the beid subcommand to addsig, with the --1ib parameter to tell pyHanko
where to look for the eID PKCS#11 library.

Note: Of course, you can also use the pkcs11 subcommand, but beid provides an extra layer of convenience.

On Linux, it is named libbeidpkcsll.so and can usually be found under /usr/lib or /usr/local/lib. On
macOS, it is named libbeidpkcs1l.dylib, and can similarly be found under /usr/local/lib. The Windows
version is typically installed to C:\Windows\System32 and is called beidpkcs11.d1l.

On Linux, this boils down to the following:

pyhanko sign addsig --field Sigl beid \
--1ib /path/to/libbeidpkcsll.so input.pdf output.pdf

On all platforms, the eID middleware will prompt you to enter your PIN to create the signature.

Warning: This command will produce a non-repudiable signature using the ‘Signature’ certificate on your eID
card (as opposed to the ‘Authentication’ certificate). These signatures are legally equivalent to a normal “wet”
signature wherever they are allowed, so use them with care.

In particular, you should only allow software you trust’ to use the ‘Signature’ certificate!

3 This obviously also applies to pyHanko itself; be aware that pyHanko’s /icense doesn’t make any fitness-for-purpose guarantees, so making sure
you know what you’re running is 100% your own responsibility.

1.1. Signing PDF files 7

pyHanko, Release 0.22.1-dev1

Warning: You should also be aware that your national registry number (rijksregisternummer, no. de registre na-
tional) is embedded into the metadata of the signature certificate on your eID card*. As such, it can also be read
off from any digital signature you create. While national registry numbers aren’t secret per se, they are never-
theless often considered sensitive personal information, so you may want to be careful where you send documents
containing your eID signature or that of someone else.

1.1.4 Creating signatures with long lifetimes
Background

A simple PDF signature—or any CMS signature for that matter—is only cryptographically valid insofar as the certifi-
cate of the signer is valid. In most common trust models, this means that the signature ceases to be meaningful together
with the expiration of the signer certificate, or the latter’s revocation.

The principal reason for this is the fact that it is no longer practical to verify whether a certificate was valid at the time of
signing, if validation happens after the certificate already expired or was revoked. This, in turn, has to do with the fact
that it is not always reasonable for certificate authorities to publicly supply historical validity proofs for all certificates
they ever signed at all possible points in time.

Hence, in order for a signature to remain valid long after signing, the signer needs to supply two additional pieces of
data:

1. atrusted timestamp signed by a time stamping authority (TSA), to prove the time of signing to the validator;

2. revocation information (relevant CRLs or OCSP responses) for all certificates in the chain of trust of the signer’s
certificate, and of the TSA.

For both of these, it is crucial that the relevant data is collected at the time of signing and embedded into the signed
document. The revocation information in particular can be delicate, since the validator needs to be able to verify
the validity of not only the signer’s certificate, but also that of all issuers in the chain of trust, the OCSP responder’s
certificates used to sign the embedded OCSP responses, etc.

Time stamp tokens are commonly obtained from TSA’s via the HTTP-based protocol specified in RFC 3161.
Within the PDF standard, there are two broad categories of such long-lived signatures.

* Signers can opt to embed revocation information into the CMS data structure of the signature, as a signed at-
tribute.

— Inthis case, the revocation info is a signed attribute, protected from tampering by the signer’s own signature.

— This scheme uses Adobe-specific extensions to the CMS standard, which are explicitly defined in the PDF
specification, but may not be supported by generic CMS tools that are unaware of PDF.

* Signers can opt to embed revocation information into the Document Security Store (DSS).

— In this case the revocation info is (a priori) not protected by a signature, although this is often remedied by
appending a document time stamp after updating the DSS (see also Long-term archival (LTA) needs).

— The above approach has the convenient side effect that it can be used to ‘fix’ non-LTV-enabled signatures
by embedding the required revocation information after the fact, together with a document timestamp. Ob-
viously, this is predicated on the certificate’s still being valid when the revocation information is compiled.
This workflow is not guaranteed to be acceptable in all X.509 validation models, but is supported in py-
Hanko through the 1tvfix subcommand; see Adding validation data to an existing signature.

— This approach is used in the PAJES baseline profiles B-LT and B-LTA defined by ETSI, and the (mildly
modified) versions subsumed into ISO 32000-2 (PDF 2.0). As such, it is not part of ISO 32000-1 ‘proper’.

4 The certificate’s serial number is in fact equal to the holder’s national registry number.

8 Chapter 1. CLI user’s guide

https://datatracker.ietf.org/doc/html/rfc3161.html

pyHanko, Release 0.22.1-dev1

Note: The author generally prefers the DSS-based signature profiles over the legacy approach based on CMS attributes,
but both are supported in pyHanko.

Timestamps in pyHanko

Embedding a timestamp token into a signature using pyHanko is as simple as passing the --timestamp-url parameter
to addsig. The URL should resolve to an endpoint that responds to the HTTP-based protocol described in RFC 3161.

pyhanko sign addsig --field Sigl --timestamp-url http://tsa.example.com \
pemder --key key.pem --cert cert.pem input.pdf output.pdf

Warning: In the CLI, only public time stamping servers are supported right now (i.e. those that do not require
authentication). The API is more flexible.

Embedding revocation info with pyHanko

In order to embed validation info, use the --with-validation-info flag to the addsig command.

pyhanko sign addsig --field Sigl --timestamp-url http://tsa.example.com \
--with-validation-info --use-pades pemder \
--key key.pem --cert cert.pem input.pdf output.pdf

This will validate the signer’s signature, and embed the necessary revocation information into the signature. The
resulting signature complies with the PAJES B-LT baseline profile. If you want to embed the revocation data into the
CMS object instead of the document security store (see above), leave off the --use-pades flag.

Using the --trust, --trust-replace and --other-certs parameters, it is possible to fine tune the validation con-
text that will be used to embed the validation data. You can also predefine validation contexts in the configuration file,
and select them using the --validation-context parameter. See Named validation contexts for further information.

Warning: By default, pyHanko requires signer certificates to have the non-repudiation key usage extension bit set
on signer certificates. If this is not suitable for your use case, take a look at Key usage settings.

Long-term archival (LTA) needs

The observant reader may have noticed that embedding revocation information together with a timestamp merely
shifts the validation problem: what if the TSA certificate used to sign the timestamp token is already expired by
the time we try to validate the signature?

The PAdES B-LTA scheme provides a solution for this issue: by appending a new document timestamp whenever the
most recent one comes close to expiring, we can produce a chain of timestamps that allows us to ensure the validity of
both the signatures and their corresponding revocation data essentially indefinitely.

This does, however, require ‘active’ maintenance of the document. PyHanko provides for this through the 1taupdate
subcommand of pyhanko sign.

[pyhanko sign ltaupdate --timestamp-url http://tsa.example.com input.pdf J

1.1. Signing PDF files 9

https://datatracker.ietf.org/doc/html/rfc3161.html

pyHanko, Release 0.22.1-dev1

Note that 1taupdate modifies files in-place. It is also unnecessary to provide a field name for the new timestamp; the
software will automatically generate one using Python’s uuid module.

Warning: It is important to note that pyHanko only validates the outermost timestamp when performing an LTA
update. This means that the “garbage in, garbage out” principle is in effect: if the timestamp chain was already
broken elsewhere in the input document, running 1taupdate will not detect that, let alone fix it.

Note: The reader may also wonder what happens if the trust anchor that guaranteed the signer’s certificate at the time
of signing happens to expire. Answering this question is technically beyond the specifications of the PKI system, since
root certificates are trusted by fiat, and (by definition) do not have some higher authority backing them to enforce their
validity constraints.

Some hold the view that expiration dates on trust anchors should be taken as mere suggestions rather than hard cutoffs.
Regardless of the merits of this view in general, for the purposes of point-in-time validation, the only sensible answer
seems to be to leave this judgment call up to the discretion of the validator.

It is also useful to note that some certificate authorities implement key rollover by cross-signing their new roots with
their old roots and vice-versa. Provided these cross-signed certificates are available to the validator, these should allow
older chains of trust to be validated against the newer roots.

1.1.5 Customising sighature appearances

To a limited degree, the appearance of a visible signature made with pyHanko can be customised. You can specify a
named style using the --style-name parameter to addsig:

pyhanko sign addsig --field Sigl --style-name mystyle pemder \
--key key.pem --cert cert.pem input.pdf output.pdf

This assumes that a style named mystyle is available in the configuration file. Defining styles works the same way
as pyHanko’s stamping functionality; see Stamping PDF files and Styles for stamping and signature appearances for
details.

1.2 Validating PDF signatures

1.2.1 Basic use

Validating signatures in a PDF file is done through the validate subcommand of pyhanko sign.

A simple use case might look like this:

[pyhanko sign validate --pretty-print document.pdf J

This will print a human-readable overview of the validity status of the signatures in document.pd£f. The trust setup
can be configured using the same command-line parameters and configuration options as for creating LTV signatures.

Warning: By default, pyHanko requires signer certificates to have the non-repudiation key usage extension bit set
on signer certificates. If this is not suitable for your use case, take a look at Key usage settings.

10 Chapter 1. CLI user’s guide

pyHanko, Release 0.22.1-dev1

1.2.2 Factors in play when validating a signature

In this subsection, we go over the various factors considered by pyHanko when evaluating the validity of a PDF signa-
ture.

Cryptographic integrity

The most fundamental aspect of any digital signature: verify that the bytes of the file covered by the signature produce
the correct hash value, and that the signature object is a valid signature of that hash. By ‘valid’, we mean that the
cryptographic signature should be verifiable using the public key in the certificate that is marked as the signer’s in
the signature object. In other words, we need to check that the purported signer’s certificate actually produced the
signature.

Authenticity: trust settings

Having verified that the signature was produced by the (claimed) signer’s certificate, we next have to validate the binding
between the certificate and its owner. That is to say, we have to convince ourselves that the entity whose name is on the
certificate is in control of the private key, i.e. that the signer is who they claim to be.

Technically, this is done by establishing a chain of trust to a trust anchor, which we rely on to judge the validity of
cryptographic identity claims. This is where the rrust settings mentioned above come into play.

Incremental updates: difference analysis

PDF files can be modified, even when signed, by appending data to the end of the previous revision. These are incre-
mental updates. In particular, this is how forms with multiple signatures are implemented in PDF. These incremental
updates can essentially modify the original document in arbitrary ways, which is a problem, since they are (by defini-
tion) not covered by any earlier signatures.

In short, validators have two options: either reject all incremental updates (and decline to support multiple-signer
scenarios of any kind), or police incremental updates by itself. The exact way in which this is supposed to be done is
not specified precisely in the PDF standard.

Warning: PyHanko attempts to run a difference analysis on incremental updates, and processes modifications on
a reject-by-default basis (i.e. all updates that can’t be vetted as OK are considered suspect). However, this feature
is (very) experimental, and shouldn’t be relied on too much.

Establishing the time of signing

There are a number of ways to indicate when a signature was made. These broadly fall into two categories:
* Self-reported timestamps: those are based on the signer’s word, and shouldn’t necessarily be trusted as accurate.

* Trusted timestamps: these derive from timestamp tokens issued by a trusted timestamping authority at the time
of signing.

Especially in the context of long-term verifiability of signatures and preventing things like backdating of documents,
having an accurate measure of when the timestamp was made can be of crucial importance. PyHanko will tell you
when a signature includes a timestamp token, and validate it along with the signature.

Note: Strictly speaking, a timestamp token only provides proof that the signature existed when the timestamp token
was created. The signature itself may have been generated long before that!

1.2. Validating PDF signatures 11

pyHanko, Release 0.22.1-dev1

If you also need a “lower bound” on the signing time, you might want to look into signed content timestamps (see
cades_signed_attr_spec and timestamp_content).

Right now, pyHanko supports these when signing, but does not take them into account in the validation process. They
are also not available in the CLI yet.

Evaluating seed value constraints

Finally, the document author can put certain restrictions on future signatures when setting up the form fields. These
are known as seed values in the PDF standard. Not all seed values represent constraints (some are intended as sugges-
tions), but one especially useful use of them is to earmark signature fields for use by specific signers. When validating
signatures, pyHanko will also report on whether (mandatory) seed value constraints were respected.

Warning: Not all digital signing software is capable of processing seed values, so some false positives are to be
expected.

Obviously, seed value constraints are only fruly reliable if the document author secures the document with a certi-
fication signature before sending it for signing. Otherwise, later signers can modify the seed values before putting
their signatures in place. See here for other concerns to keep in mind when relying on seed values.

Warning: PyHanko currently does not offer validation of structural PAdES profile requirements, in the sense that
it can’t tell you if a signature complies with all the provisions required by a particular PAJES profile. Note that
these are requirements on the signature itself, and have no bearing on possible later modifications to the document.

Adding validation data to an existing sighature

Sometimes, the validation data on a signature that was meant to have a long lifetime can be incomplete. This can have
many causes, ranging from implementation problems to simple, temporary network issues.

To remedy this problem, pyHanko can fetch and append current validation information through the 1tvfix command.

[pyhanko sign 1tvfix --field Sigl document.pdf]

The 1tvfix command supports the same arguments as validate to select a validation context and specify trust
settings.

Warning: By default, pyHanko’s point-in-time validation requires OCSP responses and CRLs to be valid at the
time of signing. This is often problematic when revocation information is added after the fact.

To emulate the default behaviour of Acrobat and other PDF viewers, use the --retroactive-revinfo switch
when validating. This will cause pyHanko to treat CRLs and OCSP responses as valid infinitely far back into the
past.

Note: This will cause incorrect behaviour when validating signatures backed by CAs that make use of certificate
holds, but given that content timestamps (i.e. timestamps proving that a signature was created after some given
time) aren’t accounted for in pyHanko’s trust model, this is somewhat unavoidable for the time being.

12 Chapter 1. CLI user’s guide

pyHanko, Release 0.22.1-dev1

1.3 Stamping PDF files

Besides signing, pyHanko can also apply its signature appearance styles as stamps to a PDF file. Essentially, this renders
a small overlay on top of the existing PDF content, without involving any of the signing logic.

