

 pyHanko

 latest

 Contents:

	CLI user’s guide
	Library (SDK) user’s guide
	API reference	pyhanko package	Subpackages	pyhanko.config package
	pyhanko.cli package
	pyhanko.pdf_utils package
	pyhanko.sign package

	Submodules
	pyhanko.keys module
	pyhanko.stamp module
	pyhanko.version module

	pyhanko_certvalidator package

	Release history
	Frequently asked questions (FAQ)
	Known issues
	Release artifact authenticity
	Licenses

 pyHanko

 	
	API reference
	pyhanko package
	pyhanko.pdf_utils package
	
 Edit on GitHub

pyhanko.pdf_utils package

Subpackages

	pyhanko.pdf_utils.crypt package	Submodules
	pyhanko.pdf_utils.crypt.api module	PdfKeyNotAvailableError
	AuthStatus	AuthStatus.FAILED
	AuthStatus.USER
	AuthStatus.OWNER

	AuthResult	AuthResult.status
	AuthResult.permission_flags

	SecurityHandlerVersion	SecurityHandlerVersion.RC4_40
	SecurityHandlerVersion.RC4_LONGER_KEYS
	SecurityHandlerVersion.RC4_OR_AES128
	SecurityHandlerVersion.AES256
	SecurityHandlerVersion.OTHER
	SecurityHandlerVersion.as_pdf_object()
	SecurityHandlerVersion.from_number()
	SecurityHandlerVersion.check_key_length()

	SecurityHandler	SecurityHandler.register()
	SecurityHandler.build()
	SecurityHandler.get_name()
	SecurityHandler.extract_credential()
	SecurityHandler.support_generic_subfilters()
	SecurityHandler.instantiate_from_pdf_object()
	SecurityHandler.is_authenticated()
	SecurityHandler.as_pdf_object()
	SecurityHandler.authenticate()
	SecurityHandler.get_string_filter()
	SecurityHandler.get_stream_filter()
	SecurityHandler.get_embedded_file_filter()
	SecurityHandler.get_file_encryption_key()
	SecurityHandler.read_cf_dictionary()
	SecurityHandler.process_crypt_filters()
	SecurityHandler.register_crypt_filter()
	SecurityHandler.get_min_pdf_version()

	CryptFilter	CryptFilter.method
	CryptFilter.keylen
	CryptFilter.encrypt()
	CryptFilter.decrypt()
	CryptFilter.as_pdf_object()
	CryptFilter.derive_shared_encryption_key()
	CryptFilter.derive_object_key()
	CryptFilter.set_embedded_only()
	CryptFilter.shared_key

	IdentityCryptFilter	IdentityCryptFilter.method
	IdentityCryptFilter.keylen
	IdentityCryptFilter.derive_shared_encryption_key()
	IdentityCryptFilter.derive_object_key()
	IdentityCryptFilter.as_pdf_object()
	IdentityCryptFilter.encrypt()
	IdentityCryptFilter.decrypt()

	CryptFilterConfiguration	CryptFilterConfiguration.filters()
	CryptFilterConfiguration.set_security_handler()
	CryptFilterConfiguration.get_for_stream()
	CryptFilterConfiguration.get_for_string()
	CryptFilterConfiguration.get_for_embedded_file()
	CryptFilterConfiguration.stream_filter_name
	CryptFilterConfiguration.string_filter_name
	CryptFilterConfiguration.embedded_file_filter_name
	CryptFilterConfiguration.as_pdf_object()
	CryptFilterConfiguration.standard_filters()

	build_crypt_filter()
	ALL_PERMS

	pyhanko.pdf_utils.crypt.cred_ser module	SerialisedCredential	SerialisedCredential.credential_type
	SerialisedCredential.data

	SerialisableCredential	SerialisableCredential.get_name()
	SerialisableCredential.register()
	SerialisableCredential.deserialise()
	SerialisableCredential.serialise()

	pyhanko.pdf_utils.crypt.filter_mixins module	RC4CryptFilterMixin	RC4CryptFilterMixin.method
	RC4CryptFilterMixin.keylen
	RC4CryptFilterMixin.encrypt()
	RC4CryptFilterMixin.decrypt()
	RC4CryptFilterMixin.derive_object_key()

	AESCryptFilterMixin	AESCryptFilterMixin.method
	AESCryptFilterMixin.keylen
	AESCryptFilterMixin.encrypt()
	AESCryptFilterMixin.decrypt()
	AESCryptFilterMixin.derive_object_key()

	pyhanko.pdf_utils.crypt.pubkey module	RecipientEncryptionPolicy	RecipientEncryptionPolicy.ignore_key_usage
	RecipientEncryptionPolicy.prefer_oaep

	PubKeyCryptFilter	PubKeyCryptFilter.add_recipients()
	PubKeyCryptFilter.authenticate()
	PubKeyCryptFilter.derive_shared_encryption_key()
	PubKeyCryptFilter.as_pdf_object()

	PubKeyAESCryptFilter
	PubKeyRC4CryptFilter
	DEFAULT_CRYPT_FILTER
	DEF_EMBEDDED_FILE
	PubKeyAdbeSubFilter	PubKeyAdbeSubFilter.S3
	PubKeyAdbeSubFilter.S4
	PubKeyAdbeSubFilter.S5

	construct_envelope_content()
	construct_recipient_cms()
	InappropriateCredentialError
	EnvelopeKeyDecrypter	EnvelopeKeyDecrypter.cert
	EnvelopeKeyDecrypter.decrypt()
	EnvelopeKeyDecrypter.decrypt_with_exchange()

	ECCCMSSharedInfo
	SimpleEnvelopeKeyDecrypter	SimpleEnvelopeKeyDecrypter.dhsinglepass_stddh_arc_pattern
	SimpleEnvelopeKeyDecrypter.get_name()
	SimpleEnvelopeKeyDecrypter.cert
	SimpleEnvelopeKeyDecrypter.load()
	SimpleEnvelopeKeyDecrypter.load_pkcs12()
	SimpleEnvelopeKeyDecrypter.decrypt()
	SimpleEnvelopeKeyDecrypter.decrypt_with_exchange()

	read_envelope_key()
	read_seed_from_recipient_cms()
	PubKeySecurityHandler	PubKeySecurityHandler.build_from_certs()
	PubKeySecurityHandler.get_name()
	PubKeySecurityHandler.support_generic_subfilters()
	PubKeySecurityHandler.read_cf_dictionary()
	PubKeySecurityHandler.process_crypt_filters()
	PubKeySecurityHandler.gather_pub_key_metadata()
	PubKeySecurityHandler.instantiate_from_pdf_object()
	PubKeySecurityHandler.as_pdf_object()
	PubKeySecurityHandler.add_recipients()
	PubKeySecurityHandler.authenticate()
	PubKeySecurityHandler.get_file_encryption_key()

	pyhanko.pdf_utils.crypt.standard module	StandardSecuritySettingsRevision	StandardSecuritySettingsRevision.RC4_BASIC
	StandardSecuritySettingsRevision.RC4_EXTENDED
	StandardSecuritySettingsRevision.RC4_OR_AES128
	StandardSecuritySettingsRevision.AES256
	StandardSecuritySettingsRevision.OTHER
	StandardSecuritySettingsRevision.as_pdf_object()
	StandardSecuritySettingsRevision.from_number()

