

 pyHanko

 0.17.1

 Contents:

	CLI user’s guide
	Library (SDK) user’s guide
	API reference	pyhanko package	Subpackages	pyhanko.pdf_utils package
	pyhanko.sign package

	Submodules

	Release history
	Frequently asked questions (FAQ)
	Known issues
	Licenses

 pyHanko

 	
	API reference
	pyhanko package
	pyhanko.sign package
	pyhanko.sign.signers package
	pyhanko.sign.signers.pdf_cms module
	
 Edit on GitHub

pyhanko.sign.signers.pdf_cms module

This module defines utility classes to format CMS objects for use in PDF
signatures.

	
class pyhanko.sign.signers.pdf_cms.Signer(prefer_pss=False, embed_roots=True)
	Bases: object

Abstract signer object that is agnostic as to where the cryptographic
operations actually happen.

As of now, pyHanko provides two implementations:

	SimpleSigner implements the easy case where all the key material
can be loaded into memory.

	PKCS11Signer implements a signer that is
capable of interfacing with a PKCS11 device
(see also BEIDSigner).

	Parameters:
		prefer_pss – When signing using an RSA key, prefer PSS padding to legacy PKCS#1 v1.5
padding. Default is False. This option has no effect on non-RSA
signatures.

	embed_roots –

New in version 0.9.0.

Option that controls whether or not additional self-signed certificates
should be embedded into the CMS payload. The default is True.

Note

The signer’s certificate is always embedded, even if it is
self-signed.

Note

Trust roots are configured by the validator, so embedding them
typically does nothing in a typical validation process.
Therefore they can be safely omitted in most cases.
Nonetheless, embedding the roots can be useful for documentation
purposes.

Warning

To be precise, if this flag is False, a certificate will be
dropped if (a) it is not the signer’s, (b) it is self-issued and
(c) its subject and authority key identifiers match (or either is
missing). In other words, we never validate the actual
self-signature. This heuristic is sufficiently accurate
for most applications.

	
signing_cert: Optional[Certificate] = None
	
Changed in version 0.14.0: Made optional (see note)

The certificate that will be used to create the signature.

Note

This is an optional field only to a limited extent. Subclasses may
require it to be present, and not setting it at the beginning of
the signing process implies that certain high-level convenience
features will no longer work or be limited in function (e.g.,
automatic hash selection, appearance generation, revocation information
collection, …).

However, making signing_cert optional enables certain signing
workflows where the certificate of the signer is not known until the
signature has actually been produced. This is most relevant in certain
types of remote signing scenarios.

	
cert_registry: CertificateStore
	Collection of certificates associated with this signer.
Note that this is simply a bookkeeping tool; in particular it doesn’t care
about trust.

	
signature_mechanism: SignedDigestAlgorithm = None
	The (cryptographic) signature mechanism to use.

	
attribute_certs: Iterable[AttributeCertificateV2] = ()
	Attribute certificates to include with the signature.

Note

Only v2 attribute certificates are supported.

	
get_signature_mechanism(digest_algorithm) → SignedDigestAlgorithm
	Get the signature mechanism for this signer to use.
If signature_mechanism is set, it will be used.
Otherwise, this method will attempt to put together a default
based on mechanism used in the signer’s certificate.

	Parameters:
	digest_algorithm – Digest algorithm to use as part of the signature mechanism.
Only used if a signature mechanism object has to be put together
on-the-fly.

	Returns:
	A SignedDigestAlgorithm object.

	
property subject_name: Optional[str]
		Returns:
	The subject’s common name as a string, extracted from
signing_cert, or None if no signer’s certificate is
available

	
static format_revinfo(ocsp_responses: Optional[list] = None, crls: Optional[list] = None)
	Format Adobe-style revocation information for inclusion into a CMS
object.

	Parameters:
		ocsp_responses – A list of OCSP responses to include.

	crls – A list of CRLs to include.

	
signer_info(digest_algorithm: str, signed_attrs, signature)
	Format the SignerInfo entry for a CMS signature.

	Parameters:
		digest_algorithm – Digest algorithm to use.

	signed_attrs – Signed attributes (see signed_attrs()).

	signature – The raw signature to embed (see sign_raw()).