Warning: The usefulness of this feature is currently rather limited, since visual stamp styles are still quite primitive.
Additionally, the current version of pyHanko’s CLI doesn’t make it easy to take advantage of the customisation
features available in the API.

The basic syntax of a stamping command is the following:

[pyhanko stamp --style-name some-style --page 2 input.pdf output.pdf 50 100 J

This will render a stamp in the named style some-style at coordinates (50, 100) on the second page of input.pdf,
and write the output to output.pdf. For details on how to define named styles, see Styles for stamping and signature
appearances.

Note: In terms of rendering, there is one important difference between signatures and stamps: stamps added through
the CLI are rendered at their “natural” size/aspect ratio, while signature appearances need to fit inside the predefined
box of their corresponding form field widget. This may cause unexpected behaviour.

1.4 Configuration options

1.4.1 Config file location

PyHanko reads its configuration from a YAML file. By default, if a file named pyhanko.yml exists in the current
directory, pyHanko will attempt to read and process it. You can manually specify a configuration file location via the
--config parameter to pyhanko.

Note that a configuration file is usually not required, although some of pyHanko’s behaviour cannot be fully customised
using command line options. In these cases, the configuration must be sourced from a config file.

1.4.2 Configuration options
Logging options

Under the 1ogging key in the configuration file, you can set up the configuration for Python’s logging module. Here’s
an example.

logging:
root-level: ERROR
root-output: stderr
by-module:
pyhanko_certvalidator:
level: DEBUG
output: pyhanko_certvalidator.log
pyhanko.sign:
level: DEBUG

1.3. Stamping PDF files 13

pyHanko, Release 0.22.1-dev1

The keys root-level and root-ouput allow you to set the log level and the output stream (respectively) for the root
logger. The default log level is INFO, and the default output stream is stderr. The keys under by-module allow you
to specify more granular per-module logging configuration. The 1level key is mandatory in this case.

Note: If pyhanko is invoked with --verbose, the root logger will have its log level set to DEBUG, irrespective of the
value specified in the configuration.

Named validation contexts

Validation contexts can be configured under the validation-contexts top-level key. The example below defines
two validation configs named default and special-setup, respectively:

validation-contexts:
default:
other-certs: some-cert.pem.cert
special-setup:
trust: customca.pem.cert
trust-replace: true
other-certs: some-cert.pem.cert

The parameters are the same as those used to define validation contexts in the CLI. This is how they are interpreted:
e trust: One or more paths to trust anchor(s) to be used.
e trust-replace: Flag indicating whether the trust setting should override the system trust (default false).
* other-certs: One or more paths to other certificate(s) that may be needed to validate an end entity certificate.

The certificates should be specified in DER or PEM-encoded form. Currently, pyHanko can only read trust information
from files on disk, not from other sources.

Selecting a named validation context from the CLI can be done using the --validation-context parameter. Applied
to the example from /ere, this is how it works:

pyhanko sign addsig --field Sigl --timestamp-url http://tsa.example.com \
--with-validation-info --validation-context special-setup \
--use-pades pemder --key key.pem --cert cert.pem input.pdf output.pdf

In general, you’re free to choose whichever names you like. However, if a validation context named default exists in
the configuration file, it will be used implicitly if --validation-context is absent. You can override the name of
the default validation context using the default-validation-context top-level key, like so:

default-validation-context: setup-a
validation-contexts:
setup-a:
trust: customca.pem.cert
trust-replace: true
other-certs: some-cert.pem.cert
setup-b:
trust: customca.pem.cert
trust-replace: false

14 Chapter 1. CLI user’s guide

pyHanko, Release 0.22.1-dev1

Time drift tolerance

Changed in version 0.5.0: Allow overriding the global value locally.

By default, pyHanko allows a drift of 10 seconds when comparing times. This value can be overridden in two ways:
using the top-level time-tolerance configuration option, or by setting time-tolerance in a named validation
context.

Given the example config below, using setup-a would set the time drift tolerance to 180 seconds. Since the global
time-tolerance setting is set to 30 seconds, this value would be used with setup-b, or with any trust settings
specified on the command line.

time-tolerance: 30
validation-contexts:
setup-a:
time-tolerance: 180
trust: customca.pem.cert
trust-replace: true
other-certs: some-cert.pem.cert
setup-b:
trust: customca.pem.cert
trust-replace: false

Allow revocation information to apply retroactively

New in version 0.5.0.

By default, pyhanko-certvalidator applies OCSP and CRL validity windows very strictly. For an OCSP response
or a CRL to be considered valid, the validation time must fall within this window. In other words, with the default
settings, an OCSP response fetched at some later date does not count for the purposes of establishing the revoca-
tion status of a certificate used with an earlier signature. However, pyHanko’s conservative default position is often
more strict than what’s practically useful, so this behaviour can be overridden with a configuration setting (or the
--retroactive-revinfo command line flag).

In the example config below, retroactive-revinfo is set to true globally, but to false in setup-a specifically.
In either case, the --retroactive-revinfo flag can override this setting.

retroactive-revinfo: true
validation-contexts:
setup-a:
retroactive-revinfo: false
trust: customca.pem.cert
trust-replace: true
other-certs: some-cert.pem.cert
setup-b:
trust: customca.pem.cert
trust-replace: false

1.4. Configuration options 15

pyHanko, Release 0.22.1-dev1

Named PKCS#11 setups

New in version 0.7.0.

Since the CLI parameters for signing files with a PKCS#11 token can get quite verbose, you might want to put the
parameters in the configuration file. You can declare named PKCS#11 setups under the pkcs11-setups top-level key
in pyHanko’s configuration. Here’s a minimal example:

pkcsll-setups:
test-setup:
module-path: /usr/lib/libsofthsm2.so
token-criteria:
label: testrsa
cert-label: signer

If you need to, you can also put the user PIN right in the configuration:

pkcsll-setups:
test-setup:
module-path: /usr/lib/libsofthsm2.so
token-criteria:
label: testrsa
cert-label: signer
user-pin: 1234

Danger: If you do this, you should obviously take care to keep your configuration file in a safe place.

To use a named PKCS#11 configuration from the command line, invoke pyHanko like this:

[pyhanko sign addsig pkcsll --pll-setup test-setup input.pdf output.pdf }

Named PKCS#11 setups also allow you to access certain advanced features that otherwise aren’t available from the
CLI directly. Here is an example.

pkcsll-setups:
test-setup:
module-path: /path/to/module.so
token-criteria:
serial: 17aa21784b9f
cert-id: 1382391af78ac390
key-id: 1382391af78ac390

This configuration will select a token based on the serial number instead of the label, and use PKCS#11 object IDs to
select the certificate and the private key. All of these are represented as hex strings.

For a full overview of the parameters you can set on a PKCS#11 configuration, see the API reference documentation
for PKCS11SignatureConfig.

Note: Using the --pl1-setup argument to pkcs11 will cause pyHanko to ignore all other parameters to the pkcs11
subcommand. In other words, you have to put everything in the configuration.

16 Chapter 1. CLI user’s guide

pyHanko, Release 0.22.1-dev1

Named setups for on-disk key material

New in version 0.8.0.

Starting from version 0.8.0, you can also put parameters for on-disk key material into the configuration file in much
the same way as for PKCS#11 tokens (see Named PKCS#11 setups above). This is done using the pkcs12-setups
and pemder-setups top-level keys, depending on whether the key material is made available as a PKCS#12 file, or as
individual PEM/DER-encoded files.

Here are some examples.

pkcsl2-setups:
foo:
pfx-file: path/to/signer.pfx
other-certs: path/to/more/certs.chain.pem
pemder-setups:
bar:
key-file: path/to/signer.key.pem
cert-file: path/to/signer.cert.pem
other-certs: path/to/more/certs.chain.pem

For non-interactive use, you can also put the passphrase into the configuration file (again, take care to set up your file
access permissions correctly).

pkcsl2-setups:
foo:
pfx-file: path/to/signer.pfx
other-certs: path/to/more/certs.chain.pem
pfx-passphrase: secret
pemder-setups:
bar:
key-file: path/to/signer.key.pem
cert-file: path/to/signer.cert.pem
other-certs: path/to/more/certs.chain.pem
key-passphrase: secret

On the command line, you can use these named setups like this:

pyhanko sign addsig pkcsl2 --pl2-setup foo input.pdf output.pdf
pyhanko sign addsig pemder --pemder-setup bar input.pdf output.pdf

For a full overview of the parameters you can set in these configuration dictionaries, see the API reference documen-
tation for PKCS12SignatureConfig and PemDerSignatureConfig.

Key usage settings

New in version 0.5.0.

There are two additional keys that can be added to a named validation context: signer-key-usage and
signer-extd-key-usage. Both either take a string argument, or an array of strings. These define the necessary key
usage (resp. extended key usage) extensions that need to be present in signer certificates. For signer-key-usage,
the possible values are as follows:

e digital_signature

e non_repudiation

1.4. Configuration options 17

pyHanko, Release 0.22.1-dev1

* key_encipherment
¢ data_encipherment
e key_agreement

e key_cert_sign

e crl_sign

e encipher_only

¢ decipher_only

We refer to § 4.2.1.3 in RFC 5280 for an explanation of what these values mean. By default, pyHanko requires signer
certificates to have at least the non_repudiation extension, but you may want to change that depending on your
requirements.

Values for extended key usage extensions can be specified as human-readable names, or as OIDs. The human-readable
names are derived from the names in asnlcrypto.x509.KeyPurposeld in asnlcrypto. If you need a key usage
extension that doesn’t appear in the list, you can specify it as a dotted OID value instead. By default, pyHanko does not
require any specific extended key usage extensions to be present on the signer’s certificate.

This is an example showcasing key usage settings for a validation context named setup-a:

validation-contexts:
setup-a:
trust: customca.pem.cert
trust-replace: true
other-certs: some-cert.pem.cert
signer-key-usage: ["digital_signature", "non_repudiation"]
signer-extd-key-usage: ["code_signing", "2.999"]

Note: These key usage settings are mainly intended for use with validation, but are also checked when signing with
an active validation context.

Styles for stamping and signature appearances

In order to use a style other than the default for a PDF stamp or (visible) signature, you’ll have to write some configu-
ration. New styles can be defined under the stamp-styles top-level key. Here are some examples:

stamp-styles:

default:
type: text
background: __stamp__

stamp-text: "Signed by %(signer)s\nTimestamp: %(ts)s"
text-box-style:
font: NotoSerif-Regular.otf
noto-qr:
type: qr
background: background.png
stamp-text: "Signed by %(signer)s\nTimestamp: %(ts)s\n%(url)s"
text-box-style:
font: NotoSerif-Regular.otf
leading: 13

18 Chapter 1. CLI user’s guide

https://datatracker.ietf.org/doc/html/rfc5280.html

pyHanko, Release 0.22.1-dev1

To select a named style at runtime, pass the --style-name parameter to addsig (when signing) or stamp (when
stamping). As was the case for validation contexts, the style named default will be chosen if the --style-name
parameter is absent. Similarly, the default style’s name can be overridden using the default-stamp-style top-level
key.

Let us now briefly go over the configuration parameters in the above example. All parameters have sane defaults.

» type: This can be either text or qr, for a simple text box or a stamp with a QR code, respectively. The default
is text. Note that QR stamps require the --stamp-url parameter on the command line.

* background: Here, you can specify any of the following:
— apath to a bitmap image;
— apath to a PDF file (the first page will be used as the stamp background);

— the special value __stamp__, which will render a simplified version of the pyHanko logo in the background
of the stamp (using PDF graphics operators directly).

When using bitmap images, any file format natively supported by Pillow should be OK. If not specified, the
stamp will not have a background.

e stamp-text: A template string that will be used to render the text inside the stamp’s text box. Currently, the
following variables can be used:

— signer: the signer’s name (only for signatures);
— ts: the time of signing/stamping;
— url: the URL associated with the stamp (only for QR stamps).
* text-box-style: With this parameter, you can fine-tune the text box’s style parameters. The most important
one is font, which allows you to specify an OTF font that will be used to render the text. If not specified, pyHanko

will use a standard monospaced Courier font. See TextBoxStyle in the API reference for other customisable
parameters.

The parameters used in the example styles shown above are not the only ones. The dynamic configuration mechanism
used by pyHanko automatically exposes virtually all styling settings that are available to users of the (high-level) library
API. For example, to use a stamp style where the text box is shifted to the right, and the background image is displayed
on the left with custom margins, you could write something like the following:

stamp-styles:
more-complex-demo:
type: text
stamp-text: "Test Test Test\n%(ts)s"
background: image.png
background-opacity: 1
background-layout:
x-align: left
margins:
left: 10
top: 10
bottom: 10
inner-content-layout:
x-align: right
margins:
right: 10

These settings are documented in the API reference documentation for BaseStampStyle and its subclasses.

1.4. Configuration options 19

https://pillow.readthedocs.io

pyHanko, Release 0.22.1-dev1

Note: In general, the following rules apply when working with these “autoconfigurable” classes from within YAML.
» Underscores in field names (at the Python level) can be replaced with hyphens in YAML.

* Some fields will in turn be of an autoconfigurable type, e.g. background_layout isa SimpleBoxLayoutRule,
which can also be configured using a YAML dictionary (as shown in the example above).

* In other cases, custom logic is provided to initialise certain fields, which is then documented on the (overridden)
process_entries() method of the relevant class.

20 Chapter 1. CLI user’s guide

CHAPTER
TWO

LIBRARY (SDK) USER’S GUIDE

This guide offers a high-level overview of pyHanko as a Python library. For the API reference docs generated from the
source, see the API reference.

The pyHanko library roughly consists of the following components.

2.1

The pyhanko.pdf_utils package, which is essentially a (gutted and heavily modified) fork of PyPDF2, with
various additions to support the kind of low-level operations that pyHanko needs to support its various signing
and validation workflows.

The pyhanko. sign package, which implements the general signature API supplied by pyHanko.
The pyhanko. stamp module, which implements the signature appearance rendering & stamping functionality.
The pyhanko . keys module with utilities to handle key and certificate loading.