	StandardCryptFilter	StandardCryptFilter.derive_shared_encryption_key()
	StandardCryptFilter.as_pdf_object()

	StandardAESCryptFilter
	StandardRC4CryptFilter
	StandardSecurityHandler	StandardSecurityHandler.get_name()
	StandardSecurityHandler.build_from_pw_legacy()
	StandardSecurityHandler.build_from_pw()
	StandardSecurityHandler.gather_encryption_metadata()
	StandardSecurityHandler.instantiate_from_pdf_object()
	StandardSecurityHandler.as_pdf_object()
	StandardSecurityHandler.authenticate()
	StandardSecurityHandler.get_file_encryption_key()

	Module contents	About crypt filters

	pyhanko.pdf_utils.font package	Submodules
	pyhanko.pdf_utils.font.api module	ShapeResult	ShapeResult.graphics_ops
	ShapeResult.x_advance
	ShapeResult.y_advance

	FontEngine	FontEngine.uses_complex_positioning
	FontEngine.shape()
	FontEngine.as_resource()
	FontEngine.prepare_write()

	FontSubsetCollection	FontSubsetCollection.base_postscript_name
	FontSubsetCollection.subsets
	FontSubsetCollection.add_subset()

	FontEngineFactory	FontEngineFactory.create_font_engine()

	pyhanko.pdf_utils.font.basic module	SimpleFontEngineFactory	SimpleFontEngineFactory.create_font_engine()
	SimpleFontEngineFactory.default_factory()

	SimpleFontEngine	SimpleFontEngine.uses_complex_positioning
	SimpleFontEngine.shape()
	SimpleFontEngine.as_resource()

	SimpleFontMeta	SimpleFontMeta.first_char
	SimpleFontMeta.last_char
	SimpleFontMeta.widths
	SimpleFontMeta.descriptor

	get_courier()

	pyhanko.pdf_utils.font.opentype module	GlyphAccumulator	GlyphAccumulator.marked_content_property_list()
	GlyphAccumulator.shape()
	GlyphAccumulator.prepare_write()
	GlyphAccumulator.as_resource()

	GlyphAccumulatorFactory	GlyphAccumulatorFactory.font_file
	GlyphAccumulatorFactory.font_size
	GlyphAccumulatorFactory.ot_script_tag
	GlyphAccumulatorFactory.ot_language_tag
	GlyphAccumulatorFactory.writing_direction
	GlyphAccumulatorFactory.bcp47_lang_code
	GlyphAccumulatorFactory.create_objstream_if_needed
	GlyphAccumulatorFactory.create_font_engine()

	pyhanko.pdf_utils.metadata package	Submodules
	pyhanko.pdf_utils.metadata.info module	update_info_dict()
	view_from_info_dict()

	pyhanko.pdf_utils.metadata.model module	DocumentMetadata	DocumentMetadata.title
	DocumentMetadata.author
	DocumentMetadata.subject
	DocumentMetadata.keywords
	DocumentMetadata.creator
	DocumentMetadata.created
	DocumentMetadata.last_modified
	DocumentMetadata.xmp_extra
	DocumentMetadata.xmp_unmanaged
	DocumentMetadata.view_over()

	VENDOR
	MetaString
	ExpandedName	ExpandedName.ns
	ExpandedName.local_name

	Qualifiers	Qualifiers.of()
	Qualifiers.lang_as_qual()
	Qualifiers.iter_quals()
	Qualifiers.lang
	Qualifiers.has_non_lang_quals

	XmpValue	XmpValue.value
	XmpValue.qualifiers

	XmpStructure	XmpStructure.of()

	XmpArrayType	XmpArrayType.ORDERED
	XmpArrayType.UNORDERED
	XmpArrayType.ALTERNATIVE
	XmpArrayType.as_rdf()

	XmpArray	XmpArray.array_type
	XmpArray.entries
	XmpArray.ordered()
	XmpArray.unordered()
	XmpArray.alternative()

	NS
	XML_LANG
	RDF_RDF
	RDF_SEQ
	RDF_BAG
	RDF_ALT
	RDF_LI
	RDF_VALUE
	RDF_RESOURCE
	RDF_PARSE_TYPE
	RDF_ABOUT
	RDF_DESCRIPTION
	DC_TITLE
	DC_CREATOR
	DC_DESCRIPTION
	PDF_PRODUCER
	PDF_KEYWORDS
	X_XMPMETA
	X_XMPTK
	XMP_CREATORTOOL
	XMP_CREATEDATE
	XMP_MODDATE

	pyhanko.pdf_utils.metadata.xmp_xml module	iter_attrs()
	add_xmp_value()
	serialise_xmp()
	MetadataStream	MetadataStream.from_xmp()
	MetadataStream.xmp
	MetadataStream.update_xmp_with_meta()

	update_xmp_with_meta()
	meta_from_xmp()
	XmpXmlProcessingError
	parse_xmp()
	register_namespaces()

	Module contents

Submodules

pyhanko.pdf_utils.barcodes module

	
class pyhanko.pdf_utils.barcodes.BarcodeBox(barcode_type, code)
	Bases: PdfContent

Thin wrapper around python-barcode functionality.

This will render a barcode of the specified type as PDF graphics operators.

	
render() → bytes
	Compile the content to graphics operators.

	
class pyhanko.pdf_utils.barcodes.PdfStreamBarcodeWriter
	Bases: BaseWriter

Implementation of writer class for the python-barcode library to output
PDF graphics operators.
Note: _paint_text is intentionally dummied out.
Please use the functionality implemented in pyhanko.pdf_utils.text instead.

	
property command_stream: bytes
	

	
save(filename, output)
	Saves the rendered output to filename.

	Parameters:
		filenameString
	Filename without extension.

	outputString
	The rendered output.

	Returns:
	The full filename with extension.

	Return type:
	String

pyhanko.pdf_utils.content module

	
class pyhanko.pdf_utils.content.ResourceType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)
	Bases: Enum

Enum listing resources that can be used as keys in a resource dictionary.

See ISO 32000-1, § 7.8.3 Table 34.

	
EXT_G_STATE = '/ExtGState'
	External graphics state specifications.
See ISO 32000-1, § 8.4.5.

	
COLOR_SPACE = '/ColorSpace'
	Colour space definitions.
See ISO 32000-1, § 8.6.

	
PATTERN = '/Pattern'
	Pattern definitions.
See ISO 32000-1, § 8.7.

