

 pyHanko

 0.7.0

 Contents:

	CLI user’s guide
	Library (SDK) user’s guide
	API reference	pyhanko package	Subpackages	pyhanko.pdf_utils package
	pyhanko.sign package

	Submodules

	Release history
	Known issues
	Licenses

 pyHanko

 	 »
	API reference »
	pyhanko package »
	pyhanko.sign package »
	pyhanko.sign.signers package »
	pyhanko.sign.signers.pdf_signer module
	

 Edit on GitHub

pyhanko.sign.signers.pdf_signer module¶

This module implements support for PDF-specific signing functionality.

	
class pyhanko.sign.signers.pdf_signer.PdfSignatureMetadata(field_name: Optional[str] = None, md_algorithm: Optional[str] = None, location: Optional[str] = None, reason: Optional[str] = None, name: Optional[str] = None, certify: bool = False, subfilter: Optional[pyhanko.sign.fields.SigSeedSubFilter] = None, embed_validation_info: bool = False, use_pades_lta: bool = False, timestamp_field_name: Optional[str] = None, validation_context: Optional[pyhanko_certvalidator.context.ValidationContext] = None, docmdp_permissions: pyhanko.sign.fields.MDPPerm = MDPPerm.FILL_FORMS, signer_key_usage: Set[str] = <factory>, cades_signed_attr_spec: Optional[pyhanko.sign.ades.api.CAdESSignedAttrSpec] = None)¶
	Bases: object

Specification for a PDF signature.

	
field_name: str = None¶
	The name of the form field to contain the signature.
If there is only one available signature field, the name may be inferred.

	
md_algorithm: str = None¶
	The name of the digest algorithm to use.
It should be supported by pyca/cryptography.

If None, this will ordinarily default to the value of
constants.DEFAULT_MD, unless a seed value dictionary and/or a prior
certification signature happen to be available.

	
location: str = None¶
	Location of signing.

	
reason: str = None¶
	Reason for signing (textual).

	
name: str = None¶
	Name of the signer. This value is usually not necessary to set, since
it should appear on the signer’s certificate, but there are cases
where it might be useful to specify it here (e.g. in situations where
signing is delegated to a trusted third party).

	
certify: bool = False¶
	Sign with an author (certification) signature, as opposed to an approval
signature. A document can contain at most one such signature, and it must
be the first one.

	
subfilter: pyhanko.sign.fields.SigSeedSubFilter = None¶
	Signature subfilter to use.

This should be one of
ADOBE_PKCS7_DETACHED or
PADES.
If not specified, the value may be inferred from the signature field’s
seed value dictionary. Failing that,
ADOBE_PKCS7_DETACHED is used as the
default value.

	
embed_validation_info: bool = False¶
	Flag indicating whether validation info (OCSP responses and/or CRLs)
should be embedded or not. This is necessary to be able to validate
signatures long after they have been made.
This flag requires validation_context to be set.

The precise manner in which the validation info is embedded depends on
the (effective) value of subfilter:

	With ADOBE_PKCS7_DETACHED, the
validation information will be embedded inside the CMS object containing
the signature.

	With PADES, the validation information
will be embedded into the document security store (DSS).

	
use_pades_lta: bool = False¶
	If True, the signer will append an additional document timestamp after
writing the signature’s validation information to the document security
store (DSS).
This flag is only meaningful if subfilter is
PADES.

The PAdES B-LTA profile solves the long-term validation problem by
adding a timestamp chain to the document after the regular signatures, which
is updated with new timestamps at regular intervals.
This provides an audit trail that ensures the long-term integrity of the
validation information in the DSS, since OCSP responses and CRLs also have
a finite lifetime.

See also PdfTimeStamper.update_archival_timestamp_chain().

	
timestamp_field_name: str = None¶
	Name of the timestamp field created when use_pades_lta is True.
If not specified, a unique name will be generated using uuid.

	
validation_context: pyhanko_certvalidator.context.ValidationContext = None¶
	The validation context to use when validating signatures.
If provided, the signer’s certificate and any timestamp certificates
will be validated before signing.