Support subpackages to handle CLI and configuration: pyhanko.config and pyhanko.cli. These mostly
consist of very thin wrappers around library functionality, and shouldn’t really be considered public API, except
for the parts used in the plugin system.

Reading and writing PDF files

Note:

This page only describes the read/write functionality of the pdf_utils package. See The pdf-utils package for

further information.

2.1.1 Reading files

Opening PDF files for reading and writing in pyHanko is easy.

For example, to instantiate a PdfFileReader reading from document . pdf, it suffices to do the following.

from pyhanko.pdf_utils.reader import PdfFileReader

with open('document.pdf', 'rb') as doc:

r = PdfFileReader(doc)
... do stuff ...

In-memory data can be read in a similar way: if buf is a bytes object containing data from a PDF file, you can use it
in a PdfFileReader as follows.

21

pyHanko, Release 0.22.1-dev1

from pyhanko.pdf_utils.reader import PdfFileReader
from io import BytesIO

buf = b'<PDF file data goes here>'
doc = BytesIO(buf)

r = PdfFileReader(doc)

... do stuff ...

2.1.2 Modifying files

If you want to modify a PDF file, use IncrementalPdfFileliriter, like so.

from pyhanko.pdf_utils.incremental_writer import IncrementalPdfFileWriter

with open('document.pdf', 'rb+') as doc:
w = IncrementalPdfFileWriter(doc)
... do stuff ...
w.write_in_place()

Using write_in_place() will cause the generated update to be appended to the same stream as the input stream;
this is why we open the file with 'rb+". If you want the output to be written to a different file or buffer, use write ()
instead. Obviously, opening the input file with 'rb"' is sufficient in this case.

Note: Due to the way PDF signing works, pyHanko’s signing API will usually take care of calling write or
write_in_place as appropriate, and do its own processing of the results. In most standard use cases, you proba-
bly don’t need to worry about explicit writes too much.

Any IncrementalPdfFileliriter objects used in a signing operation should be discarded afterwards. If you want to
continue appending updates to a signed document, create a new IncrementalPdfFileliriter on top of the output.

This should suffice to get you started with pyHanko’s signing and validation functionality, but the reader/writer classes
can do a lot more. To learn more about the inner workings of the low-level PDF manipulation layer of the library, take
a look at The pdf-utils package or the API reference.

Warning: While the pyhanko.pdf_utils module is very powerful in that it allows you to modify objects in the
PDF file in essentially arbitrary ways, and with a lot of control over the output, actually using it in this way requires
some degree of familiarity with the PDF standard.

As things are now, pyHanko does not offer any facilities to help you format documents neatly, or to do any kind of
layout work beyond the most basic operations. This may or may not change in the future. In the meantime, you’re
probably better off using typesetting software or a HTML to PDF converter for your more complex layout needs,
and let pyHanko handle the signing step at the end.

22 Chapter 2. Library (SDK) user’s guide

pyHanko, Release 0.22.1-dev1

2.2 Signature fields

The creation of signature fields—that is to say, containers for (future) signatures—is handled by the pyhanko. sign.
fields module. Depending on your requirements, you may not need to call the functions in this module explicitly; in
many simple cases, pyHanko’s signing functionality takes care of that for you.

However, if you want more control, or you need some of the more advanced functionality (such as seed value support
or field locking) that the PDF standard offers, you might want to read on.

2.2.1 General API design

In general terms, a signature field is described by a SigFieldSpec object, which is passed to the
append_signature_field() function for inclusion in a PDF file.

As the name suggests, a SigFieldSpec is a specification for a new signature field. These objects are designed to
be immutable and stateless. A SigFieldSpec object is instantiated by calling SigFieldSpec() with the following
keyword parameters.

e sig_field_name: the field’s name. This is the only mandatory parameter; it must not contain any period (.)
characters.

* on_page and box: determine the position and page at which the signature field’s widget should be put (see
Positioning).

* seed_value_dict: specify the seed value settings for the signature field (see Seed value settings).

e field mdp_spec and doc_mdp_update_value: specify a template for the modification and field locking pol-
icy that the signer should apply (see Document modification policy settings).

Hence, to create a signature field specification for an invisible signature field named Sig1, and add it to a file document .
pdf£, you would proceed as follows.

from pyhanko.sign.fields import SigFieldSpec, append_signature_field
from pyhanko.pdf_utils.incremental_writer import IncrementalPdfFileWriter

with open('document.pdf', 'rb+') as doc:
w = IncrementalPdfFileWriter(doc)
append_signature_field(w, SigFieldSpec(sig_field_name="Sigl"))
w.write_in_place()

2.2.2 Positioning
The position of a signature field is essentially only relevant for visible signatures. The following SigFieldSpec
parameters determine where a signature widget will end up:

* on_page: index of the page on which the signature field should appear (default: 0);

¢ box: bounding box of the signature field, represented as a 4-tuple (x1, yl, x2, y2) in Cartesian coordinates
(i.e. the vertical axis runs bottom to top).

Caution: In contrast with the CLI, pages are zero-indexed in the API.

2.2. Signature fields 23

pyHanko, Release 0.22.1-dev1

2.2.3 Seed value settings

The PDF standard provides a way for document authors to provide so-called “seed values” for signature fields. These
instruct the signer about the possible values for certain signature properties and metadata. They can be purely infor-
mative, but can also be used to restrict the signer in various ways.

Below is a non-exhaustive list of things that seed values can do.
* Put restrictions on the signer’s certificate, including
— the issuer,
— the subject’s distinguished name,
— key usage extensions.
* Force the signer to embed a timestamp (together with a suggested time stamping server URL).
¢ Offer the signer a list of choices to choose from when selecting a reason for signing.

* Instruct the signer to use a particular signature (sub-)handler (e.g. tell the signer to produce PAJES-style signa-
tures).

Most of these recommendations can be marked as mandatory using flags. In this case, they also introduce a validation
burden.

Caution: Before deciding whether seed values are right for your use case, please consider the following factors.

1. Seed values are a (relatively) obscure feature of the PDF specification, and not all PDF software offers support
for it. Using mandatory seed values is therefore probably only viable in a closed, controlled environment with
well-defined document workflows. When using seed values in an advisory manner, you may want to provide
alternative hints, perhaps in the form of written instructions in the document, or in the form of other metadata.

2. At this time, pyHanko only supports a subset of the seed value specification in the standard, but this should be
resolved in due time. The extent of what is supported is recorded in the API reference for SigSeedValFlags.

3. Since incremental updates can modify documents in arbitrary ways, mandatory seed values can only be
(reliably) enforced if the author includes a certification signature, to prevent later signers from surreptitiously
changing the rules.

If this is not an option for whatever reason, then you’ll have to make sure that the entity validating the signa-
tures is aware of the restrictions the author intended through out-of-band means.

4. Consider whether using signatures with explicitly identified signature policies would be more appropriate
(see e.g. RFC 5126, § 5.8). Processing signature policies requires more specialised validation tools, but they
are standardised much more rigorously than seed values in PDF. In particular, it is the superior choice when
working with signatures in an AdES context. However, pyHanko’s support for these workflows is currently
limited'.

Seed values for a new signature field are configured through the seed_value_dict attribute of SigFieldSpec. This
attribute takes a SigSeedValueSpec object, containing the desired seed value configuration. For a detailed overview
of the seed values that can be specified, follow the links to the API reference; we only discuss the most important points
below.

The mandatory seed values are indicated by the f1ags attribute, which takes a SigSeedValFlags object as its value.
This is a subclass of Flag, so you can combine different flags using bitwise operations.

! Currently, pyHanko doesn’t yet support automatic enforcement of signature policies (to the extent that they can be machine-verified in the first
place, obviously). This goes for both the signer and the validator. However, you can still declare signature policies by extending your favourite
Signer subclass and adding the relevant signed attributes. Validators that do not support signature policy processing will typically ignore the policy
setting altogether.

24 Chapter 2. Library (SDK) user’s guide

https://datatracker.ietf.org/doc/html/rfc5126.html

pyHanko, Release 0.22.1-dev1

Restrictions and suggestions pertaining to the signer’s certificate deserve special mention, since they’re a bit special.
These are encoded the cert attribute of SigSeedValueSpec, in the form of a SigCertConstraints object. This
class has a f1ags attribute of its own, indicating which of the SigCertConstraints are to be enforced. Its value is
a SigCertConstraintFlags object. In other words, the enforceability of certificate constraints is not controlled by
the f1ags attribute of SigSeedValueSpec, but by the f1ags attribute of the SigCertConstraints object inside the
cert attribute. This mirrors the way in which these restrictions are defined in the PDF specification.

Since this is all rather abstract, let’s discuss a concrete example. The code below shows how you might instantiate a
signature field specification for a ballot form of sorts, subject to the following requirements.

¢ Only people with voting rights should be able to sign the ballot. This is enforced by requiring that the certificates
be issued by a specific certificate authority.

» The signer can either vote for or against the proposed measure, or abstain. For the sake of the example, let’s
encode that by one of three possible reasons for signing.

 Since we want to avoid cast ballots being modified after the fact, we require a strong hash function to be used (at
least sha256).

from pyhanko.sign import fields
from pyhanko.keys import load_cert_from_pemder

franchising_ca = load_cert_from_pemder('path/to/certfile')
sv = fields.SigSeedValueSpec(
reasons=|[
'T vote in favour of the proposed measure',
'T vote against the proposed measure',
'T formally abstain from voting on the proposed measure'
1,
cert=fields.SigCertConstraints(
issuers=[franchising_ca],
flags=fields.SigCertConstraintFlags.ISSUER
)
digest_methods=['sha256', 'sha384', 'sha512'],
flags=fields.SigSeedValFlags.REASONS | fields.SigSeedValFlags.DIGEST_METHOD
)

sp = fields.SigFieldSpec('BallotSignature', seed_value_dict=sv)

Note the use of the bitwise-or operator | to combine multiple flags.

2.2.4 Document modification policy settings
Broadly speaking, the PDF specification outlines two ways to specify the degree to which a document may be modified
after a signature is applied, without these modifications affecting the validity of the signature.

e The document modification detection policy (DocMDP) is an integer between one and three, indicating on a
document-wide level which classes of modification are permissible. The three levels are defined as follows:

— level 1: no modifications are allowed;
— level 2: form filling and signing are allowed;
— level 3: form filling, signing and commenting are allowed.

The default value is 2.

2.2. Signature fields 25

pyHanko, Release 0.22.1-dev1

¢ The field modification detection policy (FieldMDP), as the name suggests, specifies the form fields that can be
modified after signing. FieldMDPs can be inclusive or exclusive, and as such allow fairly granular control.

When creating a signature field, the document author can suggest policies that the signer should apply in the signature
object.

Warning: There are a number of caveats that apply to MDP settings in general; see Some background on PDF
signatures.

Traditionally, the DocMDP settings are exclusive to certification signatures (i.e. the first, specially marked signature
included by the document author), but in PDF 2.0 it is possible for approval (counter)signatures to set the DocMDP
level to a stricter value than the one already in force—although this uses a setting in the field’s locking dictionary rather
than an explicit DocMDP dictionary on the signature itself.

In pyHanko, these settings are controlled by the field mdp_spec and doc_mdp_update_value parameters of
SigFieldSpec. The example below specifies a field with instructions for the signer to lock a field called
SomeTextField, and set the DocMDP value for that signature to FORM_FILLING (i.e. level 2). PyHanko will re-
spect these settings when signing, but other software might not.

from pyhanko.sign import fields

fields.SigFieldSpec(
'Sigl', box=(10, 74, 140, 134),
field_mdp_spec=fields.FieldMDPSpec(
fields.FieldMDPAction.INCLUDE, fields=['SomeTextField']
)
doc_mdp_update_value=fields.MDPPerm.FORM_FILLING

The doc_mdp_update_value value is more or less self-explanatory, since it’s little more than a numerical constant.
The value passed to field _mdp_spec is an instance of FieldMDPSpec. FieldMDPSpec objects take two parameters:

e fields: The fields that are subject to the policy, which can be specified exclusively or inclusively, depending
on the value of action (see below).

» action: This is an instance of the enum FieldMDPAction. The possible values are as follows.
— ALL: all fields should be locked after signing. In this case, the value of the fields parameter is irrelevant.

— INCLUDE: all fields specified in fields should be locked, while the others remain unlocked (in the absence
of other more restrictive policies).

— EXCLUDE: all fields except the ones specified in fields should be locked.

2.3 Signing functionality

This page describes pyHanko’s signing APIL.

Note: Before continuing, you may want to take a look at the background on PDF signatures in the CLI documentation.

26 Chapter 2. Library (SDK) user’s guide

pyHanko, Release 0.22.1-dev1

2.3.1 General API design

The value entry (/V) of a signature field in a PDF file is given by a PDF dictionary: the “signature object”. This
signature object in turn contains a /Contents key (a byte string) with a DER-encoded rendition of the CMS object
(see RFC 5652) containing the actual cryptographic signature. To avoid confusion, the latter will be referred to as the
“signature CMS object”, and we’ll reserve the term “signature object” for the PDF dictionary that is the value of the
signature field.

The signature object contains a /ByteRange key outlining the bytes of the document that should be hashed to validate
the signature. As a general rule, the hash of the PDF file used in the signature is computed over all bytes in the file,
except those under the /Contents key. In particular, the /ByteRange key of the signature object is actually part of
the signed data, which implies that the size of the signature CMS object needs to be estimated ahead of time. As we’ll
see soon, this has some minor implications for the API design (see this subsection in particular).

The pyHanko signing API is spread across several modules in the pyhanko. sign package. Broadly speaking, it has
three aspects:

e PdfSignaturelMetadata specifies high-level metadata & structural requirements for the signature object and
(to a lesser degree) the signature CMS object.

» Signer and its subclasses are responsible for the construction of the signature CMS object, but are in principle
“PDF-agnostic”.

e PdfSigner is the “steering” class that invokes the Signer on an IncrementalPdfFileliriter and takes care
of formatting the resulting signature object according to the specifications of a PdfSignatureMetadata object.