	
SHADING = '/Shading'
	Shading definitions.
See ISO 32000-1, § 8.7.4.3.

	
XOBJECT = '/XObject'
	External object definitions (images and form XObjects).
See ISO 32000-1, § 8.8.

	
FONT = '/Font'
	Font specifications.
See ISO 32000-1, § 9.

	
PROPERTIES = '/Properties'
	Marked content properties.
See ISO 32000-1, § 14.6.2.

	
exception pyhanko.pdf_utils.content.ResourceManagementError
	Bases: ValueError

Used to signal problems with resource dictionaries.

	
class pyhanko.pdf_utils.content.PdfResources
	Bases: object

Representation of a PDF resource dictionary.

This class implements __getitem__() with ResourceType keys
for dynamic access to its attributes.
To merge two instances of PdfResources into one another,
the class overrides __iadd__(), so you can write.

res1 += res2

Note: Merging two resource dictionaries with conflicting resource names
will produce a ResourceManagementError.

Note: This class is currently only used for new resource dictionaries.

	
as_pdf_object() → DictionaryObject
	Render this instance of PdfResources to an actual resource
dictionary.

	
class pyhanko.pdf_utils.content.PdfContent(resources: PdfResources | None = None, box: BoxConstraints | None = None, writer: BasePdfFileWriter | None = None)
	Bases: object

Abstract representation of part of a PDF content stream.

Warning

Whether PdfContent instances can be reused or not
is left up to the subclasses.

	
writer = None
	The __init__() method comes with an optional writer
parameter that can be used to let subclasses register external resources
with the writer by themselves.

It can also be set after the fact by calling set_writer().

	
set_resource(category: ResourceType, name: NameObject, value: PdfObject)
	Set a value in the resource dictionary associated with this content
fragment.

	Parameters:
		category – The resource category to which the resource belongs.

	name – The resource’s (internal) name.

	value – The resource’s value.

	
import_resources(resources: PdfResources)
	Import resources from another resource dictionary.

	Parameters:
	resources – An instance of PdfResources.

	Raises:
	ResourceManagementError – Raised when there is a resource name conflict.

	
property resources: PdfResources
		Returns:
	The PdfResources instance associated with this
content fragment.

	
render() → bytes
	Compile the content to graphics operators.

	
as_form_xobject() → StreamObject
	Render the object to a form XObject to be referenced by another
content stream. See ISO 32000-1, § 8.8.

Note: Even if writer is set, the resulting form XObject will
not be registered. This is left up to the caller.

	Returns:
	A StreamObject instance representing
the resulting form XObject.

	
set_writer(writer)
	Override the currently registered writer object.

	Parameters:
	writer – An instance of BasePdfFileWriter.

	
add_to_page(writer: BasePdfFileWriter, page_ix: int, prepend: bool = False)
	Convenience wrapper around BasePdfFileWriter.add_stream_to_page()
to turn a PdfContent instance into a page
content stream.

	Parameters:
		writer – A PDF file writer.

	page_ix – Index of the page to modify.
The first page has index 0.

	prepend – Prepend the content stream to the list of content streams, as
opposed to appending it to the end.
This has the effect of causing the stream to be rendered
underneath the already existing content on the page.

	Returns:
	An IndirectObject reference to the page object
that was modified.

	
class pyhanko.pdf_utils.content.RawContent(data: bytes, resources: PdfResources | None = None, box: BoxConstraints | None = None)
	Bases: PdfContent

Raw byte sequence to be used as PDF content.

	
render() → bytes
	Compile the content to graphics operators.

	
class pyhanko.pdf_utils.content.ImportedPdfPage(file_name, page_ix=0)
	Bases: PdfContent

Import a page from another PDF file (lazily)

	
render() → bytes
	Compile the content to graphics operators.

pyhanko.pdf_utils.embed module

Utility classes for handling embedded files in PDFs.

New in version 0.7.0.

	
pyhanko.pdf_utils.embed.embed_file(pdf_writer: BasePdfFileWriter, spec: FileSpec)
	Embed a file in the document-wide embedded file registry of a PDF writer.

	Parameters:
		pdf_writer – PDF writer to house the embedded file.

	spec – File spec describing the embedded file.

	Returns:
	

	
class pyhanko.pdf_utils.embed.EmbeddedFileObject(pdf_writer: BasePdfFileWriter, dict_data=None, stream_data=None, encoded_data=None, params: EmbeddedFileParams | None = None, mime_type: str | None = None)
	Bases: StreamObject

	
classmethod from_file_data(pdf_writer: BasePdfFileWriter, data: bytes, compress=True, params: EmbeddedFileParams | None = None, mime_type: str | None = None) → EmbeddedFileObject
	Construct an embedded file object from file data.

This is a very thin wrapper around the constructor, with a slightly
less intimidating API.

Note

This method will not register the embedded file into the document’s
embedded file namespace, see embed_file().

	Parameters:
		pdf_writer – PDF writer to use.

	data – File contents, as a bytes object.

	compress – Whether to compress the embedded file’s contents.

	params – Optional embedded file parameters.

	mime_type – Optional MIME type string.

	Returns:
	An embedded file object.

	
write_to_stream(stream, handler=None, container_ref=None)
	Abstract method to render this object to an output stream.

	Parameters:
		stream – An output stream.

	container_ref – Local encryption key.

	handler – Security handler

	
class pyhanko.pdf_utils.embed.EmbeddedFileParams(embed_size: bool = True, embed_checksum: bool = True, creation_date: datetime.datetime | None = None, modification_date: datetime.datetime | None = None)
	Bases: object

	
embed_size: bool = True
	If true, record the file size of the embedded file.

Note

This value is computed over the file content before PDF filters
are applied. This may have performance implications in cases where the
file stream contents are presented in pre-encoded form.

	
embed_checksum: bool = True
	If true, add an MD5 checksum of the file contents.

Note

This value is computed over the file content before PDF filters
are applied. This may have performance implications in cases where the
file stream contents are presented in pre-encoded form.

	
creation_date: datetime | None = None
	Record the creation date of the embedded file.

	
modification_date: datetime | None = None
	Record the modification date of the embedded file.

	
class pyhanko.pdf_utils.embed.FileSpec(file_spec_string: str, file_name: str | None = None, embedded_data: EmbeddedFileObject | None = None, description: str | None = None, af_relationship: NameObject | None = None, f_related_files: List[RelatedFileSpec] | None = None, uf_related_files: List[RelatedFileSpec] | None = None)
	Bases: object

Dataclass modelling an embedded file description in a PDF.

	
file_spec_string: str
	A path-like file specification string, or URL.

