

 pyHanko

 0.6.0

 Contents:

	CLI user’s guide
	Library (SDK) user’s guide
	API reference	pyhanko package	Subpackages	pyhanko.pdf_utils package
	pyhanko.sign package

	Submodules

	Release history
	Known issues
	Licenses

 pyHanko

 	 »
	API reference »
	pyhanko package »
	pyhanko.sign package »
	pyhanko.sign.fields module
	

 Edit on GitHub

pyhanko.sign.fields module¶

Utilities to deal with signature form fields and their properties in PDF files.

	
class pyhanko.sign.fields.SigFieldSpec(sig_field_name: str, on_page: int = 0, box: (<class 'int'>, <class 'int'>, <class 'int'>, <class 'int'>) = None, seed_value_dict: pyhanko.sign.fields.SigSeedValueSpec = None, field_mdp_spec: pyhanko.sign.fields.FieldMDPSpec = None, doc_mdp_update_value: pyhanko.sign.fields.MDPPerm = None, combine_annotation: bool = True)¶
	Bases: object

Description of a signature field to be created.

	
sig_field_name: str¶
	Name of the signature field.

	
on_page: int = 0¶
	Index of the page on which the signature field should be included (starting
at 0).
A negative number counts pages from the back of the document,
with index -1 referring to the last page.

Note

This is essentially only relevant for visible signature fields, i.e.
those that have a widget associated with them.

	
box: (<class ‘int’>, <class ‘int’>, <class ‘int’>, <class ‘int’>) = None¶
	Bounding box of the signature field, if applicable.

Typically specified in ll_x, ll_y, ur_x, ur_y format,
where ll_* refers to the lower left and ur_* to the upper right
corner.

	
seed_value_dict: pyhanko.sign.fields.SigSeedValueSpec = None¶
	Specification for the seed value dictionary, if applicable.

	
field_mdp_spec: pyhanko.sign.fields.FieldMDPSpec = None¶
	Specification for the field lock dictionary, if applicable.

	
doc_mdp_update_value: pyhanko.sign.fields.MDPPerm = None¶
	Value to use for the document modification policy associated with the
signature in this field.

This value will be embedded into the field lock dictionary if specified, and
is meaningless if field_mdp_spec is not specified.

Warning

DocMDP entries for approval signatures are a PDF 2.0 feature.
Older PDF software will likely ignore this part of the field lock
dictionary.

	
combine_annotation: bool = True¶
	Flag controlling whether the field should be combined with its
annotation dictionary; True by default.

	
format_lock_dictionary() → Optional[pyhanko.pdf_utils.generic.DictionaryObject]¶
	

	
class pyhanko.sign.fields.SigSeedValFlags(value)¶
	Bases: enum.Flag

Flags for the /Ff entry in the seed value dictionary for a signature
field. These mark which of the constraints are to be strictly enforced,
as opposed to optional ones.

Warning

The flags LEGAL_ATTESTATION and APPEARANCE_FILTER are
processed in accordance with the specification when creating a
signature, but support is nevertheless limited.

	PyHanko does not support legal attestations at all, so given that
the LEGAL_ATTESTATION requirement flag only restricts the
legal attestations that can be used by the signer, pyHanko can safely
ignore it when signing.

On the other hand, since the validator is not aware of
legal attestations either, it cannot validate signatures that
make legal_attestations a mandatory
constraint.

	Since pyHanko does not define any named appearances, setting
the APPEARANCE_FILTER flag and the
appearance entry in the seed value
dictionary will make pyHanko refuse to sign the document.

When validating, the situation is different: since pyHanko has no
way of knowing whether the signer used the named appearance imposed
by the seed value dictionary, it will simply emit a warning and
continue validating the signature.

	
FILTER = 1¶
	Makes the signature handler setting mandatory. PyHanko only supports
/Adobe.PPKLite.

	
SUBFILTER = 2¶
	See subfilters.

	
V = 4¶
	See sv_dict_version.

	
REASONS = 8¶
	See reasons.

	
LEGAL_ATTESTATION = 16¶
	See legal_attestations.

	
ADD_REV_INFO = 32¶
	See add_rev_info.

	
DIGEST_METHOD = 64¶
	See digest_method.