This summary, while a bit of an oversimplification, provides a decent enough picture of the separation of concerns in
the signing API. In particular, the fact that construction of the CMS object is delegated to another class that doesn’t
need to bother with any of the PDF-specific minutiae makes it relatively easy to support other signing technology (e.g.
particular HSMs).

2.3.2 A simple example

Changed in version 0.9.0: New async-first APIL.

Virtually all parameters of PdfSignatureMetadata have sane defaults. The only exception is the one specifying the
signature field to contain the signature—this parameter is always mandatory if the number of empty signature fields in
the document isn’t exactly one.

In simple cases, signing a document can therefore be as easy as this:

from pyhanko.sign import signers
from pyhanko.pdf_utils.incremental_writer import IncrementalPdfFileWriter

cms_signer = signers.SimpleSigner.load(
'path/to/signer/key.pem', 'path/to/signer/cert.pem',
ca_chain_files=('path/to/relevant/certs.pem',),
key_passphrase=b'secret'

)

with open('document.pdf', 'rb') as doc:
w = IncrementalPdfFileliriter(doc)
out = signers.sign_pdf(
W, signers.PdfSignatureMetadata(field_name='Signaturel'),
signer=cms_signer,

(continues on next page)

2.3. Signing functionality 27

https://datatracker.ietf.org/doc/html/rfc5652.html

pyHanko, Release 0.22.1-dev1

(continued from previous page)

)

do stuff with 'out'

The sign_pdf () function is a thin convenience wrapper around PdfSigner’s sign_pdf () method, with essentially
the same API. The following code is more or less equivalent.

from pyhanko.sign import signers
from pyhanko.pdf_utils.incremental_writer import IncrementalPdfFileWriter

cms_signer = signers.SimpleSigner.load(
'path/to/signer/key.pem', 'path/to/signer/cert.pem',
ca_chain_files=('path/to/relevant/certs.pem',),
key_passphrase=b'secret’

)

with open('document.pdf', 'rb') as doc:
w = IncrementalPdfFileWriter(doc)
out = signers.PdfSigner(
signers.PdfSignatureMetadata(field_name='Signaturel'),
signer=cms_signer,
) .sign_pdf(w)

do stuff with 'out’
...

The advantages of instantiating the PdfSigner object yourself include reusability and more granular control over the
signature’s appearance.

In the above examples, out ends up containing a byte buffer (io.BytesIO object) with the signed output. You can
control the output stream using the output or in_place parameters; see the documentation for sign_pdf().

Danger: Any IncrementalPdfFileliriter used in the creation of a signature should be discarded afterwards.
Further modifications would simply invalidate the signature anyway.

For a full description of the optional parameters, see the API reference documentation for PdfSignatureMetadata
and PdfSigner.

Warning: If there is no signature field with the name specified in the field_name parameter of
PdfSignatureMetadata, pyHanko will (by default) create an invisible signature field to contain the signature.
This behaviour can be turned off using the existing_fields_only parameter to sign_pdf (), or you can supply
a custom field spec when initialising the PdfSigner.

For more details on signature fields and how to create them, take a look at Signature fields.

Note that, from version 0.9.0 onwards, pyHanko can also be called asynchronously. In fact, this is now the preferred
mode of invocation for most lower-level functionality. Anyway, the example from this section could have been written
asynchronously as follows.

28 Chapter 2. Library (SDK) user’s guide

pyHanko, Release 0.22.1-dev1

import asyncio
from pyhanko.sign import signers
from pyhanko.pdf_utils.incremental_writer import IncrementalPdfFileWriter

async def async_demo(signer, fname):
with open(fname, 'rb') as doc:
w = IncrementalPdfFileWriter(doc)
out = await signers.async_sign_pdf(
w, signers.PdfSignatureMetadata(field_name='Signaturel'),
signer=signer,

return out

cms_signer = signers.SimpleSigner.load(
'path/to/signer/key.pem', 'path/to/signer/cert.pem',
ca_chain_files=('path/to/relevant/certs.pem',),
key_passphrase=b'secret'

)

asyncio.run(async_demo(cms_signer, 'document.pdf'))

For a signing process with SimpleSigner that doesn’t perform any certificate validation, pyHanko’s move towards a
more async-focused API probably doesn’t buy you all that much. However, using an asynchronous calling conventions
allow for more efficient I/O when the signing code needs to access resources over a network. This typically becomes
relevant when

* the cryptographic operations are performed by a remote signing service, or
* revocation info for the chain of trust needs to be embedded.

While you don’t strictly need to use the new asynchronous APIs to reap all the benefits of this move, there are quite a
few scenarios where it makes a lot of sense to do so, especially if your project is already structured around nonblock-
ing/concurrent I/O operations.

2.3.3 Signature appearance generation

See also:

Styles for stamping and signature appearances in the CLI documentation for the CLI equivalent, and Signature fields
for information on how to create signature fields in general.

When creating visible signatures, you can control the visual appearance to a degree, using different stamp types. This
can be done in one of several ways.

2.3. Signing functionality 29

pyHanko, Release 0.22.1-dev1

Text-based stamps

PyHanko’s standard stamp type is the text stamp. At its core, a text stamp appearance is simply some text in a box,
possibly with interpolated parameters. Text stamps can use TrueType and OpenType fonts (or fall back to a generic
monospaced font by default). Additionally, text stamps can also have backgrounds.

Text stamp styles are (unsurprisingly) described by a TextStampStyle object. Here’s a code sample demonstrating
basic usage, with some custom text using a TrueType font, and a bitmap background.

from pyhanko import stamp

from pyhanko.pdf_utils import text, images

from pyhanko.pdf_utils.font import opentype

from pyhanko.pdf_utils.incremental_writer import IncrementalPdfFileWriter
from pyhanko.sign import fields, signers

signer = signers.SimpleSigner.load(...)
with open('document.pdf', 'rb') as inf:
w = IncrementalPdfFileWriter(inf)
fields.append_signature_field(
w, sig_field_spec=fields.SigFieldSpec(
'Signature', box=(200, 600, 400, 660)
)

meta = signers.PdfSignatureMetadata(field_name='Signature')
pdf_signer = signers.PdfSigner(
meta, signer=signer, stamp_style=stamp.TextStampStyle(
the 'signer' and 'ts' parameters will be interpolated by pyHanko, if present
stamp_text='This is custom text!\nSigned by: \nTime: !
text_box_style=text.TextBoxStyle(
font=opentype.GlyphAccumulatorFactory('path/to/NotoSans-Regular.ttf")
s
background=images.PdfImage('stamp.png')
)
)
with open('document-signed.pdf', 'wb') as outf:
pdf_signer.sign_pdf(w, output=outf)

Fig. 2.1 shows what the result might look like. Obviously, the final result will depend on the size of the bounding box,
font properties, background size etc.

The layout of a text stamp can be tweaked to some degree, see TextStampStyle.

Note: You can define values for your own custom interpolation parameters using the appearance_text_params
argument to sign_pdf().

30 Chapter 2. Library (SDK) user’s guide

pyHanko, Release 0.22.1-dev1

This is custom text!
Signed by: Alice<alice@example.com>
Time: 2021-06:24'08:00:00 CEST

Fig. 2.1: A text stamp in Noto Sans Regular with an image background.

QR code stamps

Besides text stamps, pyHanko also supports signature appearances with a QR code embedded in them. Here’s a varia-
tion of the previous example that leaves out the background, but includes a QR code in the end result.

from pyhanko import stamp

from pyhanko.pdf_utils import text

from pyhanko.pdf_utils.font import opentype

from pyhanko.pdf_utils.incremental_writer import IncrementalPdfFileWriter
from pyhanko.sign import fields, signers

signer = signers.SimpleSigner.load(...)
with open('document.pdf', 'rb') as inf:
w = IncrementalPdfFileliriter(inf)
fields.append_signature_field(
w, sig_field_spec=fields.SigFieldSpec(
'Signature', box=(200, 600, 400, 660)
)

meta = signers.PdfSignatureMetadata(field_name='Signature')
pdf_signer = signers.PdfSigner(
meta, signer=signer, stamp_style=stamp.QRStampStyle(
Let's include the URL in the stamp text as well
stamp_text="Signed by: \nTime: \nURL: ',
text_box_style=text.TextBoxStyle(
font=opentype.GlyphAccumulatorFactory('path/to/NotoSans-Regular.ttf")
s
s
)
with open('document-signed.pdf', 'wb') as outf:
with QR stamps, the 'url' text parameter is special-cased and mandatory, even.,
~if it
doesn't occur in the stamp text: this is because the value of the 'url',
—parameter is
also used to render the QR code.
(continues on next page)

2.3. Signing functionality 31

pyHanko, Release 0.22.1-dev1

(continued from previous page)
pdf_signer.sign_pdf(
w, output=outf,
appearance_text_params={'url': 'https://example.com'}

Fig. 2.2 shows some possible output obtained with these settings.

Signed by: Alice <alice@example.com>
Time: 2021-06-24 08:00:00 CEST
URL: https://example.com

Fig. 2.2: A QR stamp in Noto Sans Regular, pointing to https://example.com

Static content stamps

PyHanko is mainly a signing library, and as such, its appearance generation code is fairly primitive. If you want to go
beyond pyHanko’s default signature appearances, you have the option to import an entire page from an external PDF
file to use as the appearance, without anything else overlaid on top. Here’s how that works.

from pyhanko import stamp
from pyhanko.pdf_utils.incremental_writer import IncrementalPdfFileWriter
from pyhanko.sign import fields, signers

signer = signers.SimpleSigner.load(...)
with open('document.pdf', 'rb') as inf:
w = IncrementalPdfFileWriter(inf)
fields.append_signature_field(
w, sig_field_spec=fields.SigFieldSpec(
'Signature', box=(200, 600, 400, 660)
)

meta = signers.PdfSignatureMetadata(field_name='Signature')
pdf_signer = signers.PdfSigner(
meta, signer=signer,
stamp_style=stamp.StaticStampStyle. from_pdf_file('my-fancy-appearance.pdf")
)
with open('document-signed.pdf', 'wb') as outf:
pdf_signer.sign_pdf(w, output=outf)

The result of this snippet with a file from pyHanko’s test suite is shown in Fig. 2.3. Essentially, this way of working
allows you to use whatever tools you like to generate the signature appearance, and use the result with pyHanko’s

32 Chapter 2. Library (SDK) user’s guide

https://example.com

pyHanko, Release 0.22.1-dev1

signing tools. The bounding box of the content is derived from the imported page’s MediaBox (i.e. the principal page
bounding box), so take that into account when designing your own appearances.

Note: The external PDF content is imported “natively”: all vector operations will remain vector operations, embedded
fonts are copied over, etc. There is no rasterisation involved.

Test test

Fig. 2.3: Example of a signature appearance using a stamp imported from an external PDF file.

2.3.4 Timestamp handling

Cryptographic timestamps (specified by RFC 3161) play a role in PDF signatures in two different ways.

* They can be used as part of a PDF signature (embedded into the signature CMS object) to establish a (verifiable)
record of the time of signing.

* They can also be used in a stand-alone way to provide document timestamps (PDF 2.0).

From a PDF syntax point of view, standalone document timestamps are formally very similar to PDF signatures. Py-
Hanko implements these using the timestamp_pdf () method of PdfTimeStamper.

Timestamp tokens (TST) embedded into PDF signatures are arguably the more common occurrence. These function as
countersignatures to the signer’s signature, proving that a signature existed at a certain point in time. This is a necessary
condition for (most) long-term verifiability schemes.

Typically, such timestamp tokens are provided over HTTP, from a trusted time stamping authority (TSA), using the
protocol specified in RFC 3161. PyHanko provides a client for this protocol; see HTTPTimeStamper.

A PdfSigner can specify a default TimeStamper to procure timestamp tokens from some TSA, but sometimes py-
Hanko can infer a TSA endpoint from the signature field’s seed values.

The example from the previous section doesn’t need to be modified by a lot to include a trusted timestamp in the
signature.

from pyhanko.sign import signers, timestamps
from pyhanko.pdf_utils.incremental_writer import IncrementalPdfFileWriter

cms_signer = signers.SimpleSigner.load(
'path/to/signer/key.pem', 'path/to/signer/cert.pem',
ca_chain_files=('path/to/relevant/certs.pem',),
(continues on next page)

2.3. Signing functionality 33

https://datatracker.ietf.org/doc/html/rfc3161.html
https://datatracker.ietf.org/doc/html/rfc3161.html

pyHanko, Release 0.22.1-dev1

(continued from previous page)
key_passphrase=b'secret’

)
tst_client = timestamps.HTTPTimeStamper('http://example.com/tsa')

with open('document.pdf', 'rb') as doc:
w = IncrementalPdfFileliriter(doc)
out = signers.sign_pdf(
W, signers.PdfSignatureMetadata(field_name='Signaturel'),
signer=cms_signer, timestamper=tst_client

)

do stuff with 'out'
...

As a general rule, pyHanko will attempt to obtain a timestamp token whenever a TimeStamper is available, but you
may sometimes see more TST requests go over the wire than the number of signatures you’re creating. This is normal:
since the timestamps are to be embedded into the signature CMS object of the signature, pyHanko needs a sample token
to estimate the CMS object’s size’. These “dummy tokens” are cached on the TimeStamper, so you can cut down on
the number of such unnecessary requests by reusing the same TimeStamper for many signatures.

