

 pyHanko

 0.4.0

 Contents:

	CLI user’s guide
	Library (SDK) user’s guide
	API reference	pyhanko package	Subpackages	pyhanko.pdf_utils package
	pyhanko.sign package

	Submodules

	Release history
	Known issues
	Licenses

 pyHanko

 	 »
	API reference »
	pyhanko package »
	pyhanko.pdf_utils package »
	pyhanko.pdf_utils.crypt module
	

 Edit on GitHub

pyhanko.pdf_utils.crypt module¶

Changed in version 0.3.0: Added support for PDF 2.0 encryption standards and crypt filters.

Utilities for PDF encryption. This module covers all methods outlined in the
standard:

	Legacy RC4-based encryption (based on PyPDF2 code).

	AES-128 encryption with legacy key derivation (partly based on PyPDF2 code).

	PDF 2.0 AES-256 encryption.

	Public key encryption backed by any of the above.

Following the language in the standard, encryption operations are backed by
subclasses of the SecurityHandler class, which provides a more or less
generic API.

Danger

The members of this module are all considered internal API, and are
therefore subject to change without notice.

Danger

One should also be aware that the legacy encryption scheme implemented
here is (very) weak, and we only support it for compatibility reasons.
Under no circumstances should it still be used to encrypt new files.

About crypt filters¶

Crypt filters are objects that handle encryption and decryption of streams and
strings, either for all of them, or for a specific subset (e.g. streams
representing embedded files). In the context of the PDF standard, crypt filters
are a notion that only makes sense for security handlers of version 4 and up.
In pyHanko, however, all encryption and decryption operations pass through
crypt filters, and the serialisation/deserialisation logic in
SecurityHandler and its subclasses transparently deals with staying
backwards compatible with earlier revisions.

Internally, pyHanko loosely distinguishes between implicit and explicit
uses of crypt filters:

	Explicit crypt filters are used by directly referring to them from the
/Filter entry of a stream dictionary. These are invoked in the usual
stream decoding process.

	Implicit crypt filters are set by the /StmF and /StrF entries
in the security handler’s crypt filter configuration, and are invoked by the
object reading/writing procedures as necessary. These filters are invisble
to the stream encoding/decoding process: the
encoded_data attribute of
an “implicitly encrypted” stream will therefore contain decrypted data ready
to be decoded in the usual way.

As long as you don’t require access to encoded object data and/or raw encrypted
object data, this distiction should be irrelevant to you as an API user.

	
class pyhanko.pdf_utils.crypt.SecurityHandler(version: pyhanko.pdf_utils.crypt.SecurityHandlerVersion, legacy_keylen, crypt_filter_config: pyhanko.pdf_utils.crypt.CryptFilterConfiguration, encrypt_metadata=True)¶
	Bases: object

Generic PDF security handler interface.

This class contains relatively little actual functionality, except for
some common initialisation logic and bookkeeping machinery to register
security handler implementations.

	Parameters
		version – Indicates the version of the security handler to use, as described
in the specification. See SecurityHandlerVersion.

	legacy_keylen – Key length in bytes (only relevant for legacy encryption handlers).

	crypt_filter_config –
The crypt filter configuration for the security handler, in the
form of a CryptFilterConfiguration object.

Note

PyHanko implements legacy security handlers (which, according to
the standard, aren’t crypt filter-aware) using crypt filters
as well, even though they aren’t serialised to the output file.

	encrypt_metadata –
Flag indicating whether document (XMP) metadata is to be encrypted.

Warning

Currently, PyHanko does not manage metadata streams, so until
that changes, it is the responsibility of the API user to mark
metadata streams using the /Identity crypt filter as required.

Nonetheless, the value of this flag is required in key derivation
computations, so the security handler needs to know about it.

	
static register(cls: Type[pyhanko.pdf_utils.crypt.SecurityHandler])¶
	Register a security handler class.
Intended to be used as a decorator on subclasses.

See build() for further information.