	
LOCK_DOCUMENT = 128¶
	See lock_document.

	
APPEARANCE_FILTER = 256¶
	See appearance.

	
class pyhanko.sign.fields.SigCertConstraints(flags: pyhanko.sign.fields.SigCertConstraintFlags = <SigCertConstraintFlags.0: 0>, subjects: Optional[List[asn1crypto.x509.Certificate]] = None, subject_dn: Optional[asn1crypto.x509.Name] = None, issuers: Optional[List[asn1crypto.x509.Certificate]] = None, info_url: Optional[str] = None, url_type: pyhanko.pdf_utils.generic.NameObject = '/Browser', key_usage: Optional[List[pyhanko.sign.fields.SigCertKeyUsage]] = None)¶
	Bases: object

This part of the seed value dictionary allows the document author
to set constraints on the signer’s certificate.

See Table 235 in ISO 32000-1.

	
flags: pyhanko.sign.fields.SigCertConstraintFlags = 0¶
	Enforcement flags. By default, all entries are optional.

	
subjects: List[asn1crypto.x509.Certificate] = None¶
	Explicit list of certificates that can be used to sign a signature field.

	
subject_dn: asn1crypto.x509.Name = None¶
	Certificate subject names that can be used to sign a signature field.
Subject DN entries that are not mentioned are unconstrained.

	
issuers: List[asn1crypto.x509.Certificate] = None¶
	List of issuer certificates that the signer certificate can be issued by.
Note that these issuers do not need to be the direct issuer of the
signer’s certificate; any descendant relationship will do.

	
info_url: str = None¶
	Informational URL that should be opened when an appropriate certificate
cannot be found (if url_type is /Browser, that is).

Note

PyHanko ignores this value, but we include it for compatibility.

	
url_type: pyhanko.pdf_utils.generic.NameObject = '/Browser'¶
	Handler that should be used to open info_url.
/Browser is the only implementation-independent value.

	
key_usage: List[pyhanko.sign.fields.SigCertKeyUsage] = None¶
	Specify the key usage extensions that should (or should not) be present
on the signer’s certificate.

	
classmethod from_pdf_object(pdf_dict)¶
	Read a PDF dictionary into a SigCertConstraints object.

	Parameters
	pdf_dict – A DictionaryObject.

	Returns
	A SigCertConstraints object.

	
as_pdf_object()¶
	Render this SigCertConstraints object to a PDF dictionary.

	Returns
	A DictionaryObject.

	
satisfied_by(signer: asn1crypto.x509.Certificate, validation_path: Optional[pyhanko_certvalidator.path.ValidationPath])¶
	Evaluate whether a signing certificate satisfies the required
constraints of this SigCertConstraints object.

	Parameters
		signer – The candidate signer’s certificate.

	validation_path – Validation path of the signer’s certificate.

	Raises
	UnacceptableSignerError – Raised if the conditions are not met.

	
class pyhanko.sign.fields.SigSeedValueSpec(flags: pyhanko.sign.fields.SigSeedValFlags = <SigSeedValFlags.0: 0>, reasons: Optional[List[str]] = None, timestamp_server_url: Optional[str] = None, timestamp_required: bool = False, cert: Optional[pyhanko.sign.fields.SigCertConstraints] = None, subfilters: Optional[List[pyhanko.sign.fields.SigSeedSubFilter]] = None, digest_methods: Optional[List[str]] = None, add_rev_info: Optional[bool] = None, seed_signature_type: Optional[pyhanko.sign.fields.SeedSignatureType] = None, sv_dict_version: Optional[Union[pyhanko.sign.fields.SeedValueDictVersion, int]] = None, legal_attestations: Optional[List[str]] = None, lock_document: Optional[pyhanko.sign.fields.SeedLockDocument] = None, appearance: Optional[str] = None)¶
	Bases: object

Python representation of a PDF seed value dictionary.

	
flags: pyhanko.sign.fields.SigSeedValFlags = 0¶
	Enforcement flags. By default, all entries are optional.

	
reasons: List[str] = None¶
	Acceptable reasons for signing.

	
timestamp_server_url: str = None¶
	RFC 3161 timestamp server endpoint suggestion.

	
timestamp_required: bool = False¶
	Flags whether a timestamp is required.
This flag is only meaningful if timestamp_server_url is specified.

	
cert: pyhanko.sign.fields.SigCertConstraints = None¶
	Constraints on the signer’s certificate.

	
subfilters: List[pyhanko.sign.fields.SigSeedSubFilter] = None¶
	Acceptable /SubFilter values.

	
digest_methods: List[str] = None¶
	Acceptable digest methods.

	
add_rev_info: bool = None¶
	Indicates whether revocation information should be embedded.