This parameter is mandatory when embed_validation_info is True.

	
docmdp_permissions: pyhanko.sign.fields.MDPPerm = 2¶
	Indicates the document modification policy that will be in force after
this signature is created. Only relevant for certification signatures
or signatures that apply locking.

Warning

For non-certification signatures, this is only explicitly allowed since
PDF 2.0 (ISO 32000-2), so older software may not respect this setting
on approval signatures.

	
signer_key_usage: Set[str]¶
	Key usage extensions required for the signer’s certificate.
Defaults to non_repudiation only, but sometimes digital_signature
or a combination of both may be more appropriate.
See x509.KeyUsage for a complete list.

Only relevant if a validation context is also provided.

	
cades_signed_attr_spec: Optional[pyhanko.sign.ades.api.CAdESSignedAttrSpec] = None¶
	
New in version 0.5.0.

Specification for CAdES-specific attributes.

	
class pyhanko.sign.signers.pdf_signer.PdfTimeStamper(timestamper: pyhanko.sign.timestamps.TimeStamper, field_name: Optional[str] = None)¶
	Bases: object

Class to encapsulate the process of appending document timestamps to
PDF files.

	
property field_name: str¶
	Retrieve or generate the field name for the signature field to contain
the document timestamp.

	Returns
	The field name, as a (Python) string.

	
timestamp_pdf(pdf_out: pyhanko.pdf_utils.incremental_writer.IncrementalPdfFileWriter, md_algorithm, validation_context=None, bytes_reserved=None, validation_paths=None, timestamper: Optional[pyhanko.sign.timestamps.TimeStamper] = None, *, in_place=False, output=None, chunk_size=4096)¶
	Timestamp the contents of pdf_out.
Note that pdf_out should not be written to after this operation.

	Parameters
		pdf_out – An IncrementalPdfFileWriter.

	md_algorithm – The hash algorithm to use when computing message digests.

	validation_context – The pyhanko_certvalidator.ValidationContext
against which the TSA response should be validated.
This validation context will also be used to update the DSS.

	bytes_reserved –
Bytes to reserve for the CMS object in the PDF file.
If not specified, make an estimate based on a dummy signature.

Warning

Since the CMS object is written to the output file as a
hexadecimal string, you should request twice the (estimated)
number of bytes in the DER-encoded version of the CMS object.

	validation_paths – If the validation path(s) for the TSA’s certificate are already
known, you can pass them using this parameter to avoid having to
run the validation logic again.

	timestamper – Override the default TimeStamper associated with this
PdfTimeStamper.

	output – Write the output to the specified output stream.
If None, write to a new BytesIO object.
Default is None.

	in_place – Sign the original input stream in-place.
This parameter overrides output.

	chunk_size – Size of the internal buffer (in bytes) used to feed data to the
message digest function if the input stream does not support
memoryview.

	Returns
	The output stream containing the signed output.

	
update_archival_timestamp_chain(reader: pyhanko.pdf_utils.reader.PdfFileReader, validation_context, in_place=True, output=None, chunk_size=4096, default_md_algorithm='sha256')¶
	Validate the last timestamp in the timestamp chain on a PDF file, and
write an updated version to an output stream.

	Parameters
		reader – A PdfReader encapsulating the input file.

	validation_context – pyhanko_certvalidator.ValidationContext object to validate
the last timestamp.

	output – Write the output to the specified output stream.
If None, write to a new BytesIO object.
Default is None.

	in_place – Sign the original input stream in-place.
This parameter overrides output.

	chunk_size – Size of the internal buffer (in bytes) used to feed data to the
message digest function if the input stream does not support
memoryview.

	default_md_algorithm – Message digest to use if there are no preceding timestamps in the
file.