	Parameters
	cls – A subclass of SecurityHandler.

	
static build(encrypt_dict: pyhanko.pdf_utils.generic.DictionaryObject) → pyhanko.pdf_utils.crypt.SecurityHandler¶
	Instantiate an appropriate SecurityHandler from a PDF
document’s encryption dictionary.

PyHanko will search the registry for a security handler with
a name matching the /Filter entry. Failing that, a security
handler implementing the protocol designated by the
/SubFilter entry (see support_generic_subfilters()) will be
chosen.

Once an appropriate SecurityHandler subclass has been
selected, pyHanko will invoke the subclass’s
instantiate_from_pdf_object() method with the original encryption
dictionary as its argument.

	Parameters
	encrypt_dict – A PDF encryption dictionary.

	Returns
	

	
classmethod get_name() → str¶
	Retrieves the name of this security handler.

	Returns
	The name of this security handler.

	
classmethod support_generic_subfilters() → Set[str]¶
	Indicates the generic /SubFilter values that this security handler
supports.

	Returns
	A set of generic protocols (indicated in the /SubFilter entry
of an encryption dictionary) that this SecurityHandler
class implements. Defaults to the empty set.

	
classmethod instantiate_from_pdf_object(encrypt_dict: pyhanko.pdf_utils.generic.DictionaryObject)¶
	Instantiate an object of this class using a PDF encryption dictionary
as input.

	Parameters
	encrypt_dict – A PDF encryption dictionary.

	Returns
	

	
as_pdf_object() → pyhanko.pdf_utils.generic.DictionaryObject¶
	Serialise this security handler to a PDF encryption dictionary.

	Returns
	A PDF encryption dictionary.

	
authenticate(credential, id1=None) → pyhanko.pdf_utils.crypt.AuthResult¶
	Authenticate a credential holder with this security handler.

	Parameters
		credential – A credential.
The type of the credential is left up to the subclasses.

	id1 – The first part of the document ID of the document being accessed.

	Returns
	An AuthResult object indicating the level of access
obtained.

	
get_string_filter() → pyhanko.pdf_utils.crypt.CryptFilter¶
		Returns
	The crypt filter responsible for decrypting strings
for this security handler.

	
get_stream_filter(name=None) → pyhanko.pdf_utils.crypt.CryptFilter¶
		Parameters
	name – Optionally specify a crypt filter by name.

	Returns
	The default crypt filter responsible for decrypting streams
for this security handler, or the crypt filter named name,
if not None.

	
get_file_encryption_key() → bytes¶
	

	
class pyhanko.pdf_utils.crypt.StandardSecurityHandler(version: pyhanko.pdf_utils.crypt.SecurityHandlerVersion, revision: pyhanko.pdf_utils.crypt.StandardSecuritySettingsRevision, legacy_keylen, perm_flags: int, odata, udata, oeseed=None, ueseed=None, encrypted_perms=None, encrypt_metadata=True, crypt_filter_config: Optional[pyhanko.pdf_utils.crypt.CryptFilterConfiguration] = None)¶
	Bases: pyhanko.pdf_utils.crypt.SecurityHandler

Implementation of the standard (password-based) security handler.

You shouldn’t have to instantiate StandardSecurityHandler objects
yourself. For encrypting new documents, use build_from_pw()
or build_from_pw_legacy().

For decrypting existing documents, pyHanko will take care of instantiating
security handlers through SecurityHandler.build().

	
classmethod get_name() → str¶
	Retrieves the name of this security handler.

	Returns
	The name of this security handler.

	
classmethod build_from_pw_legacy(rev: pyhanko.pdf_utils.crypt.StandardSecuritySettingsRevision, id1, desired_owner_pass, desired_user_pass=None, keylen_bytes=16, use_aes128=True, perms: int = - 4, crypt_filter_config=None)¶
	Initialise a legacy password-based security handler, to attach to a
PdfFileWriter.

Danger

The functionality implemented by this handler is deprecated in the
PDF standard. We only provide it for testing purposes, and to
interface with legacy systems.