Warning

This flag exclusively refers to the Adobe-style revocation information
embedded within the CMS object that is written to the signature field.
PAdES-style revocation information that is saved to the document
security store (DSS) does not satisfy the requirement.
Additionally, the standard mandates that /SubFilter be equal to
/adbe.pkcs7.detached if this flag is True.

	
seed_signature_type: pyhanko.sign.fields.SeedSignatureType = None¶
	Specifies the type of signature that should occupy a signature field;
this represents the /MDP entry in the seed value dictionary.
See SeedSignatureType for details.

Caution

Since a certification-type signature is by definition the first
signature applied to a document, compliance with this requirement
cannot be cryptographically enforced.

	
sv_dict_version: Union[pyhanko.sign.fields.SeedValueDictVersion, int] = None¶
	Specifies the compliance level required of a seed value dictionary
processor. If None, pyHanko will compute an appropriate value.

Note

You may also specify this value directly as an integer.
This covers potential future versions of the standard that pyHanko
does not support out of the box.

	
legal_attestations: List[str] = None¶
	Specifies the possible legal attestations that a certification signature
occupying this signature field can supply.
The corresponding flag in flags indicates whether this is a
mandatory constraint.

Caution

Since legal_attestations is only relevant for certification
signatures, compliance with this requirement cannot be reliably
enforced.
Regardless, since pyHanko’s validator is also unaware of legal
attestation settings, it will refuse to validate signatures
where this seed value constitutes a mandatory constraint.

Additionally, since pyHanko does not support legal attestation
specifications at all, it vacuously satisfies the requirements of this
entry no matter what, and will therefore ignore it when signing.

	
lock_document: pyhanko.sign.fields.SeedLockDocument = None¶
	Tell the signer whether or not the document should be locked after signing
this field; see SeedLockDocument for details.

The corresponding flag in flags indicates whether this constraint
is mandatory.

	
appearance: str = None¶
	Specify a named appearance to use when generating the signature.
The corresponding flag in flags indicates whether this constraint
is mandatory.

Caution

There is no standard registry of named appearances, so these constraints
are not portable, and cannot be validated.

PyHanko currently does not define any named appearances.

	
as_pdf_object()¶
	Render this SigSeedValueSpec object to a PDF dictionary.

	Returns
	A DictionaryObject.

	
classmethod from_pdf_object(pdf_dict)¶
	Read from a seed value dictionary.

	Parameters
	pdf_dict – A DictionaryObject.

	Returns
	A SigSeedValueSpec object.

	
build_timestamper()¶
	Return a timestamper object based on the timestamp_server_url
attribute of this SigSeedValueSpec object.

	Returns
	A HTTPTimeStamper.

	
class pyhanko.sign.fields.SigCertConstraintFlags(value)¶
	Bases: enum.Flag

Flags for the /Ff entry in the certificate seed value dictionary for
a dictionary field. These mark which of the constraints are to be
strictly enforced, as opposed to optional ones.

Warning

While this enum records values for all flags, not all corresponding
constraint types have been implemented yet.

	
SUBJECT = 1¶
	See SigCertConstraints.subjects.

	
ISSUER = 2¶
	See SigCertConstraints.issuers.

	
OID = 4¶
	Currently not supported.

	
SUBJECT_DN = 8¶
	See SigCertConstraints.subject_dn.

	
RESERVED = 16¶
	Currently not supported (reserved).

	
KEY_USAGE = 32¶
	See SigCertConstraints.key_usage.

	
URL = 64¶
	See SigCertConstraints.info_url.

Note

As specified in the standard, this enforcement bit is supposed to be
ignored by default. We include it for compatibility reasons.

