

 pyHanko

 0.14.0

 Contents:

	CLI user’s guide
	Library (SDK) user’s guide
	API reference	pyhanko package	Subpackages	pyhanko.pdf_utils package
	pyhanko.sign package

	Submodules

	Release history
	Frequently asked questions (FAQ)
	Known issues
	Licenses

 pyHanko

 	 »
	API reference »
	pyhanko package »
	pyhanko.pdf_utils package »
	pyhanko.pdf_utils.writer module
	
 Edit on GitHub

pyhanko.pdf_utils.writer module

Utilities for writing PDF files.
Contains code from the PyPDF2 project; see here
for the original license.

	
class pyhanko.pdf_utils.writer.BasePdfFileWriter(root, info, document_id, obj_id_start=0, stream_xrefs=True)
	Bases: PdfHandler

Base class for PDF writers.

	
output_version = (1, 7)
	Output version to be declared in the output file.

	
stream_xrefs: bool
	Boolean controlling whether or not the output file will contain
its cross-references in stream format, or as a classical XRef table.

The default for new files is True. For incremental updates,
the writer adapts to the system used in the previous iteration of the
document (as mandated by the standard).

	
get_subset_collection(base_postscript_name: str)
	

	
property document_meta: DocumentMetadata
	

	
property document_meta_view: DocumentMetadata
	

	
ensure_output_version(version)
	

	
set_info(info: Optional[Union[IndirectObject, DictionaryObject]])
	Set the /Info entry of the document trailer.

	Parameters
	info – The new /Info dictionary, either as an indirect reference
or as a DictionaryObject

	
set_custom_trailer_entry(key: NameObject, value: PdfObject)
	Set a custom, unmanaged entry in the document trailer or cross-reference
stream dictionary.

Warning

Calling this method to set an entry that is managed by pyHanko
internally (info dictionary, document catalog, etc.) has undefined
results.

	Parameters
		key – Dictionary key to use in the trailer.

	value – Value to set

	
property document_id: Tuple[bytes, bytes]
	

	
mark_update(obj_ref: Union[Reference, IndirectObject])
	Mark an object reference to be updated.
This is only relevant for incremental updates, but is included
as a no-op by default for interoperability reasons.

	Parameters
	obj_ref – An indirect object instance or a reference.

	
update_container(obj: PdfObject)
	Mark the container of an object (as indicated by the
container_ref attribute on
PdfObject) for an update.

As with mark_update(), this only applies to incremental updates,
but defaults to a no-op.

	Parameters
	obj – The object whose top-level container needs to be rewritten.

	
property root_ref: Reference
		Returns
	A reference to the document catalog.

	
update_root()
	Signal that the document catalog should be written to the output.
Equivalent to calling mark_update() with root_ref.

	
register_extension(ext: DeveloperExtension)
	

	
get_object(ido, as_metadata_stream: bool = False)
	Retrieve the object associated with the provided reference from
this PDF handler.

	Parameters
		ref – An instance of generic.Reference.

	as_metadata_stream – Whether to dereference the object as an XMP metadata stream.

	Returns
	A PDF object.

	
allocate_placeholder() → IndirectObject
	Allocate an object reference to populate later.
Calls to get_object() for this reference will
return NullObject until it is populated using
add_object().

This method is only relevant in certain advanced contexts where
an object ID needs to be known before the object it refers
to can be built; chances are you’ll never need it.

	Returns
	A IndirectObject instance referring to
the object just allocated.

	
add_object(obj, obj_stream: Optional[ObjectStream] = None, idnum=None) → IndirectObject
	Add a new object to this writer.

	Parameters
		obj – The object to add.

	obj_stream – An object stream to add the object to.

	idnum – Manually specify the object ID of the object to be added.
This is only allowed for object IDs that have previously been
allocated using allocate_placeholder().

	Returns
	A IndirectObject instance referring to
the object just added.

	
prepare_object_stream(compress=True)
	Prepare and return a new ObjectStream object.

	Parameters
	compress – Indicates whether the resulting object stream should be compressed.