	Returns
	The output stream containing the signed output.

	
class pyhanko.sign.signers.pdf_signer.PdfSigner(signature_meta: pyhanko.sign.signers.pdf_signer.PdfSignatureMetadata, signer: pyhanko.sign.signers.pdf_cms.Signer, *, timestamper: Optional[pyhanko.sign.timestamps.TimeStamper] = None, stamp_style: Optional[pyhanko.stamp.BaseStampStyle] = None, new_field_spec: Optional[pyhanko.sign.fields.SigFieldSpec] = None)¶
	Bases: object

Class to handle PDF signatures in general.

	Parameters
		signature_meta – The specification of the signature to add.

	signer – Signer object to use to produce the signature object.

	timestamper – TimeStamper object to use to produce any time stamp tokens
that might be required.

	stamp_style – Stamp style specification to determine the visible style of the
signature, typically an object of type TextStampStyle or
QRStampStyle. Defaults to
constants.DEFAULT_SIGNING_STAMP_STYLE.

	new_field_spec – If a new field is to be created, this parameter allows the caller
to specify the field’s properties in the form of a
SigFieldSpec. This parameter is only meaningful if
existing_fields_only is False.

	
property default_md_for_signer: Optional[str]¶
	Name of the default message digest algorithm for this signer, if there
is one.
This method will try the md_algorithm
attribute on the signer’s signature_meta, or try to retrieve
the digest algorithm associated with the underlying
Signer.

	Returns
	The name of the message digest algorithm, or None.

	
init_signing_session(pdf_out: pyhanko.pdf_utils.writer.BasePdfFileWriter, existing_fields_only=False) → pyhanko.sign.signers.pdf_signer.PdfSigningSession¶
	Initialise a signing session with this PdfSigner for a
specified PDF file writer.

This step in the signing process handles all field-level operations
prior to signing: it creates the target form field if necessary, and
makes sure the seed value dictionary gets processed.

See also digest_doc_for_signing() and sign_pdf().

	Parameters
		pdf_out – The writer containing the PDF file to be signed.

	existing_fields_only – If True, never create a new empty signature field to contain
the signature.
If False, a new field may be created if no field matching
field_name exists.

	Returns
	A PdfSigningSession object modelling the signing session
in its post-setup stage.

	
digest_doc_for_signing(pdf_out: pyhanko.pdf_utils.writer.BasePdfFileWriter, existing_fields_only=False, bytes_reserved=None, *, appearance_text_params=None, in_place=False, output=None, chunk_size=4096) → Tuple[pyhanko.sign.signers.pdf_byterange.PreparedByteRangeDigest, pyhanko.sign.signers.pdf_signer.PdfTBSDocument, IO]¶
	Set up all stages of the signing process up to and including the point
where the signature placeholder is allocated, and the document’s
/ByteRange digest is computed.

See sign_pdf() for a less granular, more high-level approach.

Note

This method is useful in remote signing scenarios, where you might
want to free up resources while waiting for the remote signer to
respond. The PreparedByteRangeDigest object returned
allows you to keep track of the required state to fill the
signature container at some later point in time.

	Parameters
		pdf_out – A PDF file writer (usually an IncrementalPdfFileWriter)
containing the data to sign.

	existing_fields_only – If True, never create a new empty signature field to contain
the signature.
If False, a new field may be created if no field matching
field_name exists.

	bytes_reserved –
Bytes to reserve for the CMS object in the PDF file.
If not specified, make an estimate based on a dummy signature.

Warning

Since the CMS object is written to the output file as a
hexadecimal string, you should request twice the (estimated)
number of bytes in the DER-encoded version of the CMS object.

	appearance_text_params – Dictionary with text parameters that will be passed to the
signature appearance constructor (if applicable).

	output – Write the output to the specified output stream.
If None, write to a new BytesIO object.
Default is None.

	in_place – Sign the original input stream in-place.
This parameter overrides output.

	chunk_size – Size of the internal buffer (in bytes) used to feed data to the
message digest function if the input stream does not support
memoryview.