	Parameters
		rev – Security handler revision to use, see
StandardSecuritySettingsRevision.

	id1 – The first part of the document ID.

	desired_owner_pass – Desired owner password.

	desired_user_pass – Desired user password.

	keylen_bytes – Length of the key (in bytes).

	use_aes128 – Use AES-128 instead of RC4 (default: True).

	perms – Permission bits to set (defined as an integer)

	crypt_filter_config – Custom crypt filter configuration. PyHanko will supply a reasonable
default if none is specified.

	Returns
	A StandardSecurityHandler instance.

	
classmethod build_from_pw(desired_owner_pass, desired_user_pass=None, perms=- 4)¶
	Initialise a password-based security handler backed by AES-256,
to attach to a PdfFileWriter.
This handler will use the new PDF 2.0 encryption scheme.

	Parameters
		desired_owner_pass – Desired owner password.

	desired_user_pass – Desired user password.

	perms – Desired usage permissions.

	Returns
	A StandardSecurityHandler instance.

	
static read_standard_cf_dictionary(cfdict)¶
	Interpret a crypt filter dictionary for the standard security handler.

	Parameters
	cfdict – A crypt filter dictionary.

	Returns
	An appropriate CryptFilter object, or None
if the crypt filter uses the /None method.

	Raises
	NotImplementedError – Raised when the crypt filter’s /CFM entry indicates an unknown
crypt filter method.

	
classmethod instantiate_from_pdf_object(encrypt_dict: pyhanko.pdf_utils.generic.DictionaryObject)¶
	Instantiate an object of this class using a PDF encryption dictionary
as input.

	Parameters
	encrypt_dict – A PDF encryption dictionary.

	Returns
	

	
as_pdf_object()¶
	Serialise this security handler to a PDF encryption dictionary.

	Returns
	A PDF encryption dictionary.

	
authenticate(credential, id1: Optional[bytes] = None) → pyhanko.pdf_utils.crypt.AuthResult¶
	Authenticate a user to this security handler.

	Parameters
		credential – The credential to use (a password in this case).

	id1 – First part of the document ID. This is mandatory for legacy
encryption handlers, but meaningless otherwise.

	Returns
	An AuthResult object indicating the level of access
obtained.

	
get_file_encryption_key() → bytes¶
	Retrieve the (global) file encryption key for this security handler.

	Returns
	The file encryption key as a bytes object.

	Raises
	misc.PdfReadError – Raised if this security handler was instantiated from an encryption
dictionary and no credential is available.

	
class pyhanko.pdf_utils.crypt.PubKeySecurityHandler(version: pyhanko.pdf_utils.crypt.SecurityHandlerVersion, pubkey_handler_subfilter: pyhanko.pdf_utils.crypt.PubKeyAdbeSubFilter, legacy_keylen, encrypt_metadata=True, crypt_filter_config: Optional[pyhanko.pdf_utils.crypt.CryptFilterConfiguration] = None, recipient_objs: Optional[list] = None)¶
	Bases: pyhanko.pdf_utils.crypt.SecurityHandler

Security handler for public key encryption in PDF.

As with the standard security handler, you essentially shouldn’t ever
have to instantiate these yourself (see build_from_certs()).

	
static build_from_certs(certs: List[asn1crypto.x509.Certificate], keylen_bytes=16, version=<SecurityHandlerVersion.AES256: 5>, use_aes=True, use_crypt_filters=True, perms: int = -4, encrypt_metadata=True) → pyhanko.pdf_utils.crypt.PubKeySecurityHandler¶
	Create a new public key security handler.

This method takes many parameters, but only certs is mandatory.
The default behaviour is to create a public key encryption handler
where the underlying symmetric encryption is provided by AES-256.

	Parameters
		certs – The recipients’ certificates.

	keylen_bytes – The key length (in bytes). This is only relevant for legacy
security handlers.

	version – The security handler version to use.

	use_aes – Use AES-128 instead of RC4 (only meaningful if the version
parameter is RC4_OR_AES128).

	use_crypt_filters – Whether to use crypt filters. This is mandatory for security
handlers of version RC4_OR_AES128
or higher.

	perms – Permission flags (as a 4-byte signed integer).

	encrypt_metadata –
Whether to encrypt document metadata.