Note

For backwards compatibility, this string should be encodable in
PDFDocEncoding. For names that require general Unicode support, refer
to file_name.

	
file_name: str | None = None
	A path-like Unicode file name.

	
embedded_data: EmbeddedFileObject | None = None
	Reference to a stream object containing the file’s data, as embedded
in the PDF file.

	
description: str | None = None
	Textual description of the file.

	
af_relationship: NameObject | None = None
	Associated file relationship specifier.

	
f_related_files: List[RelatedFileSpec] | None = None
	Related files with PDFDocEncoded names.

	
uf_related_files: List[RelatedFileSpec] | None = None
	Related files with Unicode-encoded names.

	
as_pdf_object() → DictionaryObject
	Represent the file spec as a PDF dictionary.

	
class pyhanko.pdf_utils.embed.RelatedFileSpec(name: str, embedded_data: EmbeddedFileObject)
	Bases: object

Dataclass modelling a RelatedFile construct in PDF.

	
name: str
	Name of the related file.

Note

The encoding requirements of this field depend on whether the related
file is included via the /F or /UF key.

	
embedded_data: EmbeddedFileObject
	Reference to a stream object containing the file’s data, as embedded
in the PDF file.

	
classmethod fmt_related_files(lst: List[RelatedFileSpec])
	

	
pyhanko.pdf_utils.embed.wrap_encrypted_payload(plaintext_payload: bytes, *, password: str | None = None, certs: List[Certificate] | None = None, security_handler: SecurityHandler | None = None, file_spec_string: str = 'attachment.pdf', params: EmbeddedFileParams | None = None, file_name: str | None = None, description='Wrapped document', include_explanation_page=True) → PdfFileWriter
	Include a PDF document as an encrypted attachment in a wrapper document.

This function sets certain flags in the wrapper document’s collection
dictionary to instruct compliant PDF viewers to display the attachment
instead of the wrapping document. Viewers that do not fully support
PDF collections will display a landing page instead, explaining
how to open the attachment manually.

Using this method mitigates some weaknesses in the PDF standard’s encryption
provisions, and makes it harder to manipulate the encrypted attachment
without knowing the encryption key.

Danger

Until PDF supports authenticated encryption mechanisms, this is
a mitigation strategy, not a foolproof defence mechanism.

Warning

While users of viewers that do not support PDF collections can still
open the attached file manually, the viewer still has to support
PDF files where only the attachments are encrypted.

Note

This is not quite the same as the “unencrypted wrapper document”
pattern discussed in the PDF 2.0 specification. The latter is intended
to support nonstandard security handlers. This function uses a standard
security handler on the wrapping document to encrypt the attachment
as a binary blob.
Moreover, the functionality in this function is available in PDF 1.7
viewers as well.

	Parameters:
		plaintext_payload – The plaintext payload (a binary representation of a PDF document).

	security_handler – The security handler to use on the wrapper document.
If None, a security handler will be constructed based on the
password or certs parameter.

	password – Password to encrypt the attachment with.
Will be ignored if security_handler is provided.

	certs – Encrypt the file using PDF public-key encryption, targeting the
keys in the provided certificates.
Will be ignored if security_handler is provided.

	file_spec_string – PDFDocEncoded file spec string for the attachment.

	params – Embedded file parameters to use.

	file_name – Unicode file name for the attachment.

	description – Description for the attachment

	include_explanation_page – If False, do not generate an explanation page in the wrapper
document. This setting could be useful if you want to customise the
wrapper document’s behaviour yourself.

	Returns:
	A PdfFileWriter representing the wrapper document.

pyhanko.pdf_utils.extensions module

	
class pyhanko.pdf_utils.extensions.DevExtensionMultivalued(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)
	Bases: Enum

Setting indicating how an extension is expected to behave well w.r.t.
the new mechanism for multivalued extensions in ISO 32000-2:2020.

	
ALWAYS = 1
	Always serialise this extension as a multivalued extension.

	
NEVER = 2
	Never serialise this extension as a multivalued extension.

	
MAYBE = 3
	Make this extension single-valued whenever possible, but allow multiple
values as well, e.g. when a different but non-comparable extension with
the same prefix is already present in the file.

	
class pyhanko.pdf_utils.extensions.DeveloperExtension(prefix_name: NameObject, base_version: NameObject, extension_level: int, url: str | None = None, extension_revision: str | None = None, compare_by_level: bool = False, subsumed_by: Iterable[int] = (), subsumes: Iterable[int] = (), multivalued: DevExtensionMultivalued = DevExtensionMultivalued.MAYBE)
	Bases: object

PDF developer extension designation.

	
prefix_name: NameObject
	Registered developer prefix.

	
base_version: NameObject
	Base version on to which the extension applies.

	
extension_level: int
	Extension level.

	
url: str | None = None
	Optional URL linking to the extension’s documentation.

	
extension_revision: str | None = None
	Optional extra revision information. Not comparable.

	
compare_by_level: bool = False
	Compare developer extensions by level number.
If this value is True and a copy of this extension already exists in the
target file with a higher level number, do not override it.
If one exists with a lower level number, override it.

If this value is False, the decision is based on subsumed_by
and subsumes.

Warning

It is generally not safe to assume that extension levels are used as a
versioning system (i.e. that higher extension levels supersede lower
ones), hence why the default is False.

	
subsumed_by: Iterable[int] = ()
	List of extension levels that would subsume this one. If one of these is
present in the extensions dictionary, attempting to register this extension
will not override it.

Default value: empty.

Warning

This parameter is ignored if compare_by_level is True.

	
subsumes: Iterable[int] = ()
	List of extensions explicitly subsumed by this one. If one of these is
present in the extensions dictionary, attempting to register this extension
will override it.

Default value: empty.

Warning

This parameter is ignored if compare_by_level is True.

	
multivalued: DevExtensionMultivalued = 3
	Setting indicating whether this extension is expected to behave well w.r.t.
the new mechanism for multivalued extensions in ISO 32000-2:2020.

	
as_pdf_object() → DictionaryObject
	Format the data in this object into a PDF dictionary for registration
into the /Extensions dictionary.

	Returns:
	A generic.DictionaryObject.

pyhanko.pdf_utils.filters module

Implementation of stream filters for PDF.

Taken from PyPDF2 with modifications. See here
for the original license of the PyPDF2 project.

Note that not all decoders specified in the standard are supported.
In particular /LZWDecode and the various JPEG-based decoders are missing.

	
class pyhanko.pdf_utils.filters.Decoder
	Bases: object

General filter/decoder interface.

	
decode(data: bytes, decode_params: dict) → bytes
	Decode a stream.

	Parameters:
		data – Data to decode.

	decode_params – Decoder parameters, sourced from the /DecoderParams entry
associated with this filter.

	Returns:
	Decoded data.

	
encode(data: bytes, decode_params: dict) → bytes
	Encode a stream.

	Parameters:
		data – Data to encode.

	decode_params – Encoder parameters, sourced from the /DecoderParams entry
associated with this filter.

	Returns:
	Encoded data.

	
class pyhanko.pdf_utils.filters.ASCII85Decode
	Bases: Decoder

Implementation of the base 85 encoding scheme specified in ISO 32000-1.

	
encode(data: bytes, decode_params=None) → bytes
	Encode a stream.