	Returns:
	An asn1crypto.cms.SignerInfo object.

	
async async_sign_raw(data: bytes, digest_algorithm: str, dry_run=False) → bytes
	Compute the raw cryptographic signature of the data provided, hashed
using the digest algorithm provided.

	Parameters:
		data – Data to sign.

	digest_algorithm –
Digest algorithm to use.

Warning

If signature_mechanism also specifies a digest, they
should match.

	dry_run – Do not actually create a signature, but merely output placeholder
bytes that would suffice to contain an actual signature.

	Returns:
	Signature bytes.

	
async unsigned_attrs(digest_algorithm: str, signature: bytes, signed_attrs: CMSAttributes, timestamper=None, dry_run=False) → Optional[CMSAttributes]
	
Changed in version 0.9.0: Made asynchronous _(breaking change)_

Changed in version 0.14.0: Added signed_attrs parameter _(breaking change)_

Compute the unsigned attributes to embed into the CMS object.
This function is called after signing the hash of the signed attributes
(see signed_attrs()).

By default, this method only handles timestamp requests, but other
functionality may be added by subclasses

If this method returns None, no unsigned attributes will be
embedded.

	Parameters:
		digest_algorithm – Digest algorithm used to hash the signed attributes.

	signed_attrs – Signed attributes of the signature.

	signature – Signature of the signed attribute hash.

	timestamper – Timestamp supplier to use.

	dry_run – Flag indicating “dry run” mode. If True, only the approximate
size of the output matters, so cryptographic
operations can be replaced by placeholders.

	Returns:
	The unsigned attributes to add, or None.

	
async signed_attrs(data_digest: bytes, digest_algorithm: str, attr_settings: Optional[PdfCMSSignedAttributes] = None, content_type='data', use_pades=False, timestamper=None, dry_run=False, is_pdf_sig=True)
	
Changed in version 0.4.0: Added positional digest_algorithm parameter _(breaking change)_.

Changed in version 0.5.0: Added dry_run, timestamper and cades_meta parameters.

Changed in version 0.9.0: Made asynchronous, grouped some parameters under attr_settings
(breaking change)

Format the signed attributes for a CMS signature.

	Parameters:
		data_digest – Raw digest of the data to be signed.

	digest_algorithm –

New in version 0.4.0.

Name of the digest algorithm used to compute the digest.

	use_pades – Respect PAdES requirements.

	dry_run –

New in version 0.5.0.

Flag indicating “dry run” mode. If True, only the approximate
size of the output matters, so cryptographic
operations can be replaced by placeholders.

	attr_settings – PdfCMSSignedAttributes object describing the attributes
to be added.

	timestamper –

New in version 0.5.0.

Timestamper to use when creating timestamp tokens.

	content_type –
CMS content type of the encapsulated data. Default is data.

Danger

This parameter is internal API, and non-default values must not
be used to produce PDF signatures.

	is_pdf_sig –
Whether the signature being generated is for use in a PDF document.

Danger

This parameter is internal API.

	Returns:
	An asn1crypto.cms.CMSAttributes object.

	
async async_sign(data_digest: bytes, digest_algorithm: str, dry_run=False, use_pades=False, timestamper=None, signed_attr_settings: Optional[PdfCMSSignedAttributes] = None, is_pdf_sig=True, encap_content_info=None) → ContentInfo
	
New in version 0.9.0.

Produce a detached CMS signature from a raw data digest.

	Parameters:
		data_digest – Digest of the actual content being signed.

	digest_algorithm – Digest algorithm to use. This should be the same digest method
as the one used to hash the (external) content.

	dry_run –
If True, the actual signing step will be replaced with
a placeholder.

In a PDF signing context, this is necessary to estimate the size
of the signature container before computing the actual digest of
the document.

	signed_attr_settings – PdfCMSSignedAttributes object describing the attributes
to be added.

	use_pades – Respect PAdES requirements.

	timestamper –
TimeStamper used to obtain a trusted timestamp
token that can be embedded into the signature container.