	Returns
	A tuple containing a PreparedByteRangeDigest object,
a PdfTBSDocument object and an output handle to which the
document in its current state has been written.

	
sign_pdf(pdf_out: pyhanko.pdf_utils.writer.BasePdfFileWriter, existing_fields_only=False, bytes_reserved=None, *, appearance_text_params=None, in_place=False, output=None, chunk_size=4096)¶
	Sign a PDF file using the provided output writer.

	Parameters
		pdf_out – A PDF file writer (usually an IncrementalPdfFileWriter)
containing the data to sign.

	existing_fields_only – If True, never create a new empty signature field to contain
the signature.
If False, a new field may be created if no field matching
field_name exists.

	bytes_reserved – Bytes to reserve for the CMS object in the PDF file.
If not specified, make an estimate based on a dummy signature.

	appearance_text_params – Dictionary with text parameters that will be passed to the
signature appearance constructor (if applicable).

	output – Write the output to the specified output stream.
If None, write to a new BytesIO object.
Default is None.

	in_place – Sign the original input stream in-place.
This parameter overrides output.

	chunk_size – Size of the internal buffer (in bytes) used to feed data to the
message digest function if the input stream does not support
memoryview.

	Returns
	The output stream containing the signed data.

	
class pyhanko.sign.signers.pdf_signer.PdfSigningSession(pdf_signer: pyhanko.sign.signers.pdf_signer.PdfSigner, cms_writer, sig_field, md_algorithm: str, timestamper: pyhanko.sign.timestamps.TimeStamper, subfilter: pyhanko.sign.fields.SigSeedSubFilter, system_time: Optional[datetime.datetime] = None, sv_spec: Optional[pyhanko.sign.fields.SigSeedValueSpec] = None)¶
	Bases: object

New in version 0.7.0.

Class modelling a PDF signing session in its initial state.

The __init__ method is internal API, get an instance using
PdfSigner.init_signing_session().

	
perform_presign_validation(pdf_out: Optional[pyhanko.pdf_utils.writer.BasePdfFileWriter] = None) → Optional[pyhanko.sign.signers.pdf_signer.PreSignValidationStatus]¶
	Perform certificate validation checks for the signer’s certificate,
including any necessary revocation checks.

This function will also attempt to validate & collect revocation
information for the relevant TSA (by requesting a dummy timestamp).

	Parameters
	pdf_out – Current PDF writer. Technically optional; only used to look for
the end of the timestamp chain in the previous revision when
producing a PAdES-LTA signature in a document that is already
signed (to ensure that the timestamp chain is uninterrupted).

	Returns
	A PreSignValidationStatus object, or None if there
is no validation context available.

	
prepare_tbs_document(validation_info: pyhanko.sign.signers.pdf_signer.PreSignValidationStatus, bytes_reserved=None, appearance_text_params=None) → pyhanko.sign.signers.pdf_signer.PdfTBSDocument¶
	Set up the signature appearance (if necessary) and signature dictionary
in the PDF file, to put the document in its final pre-signing state.

	Parameters
		validation_info – Validation information collected prior to signing.

	bytes_reserved – Bytes to reserve for the signature container. If None,
an estimate will be computed.

	appearance_text_params – Optional text parameters for the signature appearance content.

	Returns
	A PdfTBSDocument describing the document in its final
pre-signing state.

	
class pyhanko.sign.signers.pdf_signer.PdfTBSDocument(cms_writer, signer: pyhanko.sign.signers.pdf_cms.Signer, md_algorithm: str, use_pades: bool, timestamper: Optional[pyhanko.sign.timestamps.TimeStamper] = None, post_sign_instructions: Optional[pyhanko.sign.signers.pdf_signer.PostSignInstructions] = None, validation_context: Optional[pyhanko_certvalidator.context.ValidationContext] = None)¶
	Bases: object

New in version 0.7.0.

A PDF document in its final pre-signing state.