	Parameters:
		data – Data to encode.

	decode_params – Encoder parameters, sourced from the /DecoderParams entry
associated with this filter.

	Returns:
	Encoded data.

	
decode(data, decode_params=None)
	Decode a stream.

	Parameters:
		data – Data to decode.

	decode_params – Decoder parameters, sourced from the /DecoderParams entry
associated with this filter.

	Returns:
	Decoded data.

	
class pyhanko.pdf_utils.filters.ASCIIHexDecode
	Bases: Decoder

Wrapper around binascii.hexlify() that implements the
Decoder interface.

	
encode(data: bytes, decode_params=None) → bytes
	Encode a stream.

	Parameters:
		data – Data to encode.

	decode_params – Encoder parameters, sourced from the /DecoderParams entry
associated with this filter.

	Returns:
	Encoded data.

	
decode(data, decode_params=None)
	Decode a stream.

	Parameters:
		data – Data to decode.

	decode_params – Decoder parameters, sourced from the /DecoderParams entry
associated with this filter.

	Returns:
	Decoded data.

	
class pyhanko.pdf_utils.filters.FlateDecode
	Bases: Decoder

Implementation of the /FlateDecode filter.

Warning

Currently not all predictor values are supported. This may cause
problems when extracting image data from PDF files.

	
decode(data: bytes, decode_params)
	Decode a stream.

	Parameters:
		data – Data to decode.

	decode_params – Decoder parameters, sourced from the /DecoderParams entry
associated with this filter.

	Returns:
	Decoded data.

	
encode(data, decode_params=None)
	Encode a stream.

	Parameters:
		data – Data to encode.

	decode_params – Encoder parameters, sourced from the /DecoderParams entry
associated with this filter.

	Returns:
	Encoded data.

	
pyhanko.pdf_utils.filters.get_generic_decoder(name: str) → Decoder
	Instantiate a specific stream filter decoder type by (PDF) name.

The following names are recognised:

		/FlateDecode or /Fl for the decoder implementing Flate
	compression.

	/ASCIIHexDecode or /AHx for the decoder that converts bytes to
their hexadecimal representations.

	/ASCII85Decode or /A85 for the decoder that converts byte strings
to a base-85 textual representation.

Warning

/Crypt is a special case because it requires access to the
document’s security handler.

Warning

LZW compression is currently unsupported, as are most compression
methods that are used specifically for image data.

	Parameters:
	name – Name of the decoder to instantiate.

pyhanko.pdf_utils.generic module

Implementation of PDF object types and other generic functionality.
The internals were imported from PyPDF2, with modifications.

See here for the original license
of the PyPDF2 project.

	
class pyhanko.pdf_utils.generic.Dereferenceable
	Bases: object

Represents an opaque reference to a PDF object associated with
a PDF Handler (see PdfHandler).

This can either be a reference to an object with an object ID
(see Reference) or a reference to the trailer of a PDF document
(see TrailerReference).

	
get_object() → PdfObject
	Retrieve the PDF object backing this dereferenceable.

	Returns:
	A PdfObject.

	
get_pdf_handler()
	Return the PDF handler associated with this dereferenceable.

	Returns:
	a PdfHandler.

	
class pyhanko.pdf_utils.generic.Reference(idnum: int, generation: int = 0, pdf: object = None)
	Bases: Dereferenceable

A reference to an object with a certain ID and generation number, with
a PDF handler attached to it.

Warning

Contrary to what one might expect, the generation number does not
indicate the document revision in which the object was modified. In fact,
nonzero generation numbers are exceedingly rare these days; in most
real-world PDF files, objects are simply overridden without ever
increasing the generation number.

Except in very specific circumstances, dereferencing a
Reference will return the most recent version of the object
with the stated object ID and generation number.

	
idnum: int
	The object’s ID.

	
generation: int = 0
	The object’s generation number (usually 0)

	
pdf: object = None
	The PDF handler associated with this reference, an instance of
PdfHandler.

Warning

This field is ignored when hashing or comparing Reference
objects, so it is the API user’s responsibility to not mix up
references originating from unrelated PDF handlers.

	
get_object() → PdfObject
	Retrieve the PDF object backing this dereferenceable.

	Returns:
	A PdfObject.

	
get_pdf_handler()
	Return the PDF handler associated with this dereferenceable.

	Returns:
	a PdfHandler.

	
class pyhanko.pdf_utils.generic.TrailerReference(reader)
	Bases: Dereferenceable

A reference to the trailer of a PDF document.

Warning

Since the trailer does not have a well-defined object ID in files with
“classical” cross-reference tables (as opposed to cross-reference
streams), this is not a subclass of Reference.

	Parameters:
	reader – a PdfFileReader

	
get_object() → PdfObject
	Retrieve the PDF object backing this dereferenceable.

	Returns:
	A PdfObject.

	
get_pdf_handler()
	Return the PDF handler associated with this dereferenceable.

	Returns:
	a PdfHandler.

	
class pyhanko.pdf_utils.generic.PdfObject
	Bases: object

Superclass for all PDF objects.

	
container_ref: Dereferenceable | None = None
	For objects read from a file, container_ref points to the unique
addressable object containing this object.

Note

Consider the following object definition in a PDF file:

4 0 obj
<< /Foo (Bar) >>

This declares a dictionary with ID 4, but the values /Foo and
(Bar) are also PDF objects (a name and a string, respectively).
All of these will have container_ref given by a Reference
with object ID 4 and generation number 0.

If an object is part of the trailer of a PDF file, container_ref will be
a TrailerReference.
For newly created objects (i.e. those not read from a file), container_ref
is always None.

	
get_container_ref() → Dereferenceable
	Return a reference to the closest parent object containing this object.
Raises an error if no such reference can be found.

	
get_object()
	Resolves indirect references.

	Returns:
	self, unless an instance of IndirectObject.

	
write_to_stream(stream, handler: SecurityHandler | None = None, container_ref: Reference | None = None)
	Abstract method to render this object to an output stream.

	Parameters:
		stream – An output stream.

	container_ref – Local encryption key.

	handler – Security handler

	
class pyhanko.pdf_utils.generic.IndirectObject(idnum, generation, pdf)
	Bases: PdfObject, Dereferenceable

Thin wrapper around a Reference, implementing both the
Dereferenceable and PdfObject interfaces.

Warning

For many purposes, this class is functionally interchangeable with
Reference, with one important exception:
IndirectObject instances pointing to the same reference
but occurring at different locations in the file may have distinct
container_ref values.

	
get_object()
		Returns:
	The PDF object this reference points to.

	
get_pdf_handler()
	Return the PDF handler associated with this dereferenceable.