Note

If dry_run is true, the timestamper’s
dummy_response() method will be
called to obtain a placeholder token.
Note that with a standard HTTPTimeStamper,
this might still hit the timestamping server (in order to
produce a realistic size estimate), but the dummy response will
be cached.

	is_pdf_sig –
Whether the signature being generated is for use in a PDF document.

Danger

This parameter is internal API.

	encap_content_info –
Data to encapsulate in the CMS object.

Danger

This parameter is internal API, and must not be used to produce
PDF signatures.

	Returns:
	An ContentInfo object.

	
async async_sign_prescribed_attributes(digest_algorithm: str, signed_attrs: CMSAttributes, cms_version='v1', dry_run=False, timestamper=None, encap_content_info=None) → ContentInfo
	
New in version 0.9.0.

Start the CMS signing process with the prescribed set of signed
attributes.

	Parameters:
		digest_algorithm – Digest algorithm to use. This should be the same digest method
as the one used to hash the (external) content.

	signed_attrs – CMS attributes to sign.

	dry_run –
If True, the actual signing step will be replaced with
a placeholder.

In a PDF signing context, this is necessary to estimate the size
of the signature container before computing the actual digest of
the document.

	timestamper –
TimeStamper used to obtain a trusted timestamp
token that can be embedded into the signature container.

Note

If dry_run is true, the timestamper’s
dummy_response() method will be
called to obtain a placeholder token.
Note that with a standard HTTPTimeStamper,
this might still hit the timestamping server (in order to
produce a realistic size estimate), but the dummy response will
be cached.

	cms_version – CMS version to use.

	encap_content_info –
Data to encapsulate in the CMS object.

Danger

This parameter is internal API, and must not be used to produce
PDF signatures.

	Returns:
	An ContentInfo object.

	
async async_sign_general_data(input_data: Union[IO, bytes, ContentInfo, EncapsulatedContentInfo], digest_algorithm: str, detached=True, use_cades=False, timestamper=None, chunk_size=4096, signed_attr_settings: Optional[PdfCMSSignedAttributes] = None, max_read=None) → ContentInfo
	
New in version 0.9.0.

Produce a CMS signature for an arbitrary data stream
(not necessarily PDF data).

	Parameters:
		input_data –
The input data to sign. This can be either a bytes object
a file-type object, a cms.ContentInfo object or
a cms.EncapsulatedContentInfo object.

Warning

asn1crypto mandates cms.ContentInfo for CMS v1
signatures. In practical terms, this means that you need to
use cms.ContentInfo if the content type is data,
and cms.EncapsulatedContentInfo otherwise.

Warning

We currently only support CMS v1, v3 and v4 signatures.
This is only a concern if you need certificates or CRLs
of type ‘other’, in which case you can change the version
yourself (this will not invalidate any signatures).
You’ll also need to do this if you need support for version 1
attribute certificates, or if you want to sign with
subjectKeyIdentifier in the sid field.

	digest_algorithm – The name of the digest algorithm to use.

	detached – If True, create a CMS detached signature (i.e. an object where
the encapsulated content is not embedded in the signature object
itself). This is the default. If False, the content to be
signed will be embedded as encapsulated content.

	signed_attr_settings – PdfCMSSignedAttributes object describing the attributes
to be added.

	use_cades – Construct a CAdES-style CMS object.

	timestamper –
PdfTimeStamper to use to create a signature timestamp

Note

If you want to create a content timestamp (as opposed to
a signature timestamp), see CAdESSignedAttrSpec.

	chunk_size – Chunk size to use when consuming input data.

	max_read – Maximal number of bytes to read from the input stream.

	Returns:
	A CMS ContentInfo object of type signedData.

	
sign(data_digest: bytes, digest_algorithm: str, timestamp: Optional[datetime] = None, dry_run=False, revocation_info=None, use_pades=False, timestamper=None, cades_signed_attr_meta: Optional[CAdESSignedAttrSpec] = None, encap_content_info=None) → ContentInfo
	
Deprecated since version 0.9.0: Use async_sign() instead.
The implementation of this method will invoke async_sign()
using asyncio.run().

Produce a detached CMS signature from a raw data digest.