Warning

See SecurityHandlers for some background on the
way pyHanko interprets this value.

	Returns
	An instance of PubKeySecurityHandler.

	
classmethod get_name() → str¶
	Retrieves the name of this security handler.

	Returns
	The name of this security handler.

	
classmethod support_generic_subfilters() → Set[str]¶
	Indicates the generic /SubFilter values that this security handler
supports.

	Returns
	A set of generic protocols (indicated in the /SubFilter entry
of an encryption dictionary) that this SecurityHandler
class implements. Defaults to the empty set.

	
classmethod instantiate_from_pdf_object(encrypt_dict: pyhanko.pdf_utils.generic.DictionaryObject)¶
	Instantiate an object of this class using a PDF encryption dictionary
as input.

	Parameters
	encrypt_dict – A PDF encryption dictionary.

	Returns
	

	
as_pdf_object()¶
	Serialise this security handler to a PDF encryption dictionary.

	Returns
	A PDF encryption dictionary.

	
add_recipients(certs: List[asn1crypto.x509.Certificate], perms=- 4)¶
	

	
authenticate(credential: pyhanko.pdf_utils.crypt.EnvelopeKeyDecrypter, id1=None) → pyhanko.pdf_utils.crypt.AuthResult¶
	Authenticate a user to this security handler.

	Parameters
		credential – The credential to use (an instance of EnvelopeKeyDecrypter
in this case).

	id1 – First part of the document ID.
Public key encryption handlers ignore this key.

	Returns
	An AuthResult object indicating the level of access
obtained.

	
static read_pubkey_cf_dictionary(cfdict, acts_as_default)¶
	Read a crypt filter dictionary for a public key security handler.

	Parameters
		cfdict – A crypt filter dictionary.

	acts_as_default – Indicates whether this filter is intended to be used in
/StrF or /StmF.

	Returns
	A CryptFilter object.

	
get_file_encryption_key() → bytes¶
	

	
class pyhanko.pdf_utils.crypt.SecurityHandlerVersion(value)¶
	Bases: pyhanko.pdf_utils.misc.OrderedEnum

Indicates the security handler’s version.

The enum constants are named more or less in accordance with the
cryptographic algorithms they permit.

	
RC4_40 = 1¶
	

	
RC4_LONGER_KEYS = 2¶
	

	
RC4_OR_AES128 = 4¶
	

	
AES256 = 5¶
	

	
OTHER = None¶
	Placeholder value for custom security handlers.

	
class pyhanko.pdf_utils.crypt.StandardSecuritySettingsRevision(value)¶
	Bases: pyhanko.pdf_utils.misc.OrderedEnum

Indicate the standard security handler revision to emulate.

	
RC4_BASIC = 2¶
	

	
RC4_EXTENDED = 3¶
	

	
RC4_OR_AES128 = 4¶
	

	
AES256 = 6¶
	

	
class pyhanko.pdf_utils.crypt.PubKeyAdbeSubFilter(value)¶
	Bases: enum.Enum

Enum describing the different subfilters that can be used for public key
encryption in the PDF specification.

	
S3 = '/adbe.pkcs7.s3'¶
	

	
S4 = '/adbe.pkcs7.s4'¶
	

	
S5 = '/adbe.pkcs7.s5'¶
	

	
class pyhanko.pdf_utils.crypt.CryptFilterConfiguration(crypt_filters: Optional[Dict[str, pyhanko.pdf_utils.crypt.CryptFilter]] = None, default_stream_filter='/Identity', default_string_filter='/Identity', default_file_filter=None)¶
	Bases: object

Crypt filter store attached to a security handler.

Instances of this class are not designed to be reusable.