	Returns
	An ObjectStream object.

	
property trailer_view: DictionaryObject
	Returns a view of the document trailer of the document represented
by this PdfHandler instance.

The view is effectively read-only, in the sense that any writes
will not be reflected in the actual trailer (if the handler supports
writing, that is).

	Returns
	A generic.DictionaryObject representing the current state
of the document trailer.

	
write(stream)
	Write the contents of this PDF writer to a stream.

	Parameters
	stream – A writable output stream.

	
register_annotation(page_ref, annot_ref)
	Register an annotation to be added to a page.
This convenience function takes care of calling mark_update()
where necessary.

	Parameters
		page_ref – Reference to the page object involved.

	annot_ref – Reference to the annotation object to be added.

	
insert_page(new_page, after=None)
	Insert a page object into the tree.

	Parameters
		new_page – Page object to insert.

	after – Page number (zero-indexed) after which to insert the page.

	Returns
	A reference to the newly inserted page.

	
import_object(obj: PdfObject, obj_stream: Optional[ObjectStream] = None) → PdfObject
	Deep-copy an object into this writer, dealing with resolving indirect
references in the process.

Danger

The table mapping indirect references in the input to indirect
references in the writer is not preserved between calls.
Concretely, this means that invoking import_object() twice
on the same input reader may cause object duplication.

	Parameters
		obj – The object to import.

	obj_stream –
The object stream to import objects into.

Note

Stream objects and bare references will not be put into
the object stream; the standard forbids this.

	Returns
	The object as associated with this writer.
If the input object was an indirect reference, a dictionary
(incl. streams) or an array, the returned value will always be
a new instance.

	
import_page_as_xobject(other: PdfHandler, page_ix=0, inherit_filters=True)
	Import a page content stream from some other
PdfHandler into the current one as a form XObject.

	Parameters
		other – A PdfHandler

	page_ix – Index of the page to copy (default: 0)

	inherit_filters – Inherit the content stream’s filters, if present.

	Returns
	An IndirectObject referring to the page object
as added to the current reader.

	
add_stream_to_page(page_ix, stream_ref, resources=None, prepend=False)
	Append an indirect stream object to a page in a PDF as a content
stream.

	Parameters
		page_ix – Index of the page to modify.
The first page has index 0.

	stream_ref – IndirectObject reference to the stream
object to add.

	resources – Resource dictionary containing resources to add to the page’s
existing resource dictionary.

	prepend – Prepend the content stream to the list of content streams, as
opposed to appending it to the end.
This has the effect of causing the stream to be rendered
underneath the already existing content on the page.

	Returns
	An IndirectObject reference to the page object
that was modified.

	
add_content_to_page(page_ix, pdf_content: PdfContent, prepend=False)
	Convenience wrapper around add_stream_to_page() to turn a
PdfContent instance into a page content stream.

	Parameters
		page_ix – Index of the page to modify.
The first page has index 0.

	pdf_content – An instance of PdfContent

	prepend – Prepend the content stream to the list of content streams, as
opposed to appending it to the end.
This has the effect of causing the stream to be rendered
underneath the already existing content on the page.

	Returns
	An IndirectObject reference to the page object
that was modified.

	
merge_resources(orig_dict, new_dict) → bool
	Update an existing resource dictionary object with data from another
one. Returns True if the original dict object was modified directly.

The caller is responsible for avoiding name conflicts with existing
resources.

	
class pyhanko.pdf_utils.writer.PageObject(contents, media_box, resources=None)
	Bases: DictionaryObject

Subclass of DictionaryObject that handles some of the
initialisation boilerplate for page objects.

	
class pyhanko.pdf_utils.writer.PdfFileWriter(stream_xrefs=True, init_page_tree=True, info=None)
	Bases: BasePdfFileWriter

Class to write new PDF files.

	
encrypt(owner_pass, user_pass=None, **kwargs)
	Mark this document to be encrypted with PDF 2.0 encryption (AES-256).

Caution

While pyHanko supports legacy PDF encryption as well, the API
to create new documents using outdated encryption is left
largely undocumented on purpose to discourage its use.

This caveat does not apply to incremental updates added to
existing documents.