	Parameters:
		data_digest – Digest of the actual content being signed.

	digest_algorithm – Digest algorithm to use. This should be the same digest method
as the one used to hash the (external) content.

	timestamp –
Signing time to embed into the signed attributes
(will be ignored if use_pades is True).

Note

This timestamp value is to be interpreted as an unfounded
assertion by the signer, which may or may not be good enough
for your purposes.

	dry_run –
If True, the actual signing step will be replaced with
a placeholder.

In a PDF signing context, this is necessary to estimate the size
of the signature container before computing the actual digest of
the document.

	revocation_info – Revocation information to embed; this should be the output
of a call to Signer.format_revinfo()
(ignored when use_pades is True).

	use_pades – Respect PAdES requirements.

	timestamper –
TimeStamper used to obtain a trusted timestamp
token that can be embedded into the signature container.

Note

If dry_run is true, the timestamper’s
dummy_response() method will be
called to obtain a placeholder token.
Note that with a standard HTTPTimeStamper,
this might still hit the timestamping server (in order to
produce a realistic size estimate), but the dummy response will
be cached.

	cades_signed_attr_meta –

New in version 0.5.0.

Specification for CAdES-specific signed attributes.

	encap_content_info –
Data to encapsulate in the CMS object.

Danger

This parameter is internal API, and must not be used to produce
PDF signatures.

	Returns:
	An ContentInfo object.

	
sign_prescribed_attributes(digest_algorithm: str, signed_attrs: CMSAttributes, cms_version='v1', dry_run=False, timestamper=None, encap_content_info=None) → ContentInfo
	
Deprecated since version 0.9.0: Use async_sign_prescribed_attributes() instead.
The implementation of this method will invoke
async_sign_prescribed_attributes() using
asyncio.run().

Start the CMS signing process with the prescribed set of signed
attributes.

	Parameters:
		digest_algorithm – Digest algorithm to use. This should be the same digest method
as the one used to hash the (external) content.

	signed_attrs – CMS attributes to sign.

	dry_run –
If True, the actual signing step will be replaced with
a placeholder.

In a PDF signing context, this is necessary to estimate the size
of the signature container before computing the actual digest of
the document.

	timestamper –
TimeStamper used to obtain a trusted timestamp
token that can be embedded into the signature container.

Note

If dry_run is true, the timestamper’s
dummy_response() method will be
called to obtain a placeholder token.
Note that with a standard HTTPTimeStamper,
this might still hit the timestamping server (in order to
produce a realistic size estimate), but the dummy response will
be cached.

	cms_version – CMS version to use.

	encap_content_info –
Data to encapsulate in the CMS object.

Danger

This parameter is internal API, and must not be used to produce
PDF signatures.

	Returns:
	An ContentInfo object.

	
sign_general_data(input_data: Union[IO, bytes, ContentInfo, EncapsulatedContentInfo], digest_algorithm: str, detached=True, timestamp: Optional[datetime] = None, use_cades=False, timestamper=None, cades_signed_attr_meta: Optional[CAdESSignedAttrSpec] = None, chunk_size=4096, max_read=None) → ContentInfo
	
New in version 0.7.0.

Deprecated since version 0.9.0: Use async_sign_general_data() instead.
The implementation of this method will invoke
async_sign_general_data() using asyncio.run().

Produce a CMS signature for an arbitrary data stream
(not necessarily PDF data).

	Parameters:
		input_data –
The input data to sign. This can be either a bytes object
a file-type object, a cms.ContentInfo object or
a cms.EncapsulatedContentInfo object.

Warning

asn1crypto mandates cms.ContentInfo for CMS v1
signatures. In practical terms, this means that you need to
use cms.ContentInfo if the content type is data,
and cms.EncapsulatedContentInfo otherwise.

Warning

We currently only support CMS v1, v3 and v4 signatures.
This is only a concern if you need certificates or CRLs
of type ‘other’, in which case you can change the version
yourself (this will not invalidate any signatures).
You’ll also need to do this if you need support for version 1
attribute certificates, or if you want to sign with
subjectKeyIdentifier in the sid field.

	digest_algorithm – The name of the digest algorithm to use.

	detached – If True, create a CMS detached signature (i.e. an object where
the encapsulated content is not embedded in the signature object
itself). This is the default. If False, the content to be
signed will be embedded as encapsulated content.

	timestamp –
Signing time to embed into the signed attributes
(will be ignored if use_cades is True).