2.3.5 Creating PAdES signatures

Creating signatures conforming to various PAdES baseline profiles is also fairly straightforward using the pyHanko
APL

To create a PAJES B-LTA signature, you can follow the template of the example below. This is the most advanced
PAdES baseline profile. For other PAJES baseline profiles, tweak the parameters of the PdfSignatureMetadata
object accordingly.

from pyhanko.pdf_utils.incremental_writer import IncrementalPdfFileWriter
from pyhanko.sign import signers, timestamps

from pyhanko.sign.fields import SigSeedSubFilter

from pyhanko_certvalidator import ValidationContext

Load signer key material from PKCS#12 file
This assumes that any relevant intermediate certs are also included
in the PKCS#12 file.
signer = signers.SimpleSigner.load_pkcs12(
pfx_file="signer.pfx', passphrase=b'secret'

)

Set up a timestamping client to fetch timestamps tokens
timestamper = timestamps.HTTPTimeStamper(
url="http://tsa.example.com/timestampService'

)

Settings for PAdES-LTA
signature_meta = signers.PdfSignatureMetadata(

field_name='Signature', md_algorithm="sha256",
(continues on next page)

2 The size of a timestamp token is difficult to predict ahead of time, since it depends on many unknown factors, including the number & form of
the various certificates that might come embedded within them.

34 Chapter 2. Library (SDK) user’s guide

pyHanko, Release 0.22.1-dev1

(continued from previous page)

Mark the signature as a PAdES signature
subfilter=SigSeedSubFilter.PADES,

We'll also need a validation context

to fetch & embed revocation info.
validation_context=ValidationContext(allow_fetching=True),
Embed relevant OCSP responses / CRLs (PAdES-LT)
embed_validation_info=True,

Tell pyHanko to put in an extra DocumentTimeStamp

to kick off the PAJES-LTA timestamp chain.
use_pades_lta=True

)

with open('input.pdf', 'rb') as inf:
w = IncrementalPdfFileliriter(inf)
with open('output.pdf', 'wb') as outf:
signers.sign_pdf(
W, Signature_meta=signature_meta, signer=signer,
timestamper=timestamper, output=outf

Warning: For PAdES profiles requiring revocation information to be gathered, it is crucial that the validation
context be set up correctly. Not only do you need to ensure that fetching revocation information is allowed (by
passing allow_fetching=True), but you should also make sure that all certificates that you intend to use can
actually be validated at usage time. If you rely on trust roots that are not in the system trust on your machine,
you may need to pass in your own trust roots using the trust_roots or extra_trust_roots parameters to
ValidationContext.

2.3.6 Using aiohttp for network I/O

New in version 0.9.0.

In version 0. 9.0, pyHanko’s lower-level APIs were reworked from an “async-first” perspective. For backwards compat-
ibility reasons, the default implementation pyHanko’s network I/O code (for fetching revocation info, timestamps, etc.)
still uses the requests library with some crude asyncio plumbing around it. However, to take maximal advantage of
the new asyncio facilities, you need to use a networking library that actually supports asynchronous I/O natively. In
principle, nothing stops you from plugging in an async-friendly library of your choosing, but pyHanko(and its depen-
dency pyhanko-certvalidator) can already be used with aiohttp without much additional effort—aiohttp is a
widely-used library for asynchronous HTTP.

Note: The reason why the aiohttp backend isn’t the default one is simple: using aiohttp requires the caller to
manage a connection pool, which was impossible to properly retrofit into pyHanko without causing major breakage in
the higher-level APIs as well.

Also note that aiohttp is an optional dependency.

Here’s an example demonstrating how you could use aiohttp-based networking in pyHanko to create a PAAES-B-LTA
signature.

import aiohttp

from pyhanko.pdf_utils.incremental_writer import IncrementalPdfFileWriter
(continues on next page)

2.3. Signing functionality 35

https://github.com/aio-libs/aiohttp

pyHanko, Release 0.22.1-dev1

(continued from previous page)

from pyhanko.sign import signers
from pyhanko.sign.fields import SigSeedSubFilter
from pyhanko.sign.timestamps.aiohttp_client import AIOHttpTimeStamper
from pyhanko_certvalidator import ValidationContext
from pyhanko_certvalidator.fetchers.aiohttp_fetchers \
import AIOHttpFetcherBackend

Load signer key material from PKCS#12 file

(see earlier examples)

signer = signers.SimpleSigner.load_pkcs12(
pfx_file="signer.pfx', passphrase=b'secret’

)

This demo async function takes an aiohttp session, an input
file name and an output file name.
async def sign_doc_demo(session, input_file, output_file):
Use the aiohttp fetcher backend provided by pyhanko-certvalidator,
and tell it to use our client session.
validation_context = ValidationContext(
fetcher_backend=AIOHttpFetcherBackend(session),
allow_fetching=True

Similarly, we choose an RFC 3161 client implementation

that uses AIOHttp under the hood

timestamper = AIOHttpTimeStamper (
'http://tsa.example.com/timestampService',
session=session

)

The signing config is otherwise the same

settings = signers.PdfSignatureMetadata(
field_name="'AsyncSignatureExample',
validation_context=validation_context,
subfilter=SigSeedSubFilter.PADES,
embed_validation_info=True

)

with open(input_file, 'rb') as inf:
w = IncrementalPdfFilelWriter(inf)
with open(output_file, 'wb') as outf:
await signers.async_sign_pdf(
w, settings, signer=signer, timestamper=timestamper,
output=outf
)

async def demo():
Set up our aiohttp session
async with aiohttp.ClientSession() as session:
await sign_doc_demo(session, 'input.pdf', 'output.pdf')

Note: Best practices for managing aiohttp sessions are beyond the scope of this guide. Have a look at the documen-

36 Chapter 2. Library (SDK) user’s guide

https://docs.aiohttp.org/en/stable/client_quickstart.html
https://docs.aiohttp.org/en/stable/client_quickstart.html

pyHanko, Release 0.22.1-dev1

tation for more information on how to use the aiohttp library effectively.

2.3.7 Extending Signer

Changed in version 0.9.0: New async-first APL.

Providing detailed guidance on how to implement your own Signer subclass is beyond the scope of this guide—the
implementations of SimpleSigner and PKCS11Signer should help. You might also want to take a look at the AWS
KMS example on the advanced examples page. This subsection merely highlights some of the issues you should keep
in mind.

First, if all you want to do is implement a signing device or technique that’s not supported by pyHanko, it should
be sufficient to implement async_sign_raw(). This method computes the raw cryptographic signature of some data
(typically a document hash) with the appropriate key material. It also takes a dry_run flag, signifying that the returned
object should merely have the correct size, but the content doesn’t matter' .

If your requirements necessitate further modifications to the structure of the CMS object, you’ll most likely have to
override async_sign(), which is responsible for the construction of the CMS object itself.

2.3.8 The low-level PdfCMSEmbedder API

New in version 0.3.0.

Changed in version 0.7.0: Digest wrapped in PreparedByteRangeDigest in step 3; output returned in step 3 instead
of step 4.

If even extending Signer doesn’t cover your use case (e.g. because you want to take the construction of the signature
CMS object out of pyHanko’s hands entirely), all is not lost. The lowest-level “managed” API offered by pyHanko is
the one provided by PdfCMSEmbedder. This class offers a coroutine-based interface that takes care of all PDF-specific
operations, but otherwise gives you full control over what data ends up in the signature object’s /Contents entry.

Note: PdfSigner uses PdfCMSEmbedder under the hood, so you're still mostly using the same code paths with this
APIL

Danger: Some advanced features aren’t available this deep in the API (mainly seed value checking). Additionally,
PdfCHMSEmbedder doesn’t really do any input validation; you’re on your own in that regard. See also Interrupted
signing for a more middle-of-the-road solution.

Here is an example demonstrating its use, sourced more or less directly from the test suite. For details, take a look at
the API docs for PdfCMSEmbedder.

from datetime import datetime

from pyhanko.sign import signers

from pyhanko.sign.signers import cms_embedder

from pyhanko.pdf_utils.incremental_writer import IncrementalPdfFileWriter

from io import BytesIO

(continues on next page)

! The dry_run flag is used in the estimation of the CMS object’s size. With key material held in memory it doesn’t really matter all that much,
but if the signature is provided by a HSM, or requires additional input on the user’s end (such as a PIN), you typically don’t want to use the “real”
signing method in dry-run mode.

2.3. Signing functionality 37

https://docs.aiohttp.org/en/stable/client_quickstart.html
https://docs.aiohttp.org/en/stable/client_quickstart.html

pyHanko, Release 0.22.1-dev1

(continued from previous page)

input_buf = BytesIO(b'<input file goes here>")
w = IncrementalPdfFileliriter (input_buf)

Phase 1: coroutine sets up the form field, and returns a reference

cms_writer = cms_embedder.PdfCMSEmbedder () .write_cms(
field_name='Signature', writer=w

)

sig_field_ref = next(cms_writer)

just for kicks, let's check
assert sig_field_ref.get_object()['/T'] == 'Signature'’

Phase 2: make a placeholder signature object,

wrap it up together with the MDP config we want, and send that

on to cms_writer

timestamp = datetime.now(tz=tzlocal.get_localzone())

sig_obj = signers.SignatureObject(timestamp=timestamp, bytes_reserved=8192)

md_algorithm = 'sha256'
for demonstration purposes, let's do a certification signature instead
of a plain old approval signature here
cms_writer.send(
cms_embedder.SigObjSetup(
sig_placeholder=sig_obj,
mdp_setup=cms_embedder.SigMDPSetup (
md_algorithm=md_algorithm, certify=True,
docmdp_perms=fields.MDPPerm.NO_CHANGES

Phase 3: write & hash the document (with placeholder)

prep_digest, output = cms_writer.send(
cms_embedder.SigIOSetup(md_algorithm=md_algorithm, in_place=True)

)

The ‘output® variable is a handle to the stream that contains

the document to be signed, with a placeholder allocated to hold

the actual signature contents.

Phase 4: construct the CMS object, and pass it on to cms_writer

NOTE: I'm using a regular SimpleSigner here, but you can substitute
whatever CMS supplier you want.

signer: signers.SimpleSigner = FROM_CA

let's supply the CMS object as a raw bytestring

cms_bytes = signer.sign(
data_digest=prep_digest.document_digest,
digest_algorithm-md_algorithm, timestamp=timestamp

) . dump)

sig_contents = cms_writer.send(cms_bytes)

(continues on next page)

38 Chapter 2. Library (SDK) user’s guide

pyHanko, Release 0.22.1-dev1

(continued from previous page)

The (signed) output document is in ‘output now.
'sig_contents® holds the content of the signature container
in the PDF file, including any padding.

2.3.9 Interrupted signing

New in version 0.7.0.

Changed in version 0.9.0: The new async-first API requires some changes to the workflow at this (relatively low) level
of abstraction.

Changed in version 0.14.0: It is no longer mandatory to make the signer’s certificate available from the start of the
workflow, although this comes at the cost of some convenience (signature size estimation and revocation info collection
being two major ones). This makes it easier to implement remote signing scenarios where the signer’s certificate is
unknown until the remote signing service produces its response.

There are use cases where trying to run the entire signing process in one go isn’t feasible. Think of a remote sign-
ing scenario with pyHanko running on a server, and calling an external signing service to perform the cryptographic
operations, or a case where pyHanko needs to wait for interactive user input to proceed with signing.

In cases like this, there are several points where you can interrupt the signing process partway through, save the state,
and pick up where you left off some time later—this conserves valuable resources in some scenarios. We refer to
pyhanko.sign.signers.pdf_signer for a full overview of what’s possible; below, we describe the most common
use case: a scenario where pyHanko prepares a document for signing, computes the digest, sends it off to somewhere
else for signing, and finishes the signing process once the response comes in (potentially in an entirely different thread).

Basic interrupted sighing example

In the example scenario, we use ExternalSigner to format the signed attributes and the final CMS object, but the
same principle applies (mutatis mutandis) to remote signers that supply complete CMS objects.

from pyhanko.sign import signers, fields, timestamps

from pyhanko.sign.signers.pdf_signer import PdfTBSDocument
from pyhanko_certvalidator import ValidationContext

from pyhanko.pdf_utils.writer import BasePdfFileWriter

Skeleton code for an interrupted PAdES signature

async def prep_document(w: BasePdfFileWriter):
vc = ValidationContext(...)
pdf_signer = signers.PdfSigner(
signers.PdfSignatureMetadata(
field_name='SigNew', embed_validation_info=True, use_pades_lta=True,
subfilter=fields.SigSeedSubFilter.PADES,
validation_context=vc,
md_algorithm="sha256"
s
note: this signer will not perform any cryptographic operations,
it's just there to bundle certificates with the generated CHMS
object and to provide size estimates
(continues on next page)

2.3. Signing functionality 39

pyHanko, Release 0.22.1-dev1

(continued from previous page)
signer=signers.ExternalSigner(
signing_cert=..., ...,
placeholder value, appropriate for a 2048-bit RSA key
(for example's sake)
signature_value=bytes(256),
s
timestamper=timestamps.HTTPTimeStamper ('http://tsa.example.com"')
)
prep_digest, tbs_document, output_handle = \
await pdf_signer.async_digest_doc_for_signing(w)
md_algorithm = tbs_document.md_algorithm
psi = tbs_document.post_sign_instructions

signed_attrs = await ext_signer.signed_attrs(
prep_digest.document_digest, 'sha256', use_pades=True
)

return prep_digest, signed_attrs, psi, output_handle

After prep_document finishes, you can serialise the contents

of prep_digest, signed_attrs and psi somewhere.

The output stream can also be stored in a temporary file, for example.
You could now call the remote signing service, and once the response
comes back, proceed with finish_signing() after deserialising

all the intermediate outputs from the previous step.

HoR R R R W

async def finish_signing(sig_value: bytes, prep_digest, signed_attrs,
psi, output_handle):
Here, assume sig_value is the signed digest of the signed_attrs
bytes, obtained from some remote signing service

use ExternalSigner to format the CMS given the signed value

we obtained from the remote signing service

ext_signer = instantiate_external_signer(sig_value)

sig_cms = await ext_signer.async_sign_prescribed_attributes(
'sha256', signed_attrs=signed_attrs,
timestamper=DUMMY_HTTP_TS

validation_context = ValidationContext(...)
await PdfTBSDocument.async_finish_signing(
output_handle, prepared_digest=prep_digest,
signature_cms=sig_cms,
post_sign_instr=psi,
validation_context=validation_context

The above example below also showcases how to apply proper post-signature processing in an interrupted PAdES
signature. This is only necessary for PAAES-LT and PAJES-LTA signatures. In other scenarios, you can replace the
async_finish_signing call with the following one-liner:

[prep_digest.fill_with_cms(output_handle, sig_cms)]

In particular, you don’t have to bother with PostSignInstructions at all.