	
UNSUPPORTED = 20¶
	Flags for which the corresponding constraint is unsupported.

	
class pyhanko.sign.fields.SigSeedSubFilter(value)¶
	Bases: enum.Enum

Enum declaring all supported /SubFilter values.

	
ADOBE_PKCS7_DETACHED = '/adbe.pkcs7.detached'¶
	

	
PADES = '/ETSI.CAdES.detached'¶
	

	
ETSI_RFC3161 = '/ETSI.RFC3161'¶
	

	
class pyhanko.sign.fields.SeedValueDictVersion(value)¶
	Bases: pyhanko.pdf_utils.misc.OrderedEnum

Specify the minimal compliance level for a seed value dictionary processor.

	
PDF_1_5 = 1¶
	Require the reader to understand all keys defined in PDF 1.5.

	
PDF_1_7 = 2¶
	Require the reader to understand all keys defined in PDF 1.7.

	
PDF_2_0 = 3¶
	Require the reader to understand all keys defined in PDF 2.0.

	
class pyhanko.sign.fields.SeedLockDocument(value)¶
	Bases: enum.Enum

Provides a recommendation to the signer as to whether the document should
be locked after signing.
The corresponding flag in SigSeedValueSpec.flags determines whether
this constraint is a required constraint.

	
LOCK = '/true'¶
	Lock the document after signing.

	
DO_NOT_LOCK = '/false'¶
	Lock the document after signing.

	
SIGNER_DISCRETION = '/auto'¶
	Leave the decision up to the signer.

Note

This is functionally equivalent to not specifying any value.

	
class pyhanko.sign.fields.SigCertKeyUsage(must_have: Optional[asn1crypto.x509.KeyUsage] = None, forbidden: Optional[asn1crypto.x509.KeyUsage] = None)¶
	Bases: object

Encodes the key usage bits that must (resp. must not) be active on the
signer’s certificate.

Note

See § 4.2.1.3 in RFC 5280 and KeyUsage for more
information on key usage extensions.

Note

The human-readable names of the key usage extensions are recorded
in camelCase in RFC 5280, but this class uses
the naming convention of KeyUsage in asn1crypto.
The conversion is done by replacing camelCase with snake_case.
For example, nonRepudiation becomes non_repudiation, and
digitalSignature turns into digital_signature.

Note

This class is intended to closely replicate the definition of the
KeyUsage entry Table 235 in ISO 32000-1.
In particular, it does not provide a mechanism to deal
with extended key usage extensions (cf. § 4.2.1.12 in RFC 5280).

	Parameters
		must_have – The KeyUsage object encoding the key usage extensions
that must be present on the signer’s certificate.

	forbidden – The KeyUsage object encoding the key usage extensions
that must not be present on the signer’s certificate.

	
encode_to_sv_string()¶
	Encode the key usage requirements in the format specified in the PDF
specification.

	Returns
	A string.

	
classmethod read_from_sv_string(ku_str)¶
	Parse a PDF KeyUsage string into an instance of
SigCertKeyUsage. See Table 235 in ISO 32000-1.

	Parameters
	ku_str – A PDF KeyUsage string.

	Returns
	An instance of SigCertKeyUsage.

	
classmethod from_sets(must_have: Optional[Set[str]] = None, forbidden: Optional[Set[str]] = None)¶
	Initialise a SigCertKeyUsage object from two sets.

	Parameters
		must_have – The key usage extensions that must be present on the signer’s
certificate.

	forbidden – The key usage extensions that must not be present on the signer’s
certificate.

	Returns
	A SigCertKeyUsage object encoding these.

	
must_have_set() → Set[str]¶
	Return the set of key usage extensions that must be present
on the signer’s certificate.

	
forbidden_set() → Set[str]¶
	Return the set of key usage extensions that must not be present
on the signer’s certificate.

	
class pyhanko.sign.fields.MDPPerm(value)¶
	Bases: pyhanko.pdf_utils.misc.OrderedEnum

Indicates a /DocMDP level.

Cf. Table 254 in ISO 32000-1.

	
NO_CHANGES = 1¶
	No changes to the document are allowed.

Warning

This does not apply to DSS updates and the addition of document time
stamps.