The __init__ method is internal API, get an instance using
PdfSigningSession.prepare_tbs_document(). Alternatively, use
resume_signing() or finish_signing() to continue a previously
interrupted signing process without instantiating a new
PdfTBSDocument object.

	
digest_tbs_document(*, output: Optional[IO] = None, in_place: bool = False, chunk_size=4096) → Tuple[pyhanko.sign.signers.pdf_byterange.PreparedByteRangeDigest, IO]¶
	Write the document to an output stream and compute the digest, while
keeping track of the (future) location of the signature contents in the
output stream.

The digest can then be passed to the next part of the signing pipeline.

Warning

This method can only be called once.

	Parameters
		output – Write the output to the specified output stream.
If None, write to a new BytesIO object.
Default is None.

	in_place – Sign the original input stream in-place.
This parameter overrides output.

	chunk_size – Size of the internal buffer (in bytes) used to feed data to the
message digest function if the input stream does not support
memoryview.

	Returns
	A tuple containing a PreparedByteRangeDigest and the
output stream to which the output was written.

	
perform_signature(document_digest: bytes, pdf_cms_signed_attrs: pyhanko.sign.signers.pdf_cms.PdfCMSSignedAttributes) → pyhanko.sign.signers.pdf_signer.PdfPostSignatureDocument¶
	Perform the relevant cryptographic signing operations on the document
digest, and write the resulting CMS object to the appropriate location
in the output stream.

Warning

This method can only be called once, and must be invoked after
digest_tbs_document().

	Parameters
		document_digest – Digest of the document, as computed over the relevant
/ByteRange.

	pdf_cms_signed_attrs – Description of the signed attributes to include.

	Returns
	A PdfPostSignatureDocument object.

	
classmethod resume_signing(output: IO, prepared_digest: pyhanko.sign.signers.pdf_byterange.PreparedByteRangeDigest, signature_cms: Union[bytes, asn1crypto.cms.ContentInfo], post_sign_instr: Optional[pyhanko.sign.signers.pdf_signer.PostSignInstructions] = None, validation_context: Optional[pyhanko_certvalidator.context.ValidationContext] = None) → pyhanko.sign.signers.pdf_signer.PdfPostSignatureDocument¶
	Resume signing after obtaining a CMS object from an external source.

This is a class method; it doesn’t require a PdfTBSDocument
instance. Contrast with perform_signature().

	Parameters
		output – Output stream housing the document in its final pre-signing state.
This stream must at least be writable and seekable, and also
readable if post-signature processing is required.

	prepared_digest – The prepared digest returned by a prior call to
digest_tbs_document().

	signature_cms – CMS object to embed in the signature dictionary.

	post_sign_instr – Instructions for post-signing processing (DSS updates and document
timestamps).

	validation_context – Validation context to use in post-signing operations.
This is mainly intended for TSA certificate validation, but it can
also contain additional validation data to embed in the DSS.

	Returns
	A PdfPostSignatureDocument.

	
classmethod finish_signing(output: IO, prepared_digest: pyhanko.sign.signers.pdf_byterange.PreparedByteRangeDigest, signature_cms: Union[bytes, asn1crypto.cms.ContentInfo], post_sign_instr: Optional[pyhanko.sign.signers.pdf_signer.PostSignInstructions] = None, validation_context: Optional[pyhanko_certvalidator.context.ValidationContext] = None, chunk_size=4096)¶
	Finish signing after obtaining a CMS object from an external source, and
perform any required post-signature processing.

This is a class method; it doesn’t require a PdfTBSDocument
instance. Contrast with perform_signature().

	Parameters
		output – Output stream housing the document in its final pre-signing state.

	prepared_digest – The prepared digest returned by a prior call to
digest_tbs_document().

	signature_cms – CMS object to embed in the signature dictionary.

	post_sign_instr – Instructions for post-signing processing (DSS updates and document
timestamps).

	validation_context – Validation context to use in post-signing operations.
This is mainly intended for TSA certificate validation, but it can
also contain additional validation data to embed in the DSS.

	chunk_size – Size of the internal buffer (in bytes) used to feed data to the
message digest function if the input stream does not support
memoryview.

	
class pyhanko.sign.signers.pdf_signer.PdfPostSignatureDocument(sig_contents: bytes, post_sign_instr: Optional[pyhanko.sign.signers.pdf_signer.PostSignInstructions] = None, validation_context: Optional[pyhanko_certvalidator.context.ValidationContext] = None)¶
	Bases: object

New in version 0.7.0.