40 Chapter 2. Library (SDK) user’s guide

pyHanko, Release 0.22.1-dev1

Interrupted signing when the signer’s certificate is not known a priori

Note that, starting with pyHanko 0.14.0, the signer’s certificate need no longer be provided at the start of the signing
process, if you supply some additional parameters yourself. This is useful in situations involving integrating with
a remote signing service that only provisions a short-lived certificate when provided with a hash of the document
(typically, such signers respond with complete CMS signature containers).

Here’s what that might look like in a toy example.

w = IncrementalPdfFilelriter(pdf_file_handle)
pdf_signer = signers.PdfSigner(
Specifying a digest algorithm (or signature mechanism)
1s necessary if the signing cert is not available
signers.PdfSignatureMetadata(
field_name='Signature',
md_algorithm="'sha256",
),
signer=ExternalSigner(
note the 'None's
signing_cert=None, cert_registry=None,
signature_value=256,

Since estimation is disabled without a certificate

available, bytes_reserved becomes mandatory.

prep_digest, tbs_document, output = await pdf_signer\
.async_digest_doc_for_signing(w, bytes_reserved=8192)

Call the external service
note: the signing certificate is in the returned payload,
but we don't (necessarily) need to do anything with it.
signature_container = \

await call_external_service(prep_digest.document_digest)

Note: in the meantime, we could've serialised and deserialised
the contents of 'output', of course
await PdfTBSDocument.async_finish_signing(output, prep_digest)

If you want, you can now proceed to tack on additional revisions
with revocation information, document timestamps and the like.

2.3.10 Generic data signing

New in version 0.7.0.
Changed in version 0.9.0: New async-first APL.

If you need to produce CMS signatures that are not intended to be consumed as traditional PDF signatures (for whatever
reason), the Signer classes in pyHanko expose a more flexible API that you can use.

The Signer class’s async_sign_general_data() method is a fairly thin wrapper around async_sign() that per-
forms some of the bookkeeping operations on the payload being signed. It outputs a CMS object with essentially the
same set of attributes that would be expected in a typical PDF signature, but the actual payload can be arbitrary data.

2.3. Signing functionality 41

pyHanko, Release 0.22.1-dev1

It can take either an IO-type object, or simply a bytes payload. For advanced uses (e.g. those requiring a custom-set
contentType), passing in a cms.ContentInfo (or cms.EncapsulatedContentInfo object) also works. This has a
number of caveats; carefully review the API documentation for async_sign_general_data() and section 5.1 of
RFC 5652 first.

The signer can operate in “detached” or “encapsulating” mode. In the former case, the payload being signed is not
encoded as part of the resulting CMS object. When in doubt, use detached mode—it’s the default.

Here is an example showcasing a typical invocation, combined with a call to embed_payload_with_cms () to embed
the resulting payload as a signed attachment in a PDF file.

from pyhanko.sign.signers.pdf_cms import SimpleSigner
from pyhanko.sign.signers.functions import embed_payload_with_cms
from pyhanko.pdf_utils import embed, writer

async def demo():
data = b'Hello world!'
instantiate a SimpleSigner
sgn = SimpleSigner(...)
Sign some data
signature = \
await sign.async_sign_general_data(data, 'sha256', detached=False)

Embed the payload into a PDF file, with the signature
object as a related file.
w = writer.PdfFilelWriter() # fresh writer, for demonstration's sake
embed_payload_with_cms(
w, file_spec_string="attachment.txt"',
file_name="attachment.txt',
payload=embed.EmbeddedFileObject.from_file_data(
w, data=data, mime_type="'text/plain',

D
cms_obj=signature,
file_spec_kwargs={'description': "Signed attachment test"}

Warning: This way of signing attachments is not standard, and chances are that your PDF reader won’t process the
signature at all. This snippet is simply a demonstration of the general principle behind CMS signing, and doesn’t
really represent any particular PDF feature.

2.4 Validation functionality

Note: Before reading this, you may want to take a look at Factors in play when validating a signature for some
background on the validation process.

Danger: In addition to the caveats outlined in Validating PDF signatures, you should be aware that the validation
API is still very much in flux, and likely to change by the time pyHanko reaches its beta stage.

42 Chapter 2. Library (SDK) user’s guide

https://datatracker.ietf.org/doc/html/rfc5652.html

pyHanko, Release 0.22.1-dev1

2.4.1 General API design

PyHanko’s validation functionality resides in the validation module. Its most important components are
e the EmbeddedPdfSignature class (responsible for modelling existing signatures in PDF documents);
* the various subclasses of SignatureStatus (encoding the validity status of signatures and timestamps);
e validate_pdf_signature() and validate_pdf_Iltv_signature (), for running the actual validation logic.

* the DocumentSecurityStore class and surrounding auxiliary classes (responsible for handling DSS updates
in documents).

While you probably won’t need to interface with DocumentSecurityStore directly, knowing a little about
EmbeddedPdfSignature and SignatureStatus is useful.

2.4.2 Accessing signhatures in a document

There is a convenience property on PdfFileReader, aptly named embedded_signatures. This property produces
an array of EmbeddedPdfSignature objects, in the order that they were applied to the document. The result is cached
on the reader object.

These objects can be used to inspect the signature manually, if necessary, but they are mainly intended to be used as
input for validate_pdf_signature() and validate_pdf_ltv_signature().

2.4.3 Validating a PDF signature

All validation in pyHanko is done with respect to a certain validation context (an object of type
pyhanko_certvalidator.ValidationContext). This object tells pyHanko what the trusted certificates are,
and transparently provides mechanisms to request and keep track of revocation data. For LTV validation purposes, a
ValidationContext can also specify a point in time at which the validation should be carried out.

Warning: PyHanko currently uses a forked version of the certvalidator library, registered as
pyhanko-certvalidator on PyPI. The changes in the forked version are minor, and the API is intended to be
backwards-compatible with the “mainline” version.

The principal purpose of the ValidationContext is to let the user explicitly specify their own trust settings. However,
it may be necessary to juggle several different validation contexts over the course of a validation operation. For exam-
ple, when performing LTV validation, pyHanko will first validate the signature’s timestamp against the user-specified
validation context, and then build a new validation context relative to the signing time specified in the timestamp.

Here’s a simple example to illustrate the process of validating a PDF signature w.r.t. a specific trust root.

from pyhanko.keys import load_cert_from_pemder

from pyhanko_certvalidator import ValidationContext

from pyhanko.pdf_utils.reader import PdfFileReader

from pyhanko.sign.validation import validate_pdf_signature

root_cert = load_cert_from_pemder('path/to/certfile")
vc = ValidationContext(trust_roots=[root_cert])

with open('document.pdf', 'rb') as doc:
r = PdfFileReader(doc)
sig = r.embedded_signatures[0]
(continues on next page)

2.4. Validation functionality 43

pyHanko, Release 0.22.1-dev1

(continued from previous page)

status = validate_pdf_signature(sig, vc)
print(status.pretty_print_details())

2.4.4 Long-term verifiability checking

As explained here and here in the CLI documentation, making sure that PDF signatures remain verifiable over long
time scales requires special care. Signatures that have this property are often called “LTV enabled”, where LTV is
short for long-term verifiable.

To wverify a LTV-enabled signature, you should use validate_pdf_ltv_signature() instead of
validate_pdf_signature(). The API is essentially the same, but validate_pdf_ltv_signature()
takes a required validation_type parameter. The validation_type is an instance of the enum pyhanko.
sign.validation.RevocationInfoValidationType that tells pyHanko where to find and how to process
the revocation data for the signature(s) involved'. See the documentation for pyhanko.sign.validation.
RevocationInfoValidationType for more information on the available profiles.

In the initial ValidationContext passed to validate_pdf_ltv_signature() via
bootstrap_validation_context, you typically want to leave moment unset (i.e. verify the signature at the
current time).

This is the validation context that will be used to establish the time of signing. When this step is done,
pyHanko will construct a new validation context pointed towards that point in time. You can specify key-
word arguments to the ValidationContext constructor using the validation_context_kwargs parameter of
validate_pdf_Iltv_signature(). In typical situations, you can leave the bootstrap_validation_context pa-
rameter off entirely, and let pyHanko construct an initial validation context using validation_context_kwargs as
input.

The PAdES B-LTA validation example below should clarify that.

from pyhanko.keys import load_cert_from_pemder

from pyhanko.pdf_utils.reader import PdfFileReader

from pyhanko.sign.validation import (
validate_pdf_ltv_signature, RevocationInfoValidationType

)
root_cert = load_cert_from_pemder('path/to/certfile')

with open('document.pdf', 'rb') as doc:

r = PdfFileReader(doc)

sig = r.embedded_signatures[0]

status = validate_pdf_ltv_signature(
sig, RevocationInfoValidationType.PADES_LTA,
validation_context_kwargs={'trust_roots': [root_cert]}

)

print(status.pretty_print_details())

Notice how, rather than passing a ValidationContext object directly, the example code only supplies
validation_context_kwargs. These keyword arguments will be used both to construct an initial validation context
(at the current time), and to construct any subsequent validation contexts for point-of-time validation once the signing
time is known.

In the example, the validation_context_kwargs parameter ensures that all validation will happen w.r.t. one specific
trust root.

! Currently, pyHanko can’t figure out by itself which LTV strategy is being used, so the caller has to specify it explicitly.

44 Chapter 2. Library (SDK) user’s guide

pyHanko, Release 0.22.1-dev1

If all this sounds confusing, that’s because it is. @ You may want to take a look at the source of
validate_pdf_Iltv_signature() and its tests, and/or play around a little.

Warning: Even outside the LTV context, pyHanko always distinguishes between validation of the signing
time and validation of the signature itself. In fact, validate_pdf_signature() reports both (see the docs for
timestamp_validity).

However, since the LTV adjudication process is entirely moot without a trusted record of the signing time,
validate_pdf_ltv_signature() will raise a SignatureValidationError if the timestamp token (or times-
tamp chain) fails to validate. Otherwise, validate_pdf_Iltv_signature() returns a PdfSignatureStatus as
usual.

2.4.5 Incremental update analysis

Changed in version 0.2.0: The initial ad-hoc approach was replaced by a more extensible and maintainable rule-based
validation system. See pyhanko.sign.diff_analysis.

As explained in the CLI documentation, the PDF standard has provisions that allow files to be updated by appending
so-called “incremental updates”. This also works for signed documents, since appending data does not destroy the
cryptographic integrity of the signed data.

That being said, since incremental updates can change essentially any aspect of the resulting document, validators need
to be careful to evaluate whether these updates were added for a legitimate reason. Examples of such legitimate reasons
could include the following:

* adding a second signature,

¢ adding comments,

* filling in (part of) a form,
 updating document metadata,

¢ performing cryptographic “bookkeeping work™ such as appending fresh document timestamps and/or revocation
information to ensure the long-term verifiability of a signature.

Not all of these reasons are necessarily always valid: the signer can tell the validator which modifications they allow to
go ahead without invalidating their signature. This can either be done through the “DocMDP” setting (see MDPPerm),
or for form fields, more granularly using FieldMDP settings (see FieldMDPSpec).

That being said, the standard does not specify a concrete procedure for validating any of this. PyHanko takes a reject-
by-default approach: the difference analysis tool uses rules to compare document revisions, and judge which object
updating operations are legitimate (at a given MDPPerm level). Any modifications for which there is no justification
invalidate the signature.

The default diff policy is defined in DEFAULT_DIFF_POLICY, but you can define your own, either by implementing your
own subclass of DiffPolicy, or by defining your own rules and passing those to an instance of StandardDiffPolicy.
StandardDiffPolicy takes care of some boilerplate for you, and is the mechanism backing DEFAULT_DIFF_POLICY.
Explaining precisely how to implement custom diff rules is beyond the scope of this guide, but you can take a look at
the source of the diff analysis module for more information.

To actually use a custom diff policy, you can proceed as follows.

from pyhanko.keys import load_cert_from_pemder
from pyhanko_certvalidator import ValidationContext
from pyhanko.pdf_utils.reader import PdfFileReader
from pyhanko.sign.validation import validate_pdf_signature
(continues on next page)

2.4. Validation functionality 45

pyHanko, Release 0.22.1-dev1

(continued from previous page)

from my_awesome_module import CustomDiffPolicy

root_cert = load_cert_from_pemder('path/to/certfile")
vc = ValidationContext(trust_roots=[root_cert])

with open('document.pdf', 'rb') as doc:
r = PdfFileReader(doc)
sig = r.embedded_signatures[0]
status = validate_pdf_signature(sig, vc, diff policy=CustomDiffPolicy())
print(status.pretty_print_details())

The modification_level and docmdp_ok attributes on PdfSignatureStatus will tell you to what degree the
signed file has been modified after signing (according to the diff policy used).

Warning: The most lenient MDP level, ANNOTATE, is currently not supported by the default diff policy.

Danger: Due to the lack of standardisation when it comes to signature validation, correctly adjudicating incre-
mental updates is inherently somewhat risky and ill-defined, so until pyHanko matures, you probably shouldn’t rely
on its judgments too heavily.

Should you run into unexpected results, by all means file an issue. All information helps!

If necessary, you can opt to turn off difference analysis altogether. This is sometimes a very reasonable thing to do, e.g.
in the following cases:

* you don’t trust pyHanko to correctly evaluate the changes;
* the (sometimes rather large) performance cost of doing the diff analysis is not worth the benefits;
* you need validate only one signature, after which the document shouldn’t change at all.

In these cases, you might want to rely on the coverage property of PdfSignatureStatus instead. This property
describes the degree to which a given signature covers a file, and is much cheaper/easier to compute.