	
FILL_FORMS = 2¶
	Form filling & signing is allowed.

	
ANNOTATE = 3¶
	Form filling, signing and commenting are allowed.

Warning

Validating this /DocMDP level is not currently supported,
but included in the list for completeness.

	
class pyhanko.sign.fields.FieldMDPAction(value)¶
	Bases: enum.Enum

Marker for the scope of a /FieldMDP policy.

	
ALL = '/All'¶
	The policy locks all form fields.

	
INCLUDE = '/Include'¶
	The policy locks all fields in the list (see FieldMDPSpec.fields).

	
EXCLUDE = '/Exclude'¶
	The policy locks all fields except those specified in the list
(see FieldMDPSpec.fields).

	
class pyhanko.sign.fields.FieldMDPSpec(action: pyhanko.sign.fields.FieldMDPAction, fields: Optional[List[str]] = None)¶
	Bases: object

/FieldMDP policy description.

This class models both field lock dictionaries and /FieldMDP
transformation parameters.

	
action: pyhanko.sign.fields.FieldMDPAction¶
	Indicates the scope of the policy.

	
fields: Optional[List[str]] = None¶
	Indicates the fields subject to the policy,
unless action is FieldMDPAction.ALL.

	
as_pdf_object() → pyhanko.pdf_utils.generic.DictionaryObject¶
	Render this /FieldMDP policy description as a PDF dictionary.

	Returns
	A DictionaryObject.

	
as_transform_params() → pyhanko.pdf_utils.generic.DictionaryObject¶
	Render this /FieldMDP policy description as a PDF dictionary,
ready for inclusion into the /TransformParams entry of a
/FieldMDP dictionary associated with a signature object.

	Returns
	A DictionaryObject.

	
as_sig_field_lock() → pyhanko.pdf_utils.generic.DictionaryObject¶
	Render this /FieldMDP policy description as a PDF dictionary,
ready for inclusion into the /Lock dictionary of a signature field.

	Returns
	A DictionaryObject.

	
classmethod from_pdf_object(pdf_dict) → pyhanko.sign.fields.FieldMDPSpec¶
	Read a PDF dictionary into a FieldMDPSpec object.

	Parameters
	pdf_dict – A DictionaryObject.

	Returns
	A FieldMDPSpec object.

	
is_locked(field_name: str) → bool¶
	Adjudicate whether a field should be locked by the policy described by
this FieldMDPSpec object.

	Parameters
	field_name – The name of a form field.

	Returns
	True if the field should be locked, False otherwise.

	
class pyhanko.sign.fields.SignatureFormField(field_name, *, box=None, include_on_page=None, combine_annotation=True, annot_flags=132)¶
	Bases: pyhanko.pdf_utils.generic.DictionaryObject

	
register_widget_annotation(writer: pyhanko.pdf_utils.writer.BasePdfFileWriter, sig_field_ref)¶
	

	
pyhanko.sign.fields.enumerate_sig_fields(handler: pyhanko.pdf_utils.rw_common.PdfHandler, filled_status=None)¶
	Enumerate signature fields.

	Parameters
		handler – The PdfHandler to operate on.

	filled_status – Optional boolean. If True (resp. False) then all filled
(resp. empty) fields are returned. If left None (the default), then
all fields are returned.

	Returns
	A generator producing signature fields.

	
pyhanko.sign.fields.append_signature_field(pdf_out: pyhanko.pdf_utils.writer.BasePdfFileWriter, sig_field_spec: pyhanko.sign.fields.SigFieldSpec)¶
	Append signature fields to a PDF file.

	Parameters
		pdf_out – Incremental writer to house the objects.

	sig_field_spec – A SigFieldSpec object describing the signature field
to add.

 Next
 Previous

 © Copyright 2020-2021, Matthias Valvekens.

 Revision 8396e0e0.

 Built with Sphinx using a

 theme

 provided by Read the Docs.

 Read the Docs
 v: 0.6.0

 	Versions
	latest
	stable
	0.6.0
	0.5.1
	0.5.0
	0.4.0
	0.3.0
	0.2.0
	0.1.0

 	Downloads

 	On Read the Docs
	
 Project Home

	
 Builds