Note

This timestamp value is to be interpreted as an unfounded
assertion by the signer, which may or may not be good enough
for your purposes.

	use_cades – Construct a CAdES-style CMS object.

	timestamper –
PdfTimeStamper to use to create a signature timestamp

Note

If you want to create a content timestamp (as opposed to
a signature timestamp), see CAdESSignedAttrSpec.

	cades_signed_attr_meta – Specification for CAdES-specific signed attributes.

	chunk_size – Chunk size to use when consuming input data.

	max_read – Maximal number of bytes to read from the input stream.

	Returns:
	A CMS ContentInfo object of type signedData.

	
class pyhanko.sign.signers.pdf_cms.SimpleSigner(signing_cert: Certificate, signing_key: PrivateKeyInfo, cert_registry: CertificateStore, signature_mechanism: Optional[SignedDigestAlgorithm] = None, prefer_pss=False, embed_roots=True, attribute_certs=None)
	Bases: Signer

Simple signer implementation where the key material is available in local
memory.

	
signing_key: PrivateKeyInfo
	Private key associated with the certificate in signing_cert.

	
async async_sign_raw(data: bytes, digest_algorithm: str, dry_run=False) → bytes
	Compute the raw cryptographic signature of the data provided, hashed
using the digest algorithm provided.

	Parameters:
		data – Data to sign.

	digest_algorithm –
Digest algorithm to use.

Warning

If signature_mechanism also specifies a digest, they
should match.

	dry_run – Do not actually create a signature, but merely output placeholder
bytes that would suffice to contain an actual signature.

	Returns:
	Signature bytes.

	
sign_raw(data: bytes, digest_algorithm: str) → bytes
	Synchronous raw signature implementation.

	Parameters:
		data – Data to be signed.

	digest_algorithm – Digest algorithm to use.

	Returns:
	Raw signature encoded according to the conventions of the
signing algorithm used.

	
classmethod load_pkcs12(pfx_file, ca_chain_files=None, other_certs=None, passphrase=None, signature_mechanism=None, prefer_pss=False)
	Load certificates and key material from a PCKS#12 archive
(usually .pfx or .p12 files).

	Parameters:
		pfx_file – Path to the PKCS#12 archive.

	ca_chain_files – Path to (PEM/DER) files containing other relevant certificates
not included in the PKCS#12 file.

	other_certs – Other relevant certificates, specified as a list of
asn1crypto.x509.Certificate objects.

	passphrase – Passphrase to decrypt the PKCS#12 archive, if required.

	signature_mechanism – Override the signature mechanism to use.

	prefer_pss – Prefer PSS signature mechanism over RSA PKCS#1 v1.5 if
there’s a choice.

	Returns:
	A SimpleSigner object initialised with key material loaded
from the PKCS#12 file provided.

	
classmethod load(key_file, cert_file, ca_chain_files=None, key_passphrase=None, other_certs=None, signature_mechanism=None, prefer_pss=False)
	Load certificates and key material from PEM/DER files.

	Parameters:
		key_file – File containing the signer’s private key.

	cert_file – File containing the signer’s certificate.

	ca_chain_files – File containing other relevant certificates.

	key_passphrase – Passphrase to decrypt the private key (if required).

	other_certs – Other relevant certificates, specified as a list of
asn1crypto.x509.Certificate objects.

	signature_mechanism – Override the signature mechanism to use.

	prefer_pss – Prefer PSS signature mechanism over RSA PKCS#1 v1.5 if
there’s a choice.

	Returns:
	A SimpleSigner object initialised with key material loaded
from the files provided.

	
class pyhanko.sign.signers.pdf_cms.ExternalSigner(signing_cert: Optional[Certificate], cert_registry: Optional[CertificateStore], signature_value: Optional[Union[bytes, int]] = None, signature_mechanism: Optional[SignedDigestAlgorithm] = None, prefer_pss: bool = False, embed_roots: bool = True)
	Bases: Signer

Class to help formatting CMS objects for use with remote signing.
It embeds a fixed signature value into the CMS, set at initialisation.