	Parameters
		crypt_filters – A dictionary mapping names to their corresponding crypt filters.

	default_stream_filter – Name of the default crypt filter to use for streams.

	default_stream_filter – Name of the default crypt filter to use for strings.

	default_file_filter –
Name of the default crypt filter to use for embedded files.

Note

PyHanko currently is not aware of embedded files, so managing these
is the API user’s responsibility.

	
filters()¶
	Enumerate all crypt filters in this configuration.

	
set_security_handler(handler: pyhanko.pdf_utils.crypt.SecurityHandler)¶
	Set the security handler on all crypt filters in this configuration.

	Parameters
	handler – A SecurityHandler instance.

	
get_for_stream()¶
	Retrieve the default crypt filter to use with streams.

	Returns
	A CryptFilter instance.

	
get_for_string()¶
	Retrieve the default crypt filter to use with strings.

	Returns
	A CryptFilter instance.

	
get_for_embedded_file()¶
	Retrieve the default crypt filter to use with embedded files.

	Returns
	A CryptFilter instance.

	
as_pdf_object()¶
	Serialise this crypt filter configuration to a dictionary object,
including all its subordinate crypt filters (with the exception of
the identity filter, if relevant).

	
default_filters()¶
	Return the “default” filters associated with this crypt filter
configuration, i.e. those registered as the defaults for strings
and streams, respectively.

These sometimes require special treatment (as per the specification).

	Returns
	A set with one or two elements.

	
class pyhanko.pdf_utils.crypt.CryptFilter¶
	Bases: object

Generic abstract crypt filter class.

The superclass only handles the binding with the security handler, and
offers some default implementations for serialisation routines that may
be overridden in subclasses.

There is generally no requirement for crypt filters to be compatible with
any security handler (the leaf classes in this module aren’t), but
the API supports mixin usage so code can be shared.

	
property method¶
		Returns
	The method name (/CFM entry) associated with this crypt filter.

	
property keylen¶
		Returns
	The keylength (in bytes) of the key associated with this crypt
filter.

	
encrypt(key, plaintext: bytes, params=None) → bytes¶
	Encrypt plaintext with the specified key.

	Parameters
		key – The current local key, which may or may not be equal to this
crypt filter’s global key.

	plaintext – Plaintext to encrypt.

	params – Optional parameters private to the crypt filter,
specified as a PDF dictionary. These can only be used for
explicit crypt filters; the parameters are then sourced from
the corresponding entry in /DecodeParms.

	Returns
	The resulting ciphertext.

	
decrypt(key, ciphertext: bytes, params=None) → bytes¶
	Decrypt ciphertext with the specified key.

	Parameters
		key – The current local key, which may or may not be equal to this
crypt filter’s global key.

	ciphertext – Ciphertext to decrypt.

	params – Optional parameters private to the crypt filter,
specified as a PDF dictionary. These can only be used for
explicit crypt filters; the parameters are then sourced from
the corresponding entry in /DecodeParms.

	Returns
	The resulting plaintext.

	
as_pdf_object() → pyhanko.pdf_utils.generic.DictionaryObject¶
	Serialise this crypt filter to a PDF crypt filter dictionary.

Note

Implementations are encouraged to use a cooperative inheritance
model, where subclasses first call super().as_pdf_object()
and add the keys they need before returning the result.

This makes it easy to write crypt filter mixins that can provide
functionality to multiple handlers.

	Returns
	A PDF crypt filter dictionary.

	
derive_shared_encryption_key() → bytes¶
	Compute the (global) file encryption key for this crypt filter.

	Returns
	The key, as a bytes object.

	Raises
	misc.PdfError – Raised if the data needed to derive the key is not present (e.g.
because the caller hasn’t authenticated yet).

	
derive_object_key(idnum, generation) → bytes¶
	Derive the encryption key for a specific object, based on the shared
file encryption key.

	Parameters
		idnum – ID of the object being encrypted.

	generation – Generation number of the object being encrypted.