Danger

The PDF 2.0 standard mandates AES-256 in CBC mode, and also includes
12 bytes of known plaintext by design. This implies that a
sufficiently knowledgeable attacker can inject arbitrary content
into your encrypted files without knowledge of the password.

Adding a digital signature to the encrypted document is not
a foolproof way to deal with this either, since most viewers will
still allow the document to be opened before signatures are
validated, and therefore end users are still exposed to potentially
malicious content.

Until the standard supports authenticated encryption schemes, you
should never rely on its encryption provisions if tampering
is a concern.

	Parameters
		owner_pass – The desired owner password.

	user_pass – The desired user password (defaults to the owner password
if not specified)

	kwargs – Other keyword arguments to be passed to
StandardSecurityHandler.build_from_pw().

	
encrypt_pubkey(recipients: List[Certificate], **kwargs)
	Mark this document to be encrypted with PDF 2.0 public key encryption.
The certificates passed in should be RSA certificates.

PyHanko defaults to AES-256 to encrypt the actual file contents.
The seed used to derive the file encryption key is also encrypted
using AES-256 and bundled in a CMS EnvelopedData object.
The envelope key is then encrypted separately for each recipient, using
their respective public keys.

Caution

The caveats for encrypt() also apply here.

	Parameters
		recipients – Certificates of the recipients that should be able to decrypt
the document.

	kwargs – Other keyword arguments to be passed to
PubKeySecurityHandler.build_from_certs().

	
stream_xrefs: bool
	Boolean controlling whether or not the output file will contain
its cross-references in stream format, or as a classical XRef table.

The default for new files is True. For incremental updates,
the writer adapts to the system used in the previous iteration of the
document (as mandated by the standard).

	
object_streams: List[ObjectStream]
	

	
security_handler: Optional[SecurityHandler]
	

	
set_custom_trailer_entry(key: NameObject, value: PdfObject)
	Set a custom, unmanaged entry in the document trailer or cross-reference
stream dictionary.

Warning

Calling this method to set an entry that is managed by pyHanko
internally (info dictionary, document catalog, etc.) has undefined
results.

	Parameters
		key – Dictionary key to use in the trailer.

	value – Value to set

	
pyhanko.pdf_utils.writer.init_xobject_dictionary(command_stream: bytes, box_width, box_height, resources: Optional[DictionaryObject] = None) → StreamObject
	Helper function to initialise form XObject dictionaries.

Note

For utilities to handle image XObjects, see images.

	Parameters
		command_stream – The XObject’s raw appearance stream.

	box_width – The width of the XObject’s bounding box.

	box_height – The height of the XObject’s bounding box.

	resources – A resource dictionary to include with the form object.

	Returns
	A StreamObject representation of the form XObject.

	
pyhanko.pdf_utils.writer.copy_into_new_writer(input_handler: PdfHandler, writer_kwargs: Optional[dict] = None) → PdfFileWriter
	Copy all objects in a given PDF handler into a new PdfFileWriter.
This operation will attempt to preserve the document catalog
of the original input_handler.

Very roughly, calling this function and then immediately invoking
write() on the resulting writer should result
in an equivalent document as far as presentation is concerned.
As a general rule, behaviour that is controlled from outside the document
catalog (e.g. encryption) or that requires byte-for-byte equivalence with
the original (e.g. digital signatures) will not survive this translation.

	Parameters
		input_handler – PdfHandler to source objects from.

	writer_kwargs – Keyword arguments to pass to the writer.

	Returns
	New PdfFileWriter containing all objects from the input
handler.

 Previous
 Next

 © Copyright 2020-2021, Matthias Valvekens.
 Revision 36db6b64.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

 Read the Docs
 v: 0.14.0

 	Versions
	latest
	stable
	0.14.0
	0.13.2
	0.13.1
	0.13.0
	0.12.1
	0.12.0
	0.11.0
	0.10.0
	0.9.0
	0.8.0
	0.7.0
	0.6.1
	0.6.0
	0.5.1
	0.5.0
	0.4.0
	0.3.0
	0.2.0
	0.1.0

 	Downloads

 	On Read the Docs
	
 Project Home

	
 Builds