	Returns:
	a PdfHandler.

	
property idnum: int
		Returns:
	the object ID of this reference.

	
property generation
		Returns:
	the generation number of this reference.

	
write_to_stream(stream, handler: SecurityHandler | None = None, container_ref=None)
	Abstract method to render this object to an output stream.

	Parameters:
		stream – An output stream.

	container_ref – Local encryption key.

	handler – Security handler

	
static read_from_stream(stream, container_ref: Dereferenceable)
	

	
class pyhanko.pdf_utils.generic.NullObject
	Bases: PdfObject

PDF null object.

All instances are treated as equal and falsy.

	
write_to_stream(stream, handler: SecurityHandler | None = None, container_ref=None)
	Abstract method to render this object to an output stream.

	Parameters:
		stream – An output stream.

	container_ref – Local encryption key.

	handler – Security handler

	
static read_from_stream(stream)
	

	
class pyhanko.pdf_utils.generic.BooleanObject(value)
	Bases: PdfObject

PDF boolean value.

	
write_to_stream(stream, handler: SecurityHandler | None = None, container_ref=None)
	Abstract method to render this object to an output stream.

	Parameters:
		stream – An output stream.

	container_ref – Local encryption key.

	handler – Security handler

	
static read_from_stream(stream)
	

	
class pyhanko.pdf_utils.generic.FloatObject(value='0')
	Bases: Decimal, PdfObject

PDF Float object.

Internally, these are treated as decimals (and therefore actually
fixed-point objects, to be precise).

	
as_numeric()
		Returns:
	a Python float value for this object.

	
write_to_stream(stream, handler: SecurityHandler | None = None, container_ref=None)
	Abstract method to render this object to an output stream.

	Parameters:
		stream – An output stream.

	container_ref – Local encryption key.

	handler – Security handler

	
class pyhanko.pdf_utils.generic.NumberObject(value)
	Bases: int, PdfObject

PDF number object. This is the PDF type for integer values.

	
NumberPattern = re.compile(b'[^+-.0-9]')
	

	
ByteDot = b'.'
	

	
as_numeric()
		Returns:
	a Python int value for this object.

	
write_to_stream(stream, handler: SecurityHandler | None = None, container_ref=None)
	Abstract method to render this object to an output stream.

	Parameters:
		stream – An output stream.

	container_ref – Local encryption key.

	handler – Security handler

	
static read_from_stream(stream)
	

	
class pyhanko.pdf_utils.generic.ByteStringObject
	Bases: bytes, PdfObject

PDF bytestring class.

	
property original_bytes
	For compatibility with TextStringObject.original_bytes

	
write_to_stream(stream, handler: SecurityHandler | None = None, container_ref=None)
	Abstract method to render this object to an output stream.

	Parameters:
		stream – An output stream.

	container_ref – Local encryption key.

	handler – Security handler

	
class pyhanko.pdf_utils.generic.TextStringObject
	Bases: str, PdfObject

PDF text string object.

	
autodetected_encoding: TextStringEncoding | None = None
	Autodetected encoding when parsing the file.

	
force_output_encoding: TextStringEncoding | None = None
	Output encoding to use when serialising the string.
The default is to try PDFDocEncoding first, and fall back to UTF-16BE.

	
property original_bytes
	Retrieve the original bytes of the string as specified in the
source file.

This may be necessary if this string was misidentified as a text string.

	
write_to_stream(stream, handler: SecurityHandler | None = None, container_ref=None)
	Abstract method to render this object to an output stream.

	Parameters:
		stream – An output stream.

	container_ref – Local encryption key.

	handler – Security handler

	
class pyhanko.pdf_utils.generic.NameObject
	Bases: str, PdfObject

PDF name object. These are valid Python strings, but names and strings
are treated differently in the PDF specification, so proper care is
required.

	
write_to_stream(stream, handler: SecurityHandler | None = None, container_ref=None)
	Abstract method to render this object to an output stream.

	Parameters:
		stream – An output stream.

	container_ref – Local encryption key.

	handler – Security handler

	
static read_from_stream(stream)
	

	
class pyhanko.pdf_utils.generic.ArrayObject(iterable=(), /)
	Bases: list, PdfObject

PDF array object. This class extends from Python’s list class,
and supports its interface.

Warning

Contrary to the case of dictionary objects, PyPDF2 does not
transparently dereference array entries when accessed using
__getitem__().
For usability & consistency reasons, I decided to depart from that
and dereference automatically.
This makes the behaviour of ArrayObject consistent with
DictionaryObject.

That said, some vestiges of the old PyPDF2 behaviour may linger in
the codebase. I’ll fix those as I get to them.

	
raw_get(index, decrypt: EncryptedObjAccess = EncryptedObjAccess.TRANSPARENT)
	
Changed in version 0.14.0: decrypt parameter is no longer boolean

Get a value from an array without dereferencing.
In other words, if the value corresponding to the given key is of type
IndirectObject, the indirect reference will not be resolved.

	Parameters:
		index – Key to look up in the dictionary.

	decrypt – What to do when retrieving encrypted objects; see
EncryptedObjAccess. The default is
EncryptedObjAccess.TRANSPARENT.

	Returns:
	A PdfObject.

	
write_to_stream(stream, handler: SecurityHandler | None = None, container_ref=None)
	Abstract method to render this object to an output stream.

	Parameters:
		stream – An output stream.

	container_ref – Local encryption key.

	handler – Security handler

	
static read_from_stream(stream, container_ref)
	

	
class pyhanko.pdf_utils.generic.DictionaryObject(dict_data=None)
	Bases: dict, PdfObject

A PDF dictionary object.

Keys in a PDF dictionary are PDF names, and values are PDF objects.

When accessing a key using the standard __getitem__() syntax,
IndirectObject references will be resolved.

	
raw_get(key: NameObject | str, decrypt: EncryptedObjAccess = EncryptedObjAccess.TRANSPARENT)
	
Changed in version 0.14.0: decrypt parameter is no longer boolean

Get a value from a dictionary without dereferencing.
In other words, if the value corresponding to the given key is of type
IndirectObject, the indirect reference will not be resolved.

	Parameters:
		key – Key to look up in the dictionary.

	decrypt – What to do when retrieving encrypted objects; see
EncryptedObjAccess. The default is
EncryptedObjAccess.TRANSPARENT.

	Returns:
	A PdfObject.

	
setdefault(key, value=None)
	Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

	
get_and_apply(key, function: Callable[[PdfObject], Any], *, raw=False, default=None)
	

	
get_value_as_reference(key, optional=False) → Reference
	

	
write_to_stream(stream, handler: SecurityHandler | None = None, container_ref=None)
	Abstract method to render this object to an output stream.

	Parameters:
		stream – An output stream.

	container_ref – Local encryption key.

	handler – Security handler

	
static read_from_stream(stream, container_ref: Dereferenceable, as_metadata_stream: bool = False)
	

	
class pyhanko.pdf_utils.generic.StreamObject(dict_data: dict | None = None, stream_data: bytes | None = None, encoded_data: bytes | None = None, handler: SecurityHandler | None = None)
	Bases: DictionaryObject

PDF stream object.