	Returns
	The local key to use for this object.

	
property shared_key¶
	Return the shared file encryption key for this crypt filter, or
attempt to compute it using derive_shared_encryption_key()
if not available.

	
class pyhanko.pdf_utils.crypt.StandardCryptFilter¶
	Bases: pyhanko.pdf_utils.crypt.CryptFilter, abc.ABC

Crypt filter for use with the standard security handler.

	
derive_shared_encryption_key() → bytes¶
	Compute the (global) file encryption key for this crypt filter.

	Returns
	The key, as a bytes object.

	Raises
	misc.PdfError – Raised if the data needed to derive the key is not present (e.g.
because the caller hasn’t authenticated yet).

	
as_pdf_object()¶
	Serialise this crypt filter to a PDF crypt filter dictionary.

Note

Implementations are encouraged to use a cooperative inheritance
model, where subclasses first call super().as_pdf_object()
and add the keys they need before returning the result.

This makes it easy to write crypt filter mixins that can provide
functionality to multiple handlers.

	Returns
	A PDF crypt filter dictionary.

	
class pyhanko.pdf_utils.crypt.PubKeyCryptFilter(*, recipients=None, acts_as_default=False, encrypt_metadata=True, **kwargs)¶
	Bases: pyhanko.pdf_utils.crypt.CryptFilter, abc.ABC

Crypt filter for use with public key security handler.
These are a little more independent than their counterparts for
the standard security handlers, since different crypt filters
can cater to different sets of recipients.

	Parameters
		recipients – List of CMS objects encoding recipient information for this crypt
filters.

	acts_as_default – Indicates whether this filter is intended to be used in
/StrF or /StmF.

	encrypt_metadata –
Whether this crypt filter should encrypt document-level metadata.

Warning

See SecurityHandlers for some background on the
way pyHanko interprets this value.

	
add_recipients(certs: List[asn1crypto.x509.Certificate], perms=- 4)¶
	Add recipients to this crypt filter.
This always adds one full CMS object to the Recipients array

	Parameters
		certs – A list of recipient certificates.

	perms – The permission bits to assign to the listed recipients.

	
authenticate(credential) → pyhanko.pdf_utils.crypt.AuthResult¶
	Authenticate to this crypt filter in particular.
If used in /StmF or /StrF, you don’t need to worry about
calling this method directly.

	Parameters
	credential – The EnvelopeKeyDecrypter to authenticate with.

	Returns
	An AuthResult object indicating the level of access
obtained.

	
derive_shared_encryption_key() → bytes¶
	Compute the (global) file encryption key for this crypt filter.

	Returns
	The key, as a bytes object.

	Raises
	misc.PdfError – Raised if the data needed to derive the key is not present (e.g.
because the caller hasn’t authenticated yet).

	
as_pdf_object()¶
	Serialise this crypt filter to a PDF crypt filter dictionary.

Note

Implementations are encouraged to use a cooperative inheritance
model, where subclasses first call super().as_pdf_object()
and add the keys they need before returning the result.

This makes it easy to write crypt filter mixins that can provide
functionality to multiple handlers.

	Returns
	A PDF crypt filter dictionary.

	
class pyhanko.pdf_utils.crypt.IdentityCryptFilter¶
	Bases: pyhanko.pdf_utils.crypt.CryptFilter

Class implementing the trivial crypt filter.

This is a singleton class, so all its instances are identical.
Additionally, some of the CryptFilter API is nonfunctional.
In particular, as_pdf_object() always raises an error, since the
/Identity filter cannot be serialised.

	
method = '/None'¶
	

	
keylen = 0¶
	

	
derive_shared_encryption_key() → bytes¶
	Always returns an empty byte string.

	
derive_object_key(idnum, generation) → bytes¶
	Always returns an empty byte string.

	Parameters
		idnum – Ignored.

	generation – Ignored.

	Returns
	

	
as_pdf_object()¶
	Not implemented for this crypt filter.

	Raises
	misc.PdfError – Always.

	
encrypt(key, plaintext: bytes, params=None) → bytes¶
	Identity function.

	Parameters
		key – Ignored.

	plaintext – Returned as-is.

	params – Ignored.