Anyhow, to disable diff analysis completely, it suffices to pass the skip_diff parameter to
validate_pdf_signature().

from pyhanko.keys import load_cert_from_pemder

from pyhanko_certvalidator import ValidationContext

from pyhanko.pdf_utils.reader import PdfFileReader

from pyhanko.sign.validation import validate_pdf_signature

root_cert = load_cert_from_pemder('path/to/certfile')
vc = ValidationContext(trust_roots=[root_cert])

with open('document.pdf', 'rb') as doc:
r = PdfFileReader(doc)
sig = r.embedded_signatures[0]
status = validate_pdf_signature(sig, vc, skip_diff=True)
print(status.pretty_print_details())

46 Chapter 2. Library (SDK) user’s guide

pyHanko, Release 0.22.1-dev1

2.4.6 Probing different aspects of the validity of a signature
The PdfSignatureStatus objects returned by validate_pdf_signature() and
validate_pdf_ltv_signature() provide a fairly granular account of the validity of the signature.

You can print a human-readable validity report by calling pretty_print_details(), and if all you're interested in
is a yes/no judgment, use the the bottom_1ine property.

Should you ever need to know more, a PdfSignatureStatus object also includes information on things like
* the certificates making up the chain of trust,
* the validity of the embedded timestamp token (if present),
* the invasiveness of incremental updates applied after signing,
* seed value constraint compliance.

For more information, take a look at PdfSignatureStatus in the API reference.

2.5 The pdf-utils package

The pdf_utils package is the part of pyHanko that implements the logic for reading & writing PDF files.

2.5.1 Background and future perspectives

The core of the pdf_utils package is based on code from PyPDF2. I forked/vendored PyPDF2 because it was the
Python PDF library that would be the easiest to adapt to the low-level needs of a digital signing tool like pyHanko.

The “inherited” parts mostly consist of the PDF parsing logic, filter implementations (though they’ve been heavily
rewritten) and RC4 cryptography support. I stripped out most of the functionality that I considered “fluff” for the
purposes of designing a DigSig tool, for several reasons:

* When I started working on pyHanko, the PyPDF2 project was all but dead, the codebase largely untested and the
internet was rife with complaints about all kinds of bugs. Removing code that I didn’t need served primarily as
a way to reduce my maintenance burden, and to avoid attaching my name to potential bugs that I wasn’t willing
to fix myself.

* PyPDF2 included a lot of compatibility logic to deal with Python 2. I never had any interest in supporting Python
versions prior to 3.7, so I ditched all that.

* Stripping out unnecessary code left me with greater freedom to deviate from the PyPDF2 API where I considered
it necessary to do so.

I may or may not split off the pdf_utils package into a fully-fledged Python PDF library at some point, but for now, it
merely serves as pyHanko’s PDF toolbox. That said, if you need bare-bones access to PDF structures outside pyHanko’s
digital signing context, you might find some use for it even in its current state.

This page is intended as a companion to the API reference for pyhanko.pdf_utils, rather than a detailed standalone
guide.

Danger: For the reasons specified above, most of pyhanko.pdf_utils should be considered private API.

The internal data model for PDF objects isn’t particularly likely to change, but the text handling and layout code is
rather primitive and immature, so I’m not willing to commit to freezing that API (yet).

2.5. The pdf-utils package 47

pyHanko, Release 0.22.1-dev1

Danger: There are a number of stream encoding schemes (or “filters”) that aren’t supported (yet), most notably the
LZW compression scheme. Additionally, we don’t have support for all PNG predictors in the Flate decoder/encoder.

2.5.2 PDF object model

The pyhanko.pdf_utils.generic module maps PDF data structures to Python objects. PDF arrays, dictionaries
and strings are largely interoperable with their native Python counterparts, and can (usually) be interfaced with in the
same manner.

When dealing with indirect references, the package distinguishes between the following two kinds:

e IndirectObject: this represents an indirect reference as embedded into another PDF object (e.g. a dictionary
value given by an indirect object);

* Reference: this class represents an indirect reference by itself, i.e. not as a PDF object.

This distinction is rarely relevant, but the fact that IndirectObject inherits from PdfObject means that it supports
the container_ref API, which is meaningless for “bare” Reference objects.

As a general rule, use Reference whenever you're using indirect objects as keys in a Python dictionary or collecting
them into a set, but use IndirectObject if you're writing indirect objects into PDF output.

2.5.3 PDF content abstractions

The pyhanko.pdf_utils.content module provides a fairly bare-bones abstraction for handling content that “com-
piles down” to PDF graphics operators, namely the PdfContent class. Among other things, it takes care of some of
the PDF resource management boilerplate. It also allows you to easily encapsulate content into form XObjects when
necessary.

Below, we briefly go over the uses of PdfContent within the library itself. These also serve as a template for imple-
menting your own PdfContent subclasses.

Images

PyHanko relies on Pillow for image support. In particular, we currently support pretty much all RGB bitmap types
that Pillow can handle. Other colour spaces are not (yet) available. Additionally, we currently don’t take advantage of
PDF’s native JPEG support, or some of its more clever image compression techniques.

The pyhanko.pdf_utils.images module provides a PdfContent subclass (aptly named pyhanko.pdf_utils.
images.PdfImage) as a convenience.

Text & layout

The layout code in pyHanko is currently very, very primitive, fragile and likely to change significantly going forward.
That said, pyHanko can do some basic text box rendering, and is capable of embedding CID-keyed OTF fonts for use
with CJK text, for example. Given the (for now) volatile state of the API, I won’t document it here, but you can take a
look at pyhanko.pdf_utils. text and pyhanko.pdf_utils. font, or the code in pyhanko. stamp.

48 Chapter 2. Library (SDK) user’s guide

pyHanko, Release 0.22.1-dev1

2.6 Developing CLI plugins

New in version 0.18.0.

Warning: This is an incubating feature. API adjustments are still possible.

Since version 0. 18.0, pyHanko’s CLI can load Signer implementations from external sources with minimal config-
uration.

If you develop an integration for a remote signing service or hardware device that isn’t already supported by the pyHanko
CLI out of the box, you can make your implementation available to CLI users as a separate package. If you set things
up the right way, all your users have to do is install it, and pyHanko will automagically detect the plugin.

This page aims to provide you with some pointers to upgrade your Signer implementation into a CLI-integrated plugin.

Note: Plugins are only supported on Python 3.8 and up.

2.6.1 General principles

Throughout, we assume that you have a Signer implementation that you want to hook into the CLI. This could be an
integration that you developed yourself , or simply a wrapper around an existing Signer to facilitate integration with
some third-party service or a particular hardware device. Anything goes.

In order to help you write the necessary glue code to patch things into the CLI, we’ll go over the following:
* how to provide the mapping between CLI arguments and instances of your Signer;
* how to get access to other parts of the CLI context (e.g. configuration settings);

* how to ensure that the pyhanko executable picks up your plugin.

2.6.2 The plugin API

Implementation-wise, all you have to do is implement the SigningCommandPlugin interface. This will provide the
link between pyHanko’s click-based CLI and your custom Signer.

This is what the basic skeleton looks like.

class MySigningCommand(SigningCommandPlugin) :
subcommand_name = 'mysigner'
help_summary = 'a short line about the plugin'

def click_options(self) -> List[click.Option]:
def create_signer(

self, context: CLIContext, **kwargs
) -> ContextManager[Signer]:

The subcommand_name and help_summary attributes are self-explanatory: they respectively provide the name and
help text for the subcommand to addsig that’s being added by your plugin.

2.6. Developing CLI plugins 49

pyHanko, Release 0.22.1-dev1

The click_options() method provides the click options to your plugin’s subcommand. For more details on how
to define options see the Click documentation.

As an example, the options for a simplified version of the pkcs11 subcommand in pyHanko’s CLI could’ve been defined
as follows.

def click_options(self) -> List[click.Option]:
return [

click.Option(
('--1ib',),
help="path to PKCS#11 module',
type=readable_file,
required=False,

)

click.Option(
('--token-1label',),
help="PKCS#11 token label',
type=str,
required=False,

)

click.Option(
('--cert-label',),
help="certificate label',
type=str,
required=False,

s

click.Option(
('--key-label',), help='key label', type=str, required=False

)

The core plumbing for your plugin will be supplied in the create_signer () method.
Here’s a brief rundown of what the arguments mean.

* The context parameter supplies the current CLIContext, which in particular exposes access to the contents of
the config file (if any).

* The remaining keyword arguments are wired through directly from click, and will correspond to the options
you defined in click_options().

Note that the return type of create_signer() is not just a Signer, but a context manager wrapping a Signer. This
allows pyHanko to easily return control to the plugin after signing or when errors are thrown, so that the plugin code
can run its own teardown logic.

Warning: The plugin class must have a no-arguments __init__ method.

50 Chapter 2. Library (SDK) user’s guide

https://click.palletsprojects.com/en/latest/api/#click.Option

pyHanko, Release 0.22.1-dev1

2.6.3 Plugin discovery and registration

Using a package entry points

The easiest way to make your plugin discoverable is to package it with a package entry point for pyHanko CLI plugins.
The entry point group ID is pyhanko.cli_plugin.signing. If you manage your plugin’s packaging metadata with
pyproject.toml, this is all you have to add:

[project.entry-points. "pyhanko.cli_plugin.signing"]
your_plugin = "some_package.path.to.module:SomePluginClass"

With entry points set up, pyHanko will automatically discover your plugin if it’s installed (i.e. if importlib can find
it).

From the configuration file

If you don’t want to use packages or can’t for some reason, you also have the option to reference them from pyHanko’s
configuration file, like so:

plugins:
- some_package.path.to.module:SomePluginClass

2.7 Advanced examples

2.7.1 A custom Signer to use AWS KMS asynchronously

New in version 0.9.0.

This example demonstrates how to use aioboto3 to set up a custom Signer implementation that invokes the AWS
KMS API to sign documents, and does so in an asynchronous manner.

The example implementation is relatively minimal, but it should be sufficient to get an idea of what’s possible. Further
information on aioboto3 is available from the project’s GitHub page.

The ideas in this snippet can be combined with other async-native components to set up an asynchronous signing
workflow. For example, if you’re looking for a way to fetch & embed revocation information asynchronously, have a
look at this section in the signing docs to learn more about aiohttp usage and resource management.

import asyncio
import aioboto3

from asnlcrypto import x509, algos
from cryptography.hazmat.primitives import hashes

from pyhanko.pdf_utils.incremental_writer import IncrementalPdfFileWriter
from pyhanko.sign import Signer, signers
from pyhanko.sign.general import (

get_pyca_cryptography_hash,

load_cert_from_pemder,
)
from pyhanko_certvalidator.registry import SimpleCertificateStore

(continues on next page)

2.7. Advanced examples 51

https://setuptools.pypa.io/en/latest/userguide/entry_point.html
https://aws.amazon.com/kms/
https://aws.amazon.com/kms/
https://github.com/terrycain/aioboto3

pyHanko, Release 0.22.1-dev1

(continued from previous page)

class AsyncKMSSigner(Signer):
def __init__(

self,
session: aioboto3.session,
key_id: str,

signing_cert: x509.Certificate,
signature_mechanism: algos.SignedDigestAlgorithm,
this can be derived from the above, obviously
signature_mechanism_aws_id: str,

other_certs=(0),

self.session = session

self.signing_cert = signing_cert

self.key_id = key_id

self.signature_mechanism = signature_mechanism
self.signature_mechanism_aws_id = signature_mechanism_aws_id
self.cert_registry = cr = SimpleCertificateStore()
cr.register_multiple(other_certs)

super().__init__Q

async def async_sign_raw(
self, data: bytes, digest_algorithm: str, dry_run=False
) -> bytes:
if dry_run:
return bytes(256)

Send hash to server instead of raw data

hash_spec = get_pyca_cryptography_hash(
self.signature_mechanism.hash_algo

)

md = hashes.Hash(hash_spec)

md.update(data)

async with self.session.client('kms') as kms_client:
result = await kms_client.sign(
KeyId=self.key_id,
Message=md.finalize(),
MessageType="DIGEST',
SigningAlgorithm=self.signature_mechanism_aws_id,
)
signature = result['Signature']
assert isinstance(signature, bytes)
return signature

async def run():
Load relevant certificates
Note: the AWS KMS does not provide certificates by itself,
so the details of how certificates are provisioned are beyond
the scope of this example.

(continues on next page)

52 Chapter 2. Library (SDK) user’s guide

pyHanko, Release 0.22.1-dev1

(continued from previous page)

cert = load_cert_from_pemder('path/to/your/signing-cert.pem")
chain = list(load_certs_from_pemder('path/to/chain.pem'))

AWS credentials

kms_key_id = "KEY_ID_GOES_HERE"
aws_access_key_id = "ACCESS_KEY_GOES_HERE"
aws_secret_access_key = "SECRET_GOES_HERE"

Set up aioboto3 session with provided credentials & region
session = aioboto3.Session(
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
substitute your region here
region_name='eu-central-1",

Set up our signer
signer = AsyncKMSSigner(
session=session,
key_id=kms_key_id,
signing_cert=cert,
other_certs=chain,
change the signature mechanism according to your key type
I'm using an ECDSA key over the NIST-P384 (secp384rl) curve here.
signature_mechanism=algos.SignedDigestAlgorithm(
{'algorithm': 'sha384_ecdsa'}
)!
signature_mechanism_aws_id="ECDSA_SHA_ 384",
)

with open('input.pdf', 'rb') as inf:
w = IncrementalPdfFilelWriter(inf)
meta = signers.PdfSignatureMetadata(field_name='AWSKMSExampleSig"')
with open('output.pdf', 'wb') as outf:
await signers.async_sign_pdf(w, meta, signer=signer, output=outf)

if name_ == '__main__"':
loop = asyncio.get_event_loop()
loop.run_until_complete(run())

2.7. Advanced examples 53

pyHanko, Release 0.22.1-dev1

54 Chapter 2. Library (SDK) user’s guide

CHAPTER
THREE

API REFERENCE

This is the API reference for pyHanko, compiled from the docstrings present in the Python source files. For a more
high-level overview, see the library user guide. If you are interested in using pyHanko as a command-line application,
please refer to the CLI user guide.