Essentially, a PDF stream is a dictionary object with a binary blob of
data attached. This data can be encoded by various filters (not all of which
are currently supported, see filters).

A stream object can be initialised with encoded or decoded data.
The former is used by reader.PdfFileReader to provide on-demand
decoding, with writer.BasePdfFileWriter and its subclasses working
the other way around.

Note

The StreamObject class manages some of its dictionary
keys by itself. This is partly the case for the various /Filter
and /DecodeParms entries, but also for the /Length entry.
The latter will be overwritten as necessary.

	Parameters:
		dict_data – The dictionary data for this stream object.

	stream_data – The (unencoded) stream data.

	encoded_data –
The encoded stream data.

Warning

Ordinarily, a stream can be initialised either from decoded and from
encoded data.

If both stream_data and encoded_data are provided, the caller
is responsible for making sure that both are compatible given the
currently relevant filter configuration.

	handler – A reference to the currently active
pyhanko.pdf_utils.crypt.SecurityHandler.
This is only necessary if the stream requires crypt filters.

	
add_crypt_filter(name='/Identity', params=None, handler: SecurityHandler | None = None)
	

	
strip_filters()
	Ensure the stream is decoded, and remove any filters.

	
property data: bytes
	Return the decoded stream data as bytes.
If the stream hasn’t been decoded yet, it will be decoded on-the-fly.

	Raises:
	.misc.PdfStreamError – If the stream could not be decoded.

	
property encoded_data: bytes
	Return the encoded stream data as bytes.
If the stream hasn’t been encoded yet, it will be encoded on-the-fly.

	Raises:
	.misc.PdfStreamError – If the stream could not be encoded.

	
apply_filter(filter_name, params=None, allow_duplicates: bool | None = True)
	Apply a new filter to this stream. This filter will be prepended
to any existing filters.
This means that is is placed last in the encoding order, but first
in the decoding order.

Note: Calling this method on an encoded stream will first cause the
stream to be decoded using the filters already present.
The cached value for the encoded stream data will be cleared.

	Parameters:
		filter_name – Name of the filter
(see DECODERS)

	params – Parameters to the filter (will be written to /DecodeParms if
not None)

	allow_duplicates – If None, silently ignore duplicate filters.
If False, raise ValueError when attempting to add a duplicate
filter. If True (default), duplicate filters are allowed.

	
compress()
	Convenience method to add a /FlateDecode filter with default
settings, if one is not already present.

Note: compression is not actually applied until the stream is written.

	
property is_embedded_file_stream
	

	
write_to_stream(stream, handler: SecurityHandler | None = None, container_ref=None)
	Abstract method to render this object to an output stream.

	Parameters:
		stream – An output stream.

	container_ref – Local encryption key.

	handler – Security handler

	
pyhanko.pdf_utils.generic.read_object(stream, container_ref: Dereferenceable, as_metadata_stream: bool = False) → PdfObject
	Read a PDF object from an input stream.

Note

The container_ref parameter tells the API which reference to register
when the returned object is modified in an incremental update.
See also here here for further
information.

	Parameters:
		stream – An input stream.

	container_ref –
A reference to an object containing this one.

Note: It is perfectly possible (and common) for container_ref to
resolve to the return value of this function.

	as_metadata_stream – Whether to dereference the object as an XMP metadata stream.

	Returns:
	A PdfObject.

	
pyhanko.pdf_utils.generic.pdf_name
	alias of NameObject

	
pyhanko.pdf_utils.generic.pdf_string(string: str | bytes | bytearray) → ByteStringObject | TextStringObject
	Encode a string as a TextStringObject if possible,
or a ByteStringObject otherwise.

	Parameters:
	string – A Python string.

	
pyhanko.pdf_utils.generic.pdf_date(dt: datetime) → TextStringObject
	Convert a datetime object into a PDF string.
This function supports both timezone-aware and naive datetime objects.

	Parameters:
	dt – The datetime object to convert.

	Returns:
	A TextStringObject representing the datetime passed in.

	
class pyhanko.pdf_utils.generic.TextStringEncoding(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)
	Bases: Enum

Encodings for PDF text strings.

	
PDF_DOC = None
	PDFDocEncoding (one-byte character codes; PDF-specific).

	
UTF16BE = (b'\xfe\xff', 'utf-16be')
	UTF-16BE encoding.

	
UTF8 = (b'\xef\xbb\xbf', 'utf-8')
	UTF-8 encoding (PDF 2.0)

	
UTF16LE = (b'\xff\xfe', 'utf-16le')
	UTF-16LE encoding.

Note

This is strictly speaking invalid in PDF 2.0, but some authoring tools
output such strings anyway (presumably due to the fact that it’s the
default wide character encoding on Windows).

	
encode(string: str) → bytes
	Encode a string with BOM.

	Parameters:
	string – The string to encode.

	Returns:
	The encoded string.

	
decode(string: bytes | bytearray) → str
	Decode a string with BOM.

	Parameters:
	string – The string to encode.

	Returns:
	The encoded string.

	Raises:
	UnicodeDecodeError – Raised if decoding fails.

	
class pyhanko.pdf_utils.generic.EncryptedObjAccess(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)
	Bases: Enum

Defines what to do when an encrypted object is encountered when retrieving
an object from a container.

	
PROXY = 0
	Return the proxy object as-is, and leave further encryption/decryption
handling to the caller.

	
TRANSPARENT = 1
	Transparently decrypt the proxy’s content (similarly wrapping any
sub-containers in DecryptedObjectProxy, so this applies
recursively).

Note

This is the default in most situations, since it’s the least likely
to get in the way of any APIs that are not explicitly aware of
content encryption concerns.

	
RAW = 2
	Return the underlying raw object as written, without attempting or deferring
decryption.

	
class pyhanko.pdf_utils.generic.DecryptedObjectProxy(raw_object: PdfObject, handler)
	Bases: PdfObject

Internal proxy class that allows transparent on-demand encryption
of objects.

Warning

Most public-facing APIs won’t leave you to deal with these directly
(that’s half the reason this class exists in the first place), and
the API of this class is considered internal.

However, for reasons related to the historical PyPDF2 codebase from
which pyHanko’s object handling code ultimately derives, there are
some Python builtins that might cause these wrapper objects to
inadvertently “leak”. Please tell us about such cases so we can
make those types of access more convenient and robust.

Danger

The __eq__ implementation on this class is not safe for general use,
due to the fact that certain structures in PDF are exempt from
encryption. Only compare proxy objects with == in areas of the
document where these exemptions don’t apply.

	Parameters:
		raw_object – A raw object, typically as-parsed from a PDF file.

	handler – The security handler governing this object.

	
raw_object: PdfObject
	The underlying raw object, in its encrypted state.

	
property decrypted: PdfObject
	The decrypted PDF object exposed as a property.