	Returns
	The original plaintext.

	
decrypt(key, ciphertext: bytes, params=None) → bytes¶
	Identity function.

	Parameters
		key – Ignored.

	ciphertext – Returned as-is.

	params – Ignored.

	Returns
	The original ciphertext.

	
class pyhanko.pdf_utils.crypt.RC4CryptFilterMixin(*, keylen=5, **kwargs)¶
	Bases: pyhanko.pdf_utils.crypt.CryptFilter, abc.ABC

Mixin for RC4-based crypt filters.

	Parameters
	keylen – Key length, in bytes. Defaults to 5.

	
method = '/V2'¶
	

	
keylen = None¶
	

	
encrypt(key, plaintext: bytes, params=None) → bytes¶
	Encrypt data using RC4.

	Parameters
		key – Local encryption key.

	plaintext – Plaintext to encrypt.

	params – Ignored.

	Returns
	Ciphertext.

	
decrypt(key, ciphertext: bytes, params=None) → bytes¶
	Decrypt data using RC4.

	Parameters
		key – Local encryption key.

	ciphertext – Ciphertext to decrypt.

	params – Ignored.

	Returns
	Plaintext.

	
derive_object_key(idnum, generation) → bytes¶
	Derive the local key for the given object ID and generation number,
by calling legacy_derive_object_key().

	Parameters
		idnum – ID of the object being encrypted.

	generation – Generation number of the object being encrypted.

	Returns
	The local key.

	
class pyhanko.pdf_utils.crypt.AESCryptFilterMixin(*, keylen, **kwargs)¶
	Bases: pyhanko.pdf_utils.crypt.CryptFilter, abc.ABC

Mixin for AES-based crypt filters.

	
keylen = None¶
	

	
method = None¶
	

	
encrypt(key, plaintext: bytes, params=None)¶
	Encrypt data using AES in CBC mode, with PKCS#7 padding.

	Parameters
		key – The key to use.

	plaintext – The plaintext to be encrypted.

	params – Ignored.

	Returns
	The resulting ciphertext, prepended with a 16-byte initialisation
vector.

	
decrypt(key, ciphertext: bytes, params=None) → bytes¶
	Decrypt data using AES in CBC mode, with PKCS#7 padding.

	Parameters
		key – The key to use.

	ciphertext – The ciphertext to be decrypted, prepended with a 16-byte
initialisation vector.

	params – Ignored.

	Returns
	The resulting plaintext.

	
derive_object_key(idnum, generation) → bytes¶
	Derive the local key for the given object ID and generation number.

If the associated handler is of version
SecurityHandlerVersion.AES256 or greater, this method
simply returns the global key as-is.
If not, the computation is carried out by
legacy_derive_object_key().

	Parameters
		idnum – ID of the object being encrypted.

	generation – Generation number of the object being encrypted.

	Returns
	The local key.

	
class pyhanko.pdf_utils.crypt.StandardAESCryptFilter(*, keylen, **kwargs)¶
	Bases: pyhanko.pdf_utils.crypt.StandardCryptFilter, pyhanko.pdf_utils.crypt.AESCryptFilterMixin

AES crypt filter for the standard security handler.

	
class pyhanko.pdf_utils.crypt.StandardRC4CryptFilter(*, keylen=5, **kwargs)¶
	Bases: pyhanko.pdf_utils.crypt.StandardCryptFilter, pyhanko.pdf_utils.crypt.RC4CryptFilterMixin

RC4 crypt filter for the standard security handler.

	
class pyhanko.pdf_utils.crypt.PubKeyAESCryptFilter(*, recipients=None, acts_as_default=False, encrypt_metadata=True, **kwargs)¶
	Bases: pyhanko.pdf_utils.crypt.PubKeyCryptFilter, pyhanko.pdf_utils.crypt.AESCryptFilterMixin

AES crypt filter for public key security handlers.

	
class pyhanko.pdf_utils.crypt.PubKeyRC4CryptFilter(*, recipients=None, acts_as_default=False, encrypt_metadata=True, **kwargs)¶
	Bases: pyhanko.pdf_utils.crypt.PubKeyCryptFilter, pyhanko.pdf_utils.crypt.RC4CryptFilterMixin

RC4 crypt filter for public key security handlers.

	
class pyhanko.pdf_utils.crypt.EnvelopeKeyDecrypter(cert: asn1crypto.x509.Certificate)¶
	Bases: object

General credential class for use with public key security handlers.