Warning: Any function, class or method that is not covered by this documentation is considered private API by
definition.

Until pyHanko goes into beta, any part of the API is subject to change without notice, but this applies doubly to the
undocumented parts. Tread with caution.

3.1 pyhanko package

3.1.1 Subpackages

pyhanko.config package

Submodules
pyhanko.config.api module

This module contains utilities for allowing dataclasses to be populated by user-provided configuration (e.g. from a
Yaml file).

Note: On naming conventions: this module converts hyphens in key names to underscores as a matter of course.

class pyhanko.config.api.ConfigurableMixin

Bases: object
General configuration mixin for dataclasses

classmethod process_entries(config_dict)
Hook method that can modify the configuration dictionary to overwrite or tweak some of their values (e.g.
to convert string parameters into more complex Python objects)

Subclasses that override this method should call super () .process_entries(), and leave keys that they
do not recognise untouched.

55

pyHanko, Release 0.22.1-dev1

Parameters
config_dict — A dictionary containing configuration values.

Raises
ConfigurationError — when there is a problem processing a relevant entry.

classmethod check_config_keys (keys_supplied: Set[str])
Check whether all supplied keys are meaningful.

Parameters
keys_supplied — The keys supplied in the configuration.

Raises
ConfigurationError — if at least one key does not make sense.

classmethod from_config(config_dict)

Attempt to instantiate an object of the class on which it is called, by means of the configuration settings
passed in.

First, we check that the keys supplied in the dictionary correspond to data fields on the current class. Then,
the dictionary is processed using the process_entries () method. The resulting dictionary is passed to
the initialiser of the current class as a kwargs dict.

Parameters
config_dict — A dictionary containing configuration values.

Returns
An instance of the class on which it is called.

Raises
ConfigurationError — when an unexpected configuration key is encountered or left un-
filled, or when there is a problem processing one of the config values.

pyhanko.config.api.check_config_keys(config_name, expected_keys, supplied_keys)
pyhanko.config.api.process_oid(asnlcrypto_class: Type[Objectldentifier], id_string, param_name)
pyhanko.config.api.process_oids(asnlcrypto_class: Type[Objectldentifier], strings, param_name)

pyhanko.config.api.process_bit_string_flags(asnicrypto_class: Type[BitString], strings, param_name)

pyhanko.config.errors module

exception pyhanko.config.errors.ConfigurationError (msg: str)
Bases: ValueError

Signal configuration errors.

pyhanko.config.local_keys module

class pyhanko.config.local_keys.PRKCS12SignatureConfig(pfx_file: str, other_certs: List[Certificate] |
None = None, pfx_passphrase: bytes | None =
None, prompt_passphrase: bool = True,
prefer_pss: bool = False)

Bases: ConfigurableMixin

Configuration for a signature using key material on disk, contained in a PKCS#12 bundle.

56 Chapter 3. API reference

pyHanko, Release 0.22.1-dev1

pfx_file: str
Path to the PKCS#12 file.

other_certs: List[Certificate] | None = None

Other relevant certificates.

pfx_passphrase: bytes | None = None
PKCS#12 passphrase (if relevant).

prompt_passphrase: bool = True
Prompt for the PKCS#12 passphrase. Default is True.

Note: If key_passphrase is not None, this setting has no effect.

prefer_pss: bool = False
Prefer PSS to PKCS#1 v1.5 padding when creating RSA signatures.

classmethod process_entries(config_dict)

Hook method that can modify the configuration dictionary to overwrite or tweak some of their values (e.g.
to convert string parameters into more complex Python objects)

Subclasses that override this method should call super () .process_entries(), and leave keys that they
do not recognise untouched.

Parameters
config_dict — A dictionary containing configuration values.

Raises
ConfigurationError — when there is a problem processing a relevant entry.

class pyhanko.config.local_keys.PemDerSignatureConfig(key_file: str, cert_file: str, other_certs:
List[Certificate] | None = None,
key_passphrase: bytes | None = None,
prompt_passphrase: bool = True, prefer_pss:
bool = False)

Bases: ConfigurableMixin
Configuration for a signature using PEM or DER-encoded key material on disk.
key_file: str
Signer’s private key.
cert_file: str
Signer’s certificate.
other_certs: List[Certificate] | None = None
Other relevant certificates.
key_passphrase: bytes | None = None
Signer’s key passphrase (if relevant).
prompt_passphrase: bool = True
Prompt for the key passphrase. Default is True.

Note: If key_passphrase is not None, this setting has no effect.

3.1. pyhanko package 57

pyHanko, Release 0.22.1-dev1

prefer_pss: bool = False
Prefer PSS to PKCS#1 v1.5 padding when creating RSA signatures.

classmethod process_entries(config_dict)

Hook method that can modify the configuration dictionary to overwrite or tweak some of their values (e.g.
to convert string parameters into more complex Python objects)

Subclasses that override this method should call super () .process_entries(), and leave keys that they
do not recognise untouched.

Parameters
config_dict — A dictionary containing configuration values.

Raises
ConfigurationError — when there is a problem processing a relevant entry.

pyhanko.config.logging module

class pyhanko.config.logging.StdLogOutput (value, names=None, *, module=None, qualname=None,
type=None, start=1, boundary=None)

Bases: Enum
STDERR =1
STDOUT = 2

class pyhanko.config.logging.LogConfig(level: int | str, output: pyhanko.config.logging.StdLogOutput |
Str)

Bases: object

level: int | str
Logging level, should be one of the levels defined in the logging module.

output: StdLogOutput | str

Name of the output file, or a standard one.

static parse_output_spec(spec) — StdLogOutput | str

pyhanko.config.logging.parse_logging_config(log_config_spec) — Dict[str | None, LogConfig]

pyhanko.config.pkcs11 module

class pyhanko.config.pkcsll.TokenCriteria(label: str| None = None, serial: bytes | None = None)
Bases: ConfigurableMixin

New in version 0.14.0.
Search criteria for a PKCS#11 token.

label: str | None = None

Label of the token to use. If None, there is no constraint.

serial: bytes | None = None

Serial number of the token to use. If None, there is no constraint.

58 Chapter 3. API reference

pyHanko, Release 0.22.1-dev1

classmethod process_entries(config_dict)
Hook method that can modify the configuration dictionary to overwrite or tweak some of their values (e.g.
to convert string parameters into more complex Python objects)

Subclasses that override this method should call super () .process_entries(), and leave keys that they
do not recognise untouched.

Parameters
config_dict — A dictionary containing configuration values.

Raises
ConfigurationError — when there is a problem processing a relevant entry.

class pyhanko.config.pkcs11l.PKCS11PinEntryMode (value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

Bases: Enum
Pin entry behaviour if the user PIN is not supplied as part of the config.

PROMPT = 1
Prompt for a PIN (the default).

Note: This value is only processed by the CLI, and ignored when the PKCS#11 signer is called from
library code. In those cases, the default is effectively SKIP.

DEFER = 2
Let the PKCS #11 module handle its own authentication during login.

Note: This applies to some devices that have physical PIN pads, for example.

SKIP = 3
Skip the login process altogether.

Note: This applies to some devices that manage user authentication outside the scope of PKCS #11 entirely.

static parse_mode_setting (value: Any) — PKCSI1PinEntryMode

class pyhanko.config.pkcs11.PKCS11SignatureConfig(module_path: str, cert_label: str | None = None,
cert_id: bytes | None = None, signing_certificate:
Certificate | None = None, token_criteria:
TokenCriteria | None = None, other_certs:
List[Certificate] | None = None, key_label: str |
None = None, key_id: bytes | None = None,
slot_no: int | None = None, user_pin: str | None =
None, prompt_pin: PKCS11PinEntryMode =
PKCS11PinEntryMode. PROMPT,
other_certs_to_pull: Iterable[str] | None = (),
bulk_fetch: bool = True, prefer_pss: bool = False,
raw_mechanism: bool = False)

Bases: ConfigurableMixin

Configuration for a PKCS#11 signature.

3.1. pyhanko package 59

pyHanko, Release 0.22.1-dev1

This class is used to load PKCS#11 setup information from YAML configuration.
module_path: str
Path to the PKCS#11 module shared object.
cert_label: str | None = None
PKCS#11 label of the signer’s certificate.
cert_id: bytes | None = None
PKCS#11 ID of the signer’s certificate.
signing_certificate: Certificate | None = None

The signer’s certificate. If present, cert_id and cert_Ilabel will not be used to obtain the signer’s
certificate from the PKCS#11 token.

Note: This can be useful in case the signer’s certificate is not available on the token, or if you would like
to present a different certificate than the one provided on the token.

token_criteria: TokenCriteria | None = None
PKCS#11 token name

other_certs: List[Certificate] | None = None
Other relevant certificates.

key_label: str | None = None

PKCS#11 label of the signer’s private key. Defaults to cert_1Ilabel if the latter is specified and key_id is
not.

key_id: bytes | None = None
PKCS#11 key ID.
slot_no: int | None = None
Slot number of the PKCS#11 slot to use.
user_pin: str | None = None
The user’s PIN. If unspecified, the user will be prompted for a PIN if prompt_pin is True.

Warning: Some PKCS#11 tokens do not allow the PIN code to be communicated in this way, but
manage their own authentication instead (the Belgian eID middleware is one such example). For such
tokens, leave this setting set to None and additionally set prompt_pin to False.

prompt_pin: PKCS11PinEntryMode = 1
Set PIN entry and PKCS #11 login behaviour.

Note: If user_pin is not None, this setting has no effect.

other_certs_to_pull: Iterable[str] | None = QO

List labels of other certificates to pull from the PKCS#11 device. Defaults to the empty tuple. If None, pull
all certificates.

60

Chapter 3. API reference

pyHanko, Release 0.22.1-dev1

bulk_fetch: bool = True
Boolean indicating the fetching strategy. If True, fetch all certs and filter the unneeded ones. If False,
fetch the requested certs one by one. Default value is True, unless other_certs_to_pull has one or
fewer elements, in which case it is always treated as False.

prefer_pss: bool = False
Prefer PSS to PKCS#1 v1.5 padding when creating RSA signatures.

raw_mechanism: bool = False
Invoke the raw variant of the PKCS#11 signing operation.

Note: This is currently only supported for ECDSA signatures.

classmethod check_config_keys (keys_supplied: Set[str])
Check whether all supplied keys are meaningful.

Parameters
keys_supplied — The keys supplied in the configuration.

Raises
ConfigurationError — if at least one key does not make sense.

classmethod process_entries(config_dict)
Hook method that can modify the configuration dictionary to overwrite or tweak some of their values (e.g.

to convert string parameters into more complex Python objects)

Subclasses that override this method should call super () .process_entries(), and leave keys that they
do not recognise untouched.

Parameters
config_dict — A dictionary containing configuration values.

Raises
ConfigurationError — when there is a problem processing a relevant entry.

pyhanko.config.trust module

pyhanko.config.trust.init_validation_context_kwargs(*, trust: Iterable[str] | str, trust_replace: bool,
other_certs: Iterable[str] | str,
retroactive_revinfo: bool = False,
time_tolerance: timedelta | int | None = None)
— Dict[str, Any]

pyhanko.config.trust.parse_trust_config(srust_config, time_tolerance, retroactive_revinfo) — dict

3.1. pyhanko package 61

pyHanko, Release 0.22.1-dev1

pyhanko.cli package

Submodules
pyhanko.cli.config module

class pyhanko.cli.config.CLIConfig(validation_contexts: Dict[str, dict], stamp_styles: Dict[str, dict],
default_validation_context: str, default_stamp_style: str,
time_tolerance: timedelta, retroactive_revinfo: bool, raw_config: dict)

Bases: object
CLI configuration settings.

validation_contexts: Dict[str, dict]

Named validation contexts. The values in this dictionary are themselves dictionaries that support the fol-
lowing keys:

e trust: path to a root certificate or list of such paths
* trust-replace: whether the value of the trust setting should replace the system trust, or add to it
» other-certs: paths to other relevant certificates that are not trusted by fiat.
* time-tolerance: atime drift tolerance setting in seconds
e retroactive-revinfo: whether to consider revocation information retroactively valid
* signer-key-usage-policy: Signer key usage requirements. See KeyUsageConstraints.
There are two settings that are deprecated but still supported for backwards compatibility:
* signer-key-usage: Supplanted by signer-key-usage-policy
* signer-extd-key-usage: Supplanted by signer-key-usage-policy
These may eventually be removed.
Callers should not process this information directly, but rely on get_validation_context () instead.

stamp_styles: Dict[str, dict]

Named stamp styles. The type of style is selected by the type key, which can be either qr or text (the
default is text). For other settings values, see :class:."QRStampStyle™ and TextStampStyle.

Callers should not process this information directly, but rely on get_stamp_style() instead.

default_validation_context: str

The name of the default validation context. The default value for this setting is default.
default_stamp_style: str

The name of the default stamp style. The default value for this setting is default.
time_tolerance: timedelta

Time drift tolerance (global default).
retroactive_revinfo: bool

Whether to consider revocation information retroactively valid (global default).
raw_config: dict

The raw config data parsed into a Python dictionary.

62 Chapter 3. API reference

pyHanko, Release 0.22.1-dev1

get_validation_context (name: str | None = None, as_dict: bool = False)

Retrieve a validation context by name.
Parameters

e name — The name of the validation context. If not supplied, the value of
default_validation_context will be used.

e as_dict - If True return the settings as a keyword argument dictionary. If False (the
default), return a ValidationContext object.

get_signer_key_usages(name: str| None = None) — KeyUsageConstraints
Get a set of key usage constraints for a given validation context.

Parameters
name — The name of the validation context. If not supplied, the value of
default_validation_context will be used.

Returns
A KeyUsageConstraints object.

get_stamp_style(name: str | None = None) — TextStampStyle | QRStampStyle
Retrieve a stamp style by name.

Parameters
name — The name of the style. If not supplied, the value of default_stamp_style will be
used.

Returns

A TextStampStyle or QRStampStyle object.

class pyhanko.cli.config.CLIRootConfig(config: CLIConfig, log_config: Dict[str | None, LogConfig