Intended for use with Interrupted signing.

	Parameters:
		signing_cert – The signer’s certificate.

	cert_registry – The certificate registry to use in CMS generation.

	signature_value – The value of the signature as a byte string, a placeholder length,
or None.

	signature_mechanism – The signature mechanism used by the external signing service.

	prefer_pss – Switch to prefer PSS when producing RSA signatures, as opposed to
RSA with PKCS#1 v1.5 padding.

	embed_roots – Whether to embed relevant root certificates into the CMS payload.

	
cert_registry: CertificateStore
	Collection of certificates associated with this signer.
Note that this is simply a bookkeeping tool; in particular it doesn’t care
about trust.

	
async async_sign_raw(data: bytes, digest_algorithm: str, dry_run=False) → bytes
	Return a fixed signature value.

	
signed_attr_prov_spec: Optional[SignedAttributeProviderSpec]
	

	
unsigned_attr_prov_spec: Optional[UnsignedAttributeProviderSpec]
	

	
class pyhanko.sign.signers.pdf_cms.PdfCMSSignedAttributes(signing_time: Optional[datetime] = None, cades_signed_attrs: Optional[CAdESSignedAttrSpec] = None, adobe_revinfo_attr: Optional[RevocationInfoArchival] = None)
	Bases: CMSSignedAttributes

New in version 0.7.0.

Changed in version 0.14.0: Split off some fields into CMSSignedAttributes.

Serialisable container class describing input for various signed attributes
in a CMS object for a PDF signature.

	
adobe_revinfo_attr: Optional[RevocationInfoArchival] = None
	Adobe-style signed revocation info attribute.

	
async pyhanko.sign.signers.pdf_cms.format_attributes(attr_provs: List[CMSAttributeProvider], other_attrs: Iterable[CMSAttributes] = (), dry_run: bool = False) → CMSAttributes
	Format CMS attributes obtained from attribute providers.

	Parameters:
		attr_provs – List of attribute providers.

	other_attrs – Other (predetermined) attributes to include.

	dry_run – Whether to invoke the attribute providers in dry-run mode or not.

	Returns:
	A cms.CMSAttributes value.

	
async pyhanko.sign.signers.pdf_cms.format_signed_attributes(data_digest: bytes, attr_provs: List[CMSAttributeProvider], content_type='data', dry_run=False) → CMSAttributes
	Format signed attributes for a CMS SignerInfo value.

	Parameters:
		data_digest – The byte string to put in the messageDigest attribute.

	attr_provs – List of attribute providers to source attributes from.

	content_type – The content type of the data being signed (default is data).

	dry_run – Whether to invoke the attribute providers in dry-run mode or not.

	Returns:
	A cms.CMSAttributes value representing the signed attributes.

	
pyhanko.sign.signers.pdf_cms.asyncify_signer(signer_cls)
	Decorator to turn a legacy Signer subclass into one that works
with the new async API.

	
pyhanko.sign.signers.pdf_cms.select_suitable_signing_md(key: PublicKeyInfo) → str
	Choose a reasonable default signing message digest given the properties of
(the public part of) a key.

The fallback value is constants.DEFAULT_MD.

	Parameters:
	key – A keys.PublicKeyInfo object.

	Returns:
	The name of a message digest algorithm.

 Previous
 Next

 © Copyright 2020-2023, Matthias Valvekens.
 Revision f0cdb4cc.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

 Read the Docs
 v: 0.17.1

 	Versions
	latest
	stable
	0.17.1
	0.17.0
	0.16.0
	0.15.1
	0.15.0
	0.14.0
	0.13.2
	0.13.1
	0.13.0
	0.12.1
	0.12.0
	0.11.0
	0.10.0
	0.9.0
	0.8.0
	0.7.0
	0.6.1
	0.6.0
	0.5.1
	0.5.0
	0.4.0
	0.3.0
	0.2.0
	0.1.0

 	Downloads

 	On Read the Docs
	
 Project Home

	
 Builds