This allows the key decryption process to happen offline, e.g. on a smart
card.

	Parameters
	cert – The recipient’s certificate.

	
decrypt(encrypted_key: bytes, algo_params: asn1crypto.cms.KeyEncryptionAlgorithm) → bytes¶
	Invoke the actual key decryption algorithm.

	Parameters
		encrypted_key – Payload to decrypt.

	algo_params – Specification of the encryption algorithm as a CMS object.

	Returns
	The decrypted payload.

	
class pyhanko.pdf_utils.crypt.SimpleEnvelopeKeyDecrypter(cert: asn1crypto.x509.Certificate, private_key: asn1crypto.keys.PrivateKeyInfo)¶
	Bases: pyhanko.pdf_utils.crypt.EnvelopeKeyDecrypter

Implementation of EnvelopeKeyDecrypter where the private key
is an RSA key residing in memory.

	Parameters
		cert – The recipient’s certificate.

	private_key – The recipient’s private key, as a CMS object.

	
static load(key_file, cert_file, key_passphrase=None)¶
	Load a key decrypter using key material from files on disk.

	Parameters
		key_file – File containing the recipient’s private key.

	cert_file – File containing the recipient’s certificate.

	key_passphrase – Passphrase for the key file, if applicable.

	Returns
	An instance of SimpleEnvelopeKeyDecrypter.

	
classmethod load_pkcs12(pfx_file, passphrase=None)¶
	Load a key decrypter using key material from a PKCS#12 file on disk.

	Parameters
		pfx_file – Path to the PKCS#12 file containing the key material.

	passphrase – Passphrase for the private key, if applicable.

	Returns
	An instance of SimpleEnvelopeKeyDecrypter.

	
decrypt(encrypted_key: bytes, algo_params: asn1crypto.cms.KeyEncryptionAlgorithm) → bytes¶
	Decrypt the payload using RSA with PKCS#1 v1.5 padding.
Other schemes are not (currently) supported by this implementation.

	Parameters
		encrypted_key – Payload to decrypt.

	algo_params – Specification of the encryption algorithm as a CMS object.
Must use rsaes_pkcs1v15.

	Returns
	The decrypted payload.

	
pyhanko.pdf_utils.crypt.STD_CF = '/StdCF'¶
	Default name to use for the default crypt filter in the standard security
handler.

	
pyhanko.pdf_utils.crypt.DEFAULT_CRYPT_FILTER = '/DefaultCryptFilter'¶
	Default name to use for the default crypt filter in public key security
handlers.

	
pyhanko.pdf_utils.crypt.IDENTITY = '/Identity'¶
	Name of the identity crypt filter.

	
pyhanko.pdf_utils.crypt.legacy_derive_object_key(shared_key: bytes, idnum: int, generation: int, use_aes=False) → bytes¶
	Function that does the key derivation for PDF’s legacy security handlers.

	Parameters
		shared_key – Global file encryption key.

	idnum – ID of the object being written.

	generation – Generation number of the object being written.

	use_aes – Boolean indicating whether the security handler uses RC4 or AES(-128).

	Returns
	

 Next
 Previous

 © Copyright 2020-2021, Matthias Valvekens.

 Revision 7189f11a.

 Built with Sphinx using a

 theme

 provided by Read the Docs.

 Read the Docs
 v: 0.4.0

 	Versions
	latest
	stable
	0.4.0
	0.3.0
	0.2.0
	0.1.0

 	Downloads

 	On Read the Docs
	
 Project Home

	
 Builds