Represents the final phase of the PDF signing process

	
post_signature_processing(output: IO, chunk_size=4096)¶
	Handle DSS updates and LTA timestamps, if applicable.

	Parameters
		output – I/O buffer containing the signed document. Must support
reading, writing and seeking.

	chunk_size – Chunk size to use for I/O operations that do not support the buffer
protocol.

	
class pyhanko.sign.signers.pdf_signer.PreSignValidationStatus(signer_path: pyhanko_certvalidator.path.ValidationPath, validation_paths: List[pyhanko_certvalidator.path.ValidationPath], ts_validation_paths: Optional[List[pyhanko_certvalidator.path.ValidationPath]] = None, adobe_revinfo_attr: Optional[asn1crypto.cms.CMSAttribute] = None, ocsps_to_embed: Optional[List[asn1crypto.ocsp.OCSPResponse]] = None, crls_to_embed: Optional[List[asn1crypto.crl.CertificateList]] = None)¶
	Bases: object

New in version 0.7.0.

Container for validation data collected prior to creating a signature, e.g.
for later inclusion in a document’s DSS, or as a signed attribute on
the signature.

	
signer_path: pyhanko_certvalidator.path.ValidationPath¶
	Validation path for the signer’s certificate.

	
validation_paths: List[pyhanko_certvalidator.path.ValidationPath]¶
	List of other relevant validation paths.

	
ts_validation_paths: Optional[List[pyhanko_certvalidator.path.ValidationPath]] = None¶
	List of validation paths relevant for embedded timestamps.

	
adobe_revinfo_attr: Optional[asn1crypto.cms.CMSAttribute] = None¶
	Preformatted revocation info attribute to include, if requested by the
settings.

	
ocsps_to_embed: List[asn1crypto.ocsp.OCSPResponse] = None¶
	List of OCSP responses collected so far.

	
crls_to_embed: List[asn1crypto.crl.CertificateList] = None¶
	List of CRLS collected so far.

	
class pyhanko.sign.signers.pdf_signer.PostSignInstructions(validation_info: pyhanko.sign.signers.pdf_signer.PreSignValidationStatus, timestamper: Optional[pyhanko.sign.timestamps.TimeStamper] = None, timestamp_md_algorithm: Optional[str] = None, timestamp_field_name: Optional[str] = None)¶
	Bases: object

New in version 0.7.0.

Container class housing instructions for incremental updates
to the document after the signature has been put in place.
Necessary for PAdES-LT and PAdES-LTA workflows.

	
validation_info: pyhanko.sign.signers.pdf_signer.PreSignValidationStatus¶
	Validation information to embed in the DSS (if not already present).

	
timestamper: Optional[pyhanko.sign.timestamps.TimeStamper] = None¶
	Timestamper to use for produce document timestamps. If None, no
timestamp will be added.

	
timestamp_md_algorithm: Optional[str] = None¶
	Digest algorithm to use when producing timestamps.
Defaults to DEFAULT_MD.

	
timestamp_field_name: Optional[str] = None¶
	Name of the timestamp field to use. If not specified, a field name will be
generated.

 Next
 Previous

 © Copyright 2020-2021, Matthias Valvekens.

 Revision 641318a8.

 Built with Sphinx using a

 theme

 provided by Read the Docs.

 Read the Docs
 v: 0.7.0

 	Versions
	latest
	stable
	0.7.0
	0.6.1
	0.6.0
	0.5.1
	0.5.0
	0.4.0
	0.3.0
	0.2.0
	0.1.0

 	Downloads

 	On Read the Docs
	
 Project Home

	
 Builds