If this object is a container object, its constituent parts will be
wrapped in DecryptedObjectProxy as well, in order to defer
further decryption until the values are requested through a getter
method on the container.

	
write_to_stream(stream, handler: SecurityHandler | None = None, container_ref=None)
	Abstract method to render this object to an output stream.

	Parameters:
		stream – An output stream.

	container_ref – Local encryption key.

	handler – Security handler

	
get_object()
	Resolves indirect references.

	Returns:
	self, unless an instance of IndirectObject.

	
property container_ref
	

pyhanko.pdf_utils.images module

Utilities for embedding bitmap image data into PDF files.

The image data handling is done by
Pillow.

Note

Note that also here we only support a subset of what the PDF standard
provides for. Most RGB and grayscale images (with or without transparency)
that can be read by PIL/Pillow can be used without issue.
PNG images with an indexed palette backed by one of these colour spaces
can also be used.

Currently there is no support for CMYK images or (direct) support for
embedding JPEG-encoded image data as such, but these features may be added
later.

	
pyhanko.pdf_utils.images.pil_image(img: Image, writer: BasePdfFileWriter)
	This function writes a PIL/Pillow Image object to a PDF file
writer, as an image XObject.

	Parameters:
		img – A Pillow Image object

	writer – A PDF file writer

	Returns:
	A reference to the image XObject written.

	
class pyhanko.pdf_utils.images.PdfImage(image: Image | str, writer: BasePdfFileWriter | None = None, resources: PdfResources | None = None, name: str | None = None, opacity=None, box: BoxConstraints | None = None)
	Bases: PdfContent

Wrapper class that implements the PdfContent interface for
image objects.

Note

Instances of this class are reusable, in the sense that the
implementation is aware of changes to the associated writer
object. This allows the same image to be embedded into multiple files
without instantiating a new PdfImage every time.

	
property image_ref: IndirectObject
	Return a reference to the image XObject associated with this
PdfImage instance.
If no such reference is available, it will be created using
pil_image(), and the result will be cached until the
writer attribute changes
(see set_writer()).

	Returns:
	An indirect reference to an image XObject.

	
render() → bytes
	Compile the content to graphics operators.

pyhanko.pdf_utils.incremental_writer module

Utility for writing incremental updates to existing PDF files.

	
class pyhanko.pdf_utils.incremental_writer.IncrementalPdfFileWriter(input_stream, prev: PdfFileReader | None = None, strict=True)
	Bases: BasePdfFileWriter

Class to incrementally update existing files.

This BasePdfFileWriter subclass encapsulates a
PdfFileReader instance in addition to exposing an
interface to add and modify PDF objects.

Incremental updates to a PDF file append modifications to the end of the
file. This is critical when the original file contents are not to be
modified directly (e.g. when it contains digital signatures).
It has the additional advantage of providing an automatic audit trail of
sorts.

	Parameters:
		input_stream – Input stream to read current revision from.

	strict – Ingest the source file in strict mode. The default is True.

	prev – Explicitly pass in a PDF reader. This parameter is internal API.

	
IO_CHUNK_SIZE = 4096
	

	
classmethod from_reader(reader: PdfFileReader) → IncrementalPdfFileWriter
	Instantiate an incremental writer from a PDF file reader.

	Parameters:
	reader – A PdfFileReader object with a PDF to extend.

	
ensure_output_version(version)
	

	
get_object(ido, as_metadata_stream: bool = False)
	Retrieve the object associated with the provided reference from
this PDF handler.

	Parameters:
		ref – An instance of generic.Reference.

	as_metadata_stream – Whether to dereference the object as an XMP metadata stream.

	Returns:
	A PDF object.

	
mark_update(obj_ref: Reference | IndirectObject)
	Mark an object reference to be updated.
This is only relevant for incremental updates, but is included
as a no-op by default for interoperability reasons.

	Parameters:
	obj_ref – An indirect object instance or a reference.

	
update_container(obj: PdfObject)
	Mark the container of an object (as indicated by the
container_ref attribute on
PdfObject) for an update.

As with mark_update(), this only applies to incremental updates,
but defaults to a no-op.

	Parameters:
	obj – The object whose top-level container needs to be rewritten.

	
update_root()
	Signal that the document catalog should be written to the output.
Equivalent to calling mark_update() with root_ref.

	
set_info(info: IndirectObject | DictionaryObject | None)
	Set the /Info entry of the document trailer.

	Parameters:
	info – The new /Info dictionary, as an indirect reference.

	
set_custom_trailer_entry(key: NameObject, value: PdfObject)
	Set a custom, unmanaged entry in the document trailer or cross-reference
stream dictionary.

Warning

Calling this method to set an entry that is managed by pyHanko
internally (info dictionary, document catalog, etc.) has undefined
results.

	Parameters:
		key – Dictionary key to use in the trailer.

	value – Value to set

	
write(stream)
	Write the contents of this PDF writer to a stream.

	Parameters:
	stream – A writable output stream.

	
property document_meta_view: DocumentMetadata
	

	
write_in_place()
	Write the updated file contents in-place to the same stream as
the input stream.
This obviously requires a stream supporting both reading and writing
operations.

	
encrypt(user_pwd)
	Method to handle updates to encrypted files.

This method handles decrypting of the original file, and makes sure
the resulting updated file is encrypted in a compatible way.
The standard mandates that updates to encrypted files be effected using
the same encryption settings. In particular, incremental updates
cannot remove file encryption.

	Parameters:
	user_pwd – The original file’s user password.

	Raises:
	PdfReadError – Raised when there is a problem decrypting the file.

	
encrypt_pubkey(credential: EnvelopeKeyDecrypter)
	Method to handle updates to files encrypted using public-key
encryption.

The same caveats as encrypt() apply here.

	Parameters:
	credential – The EnvelopeKeyDecrypter handling the recipient’s
private key.

	Raises:
	PdfReadError – Raised when there is a problem decrypting the file.

pyhanko.pdf_utils.layout module

Layout utilities (to be expanded)

	
exception pyhanko.pdf_utils.layout.LayoutError(msg: str, *args)
	Bases: ValueError

Indicates an error in a layout computation.

	
exception pyhanko.pdf_utils.layout.BoxSpecificationError(msg: str | None = None)
	Bases: LayoutError

Raised when a box constraint is over/underspecified.

	
class pyhanko.pdf_utils.layout.BoxConstraints(width: int | float | None = None, height: int | float | None = None, aspect_ratio: Fraction | None = None)
	Bases: object

Represents a box of potentially variable width and height.
Among other uses, this can be leveraged to produce a variably sized
box with a fixed aspect ratio.

If width/height are not defined yet, they can be set by assigning to the
width and height attributes.

	
property width: int
		Returns:
	The width of the box.

	Raises:
	BoxSpecificationError – if the box’s width could not be determined.

	
property width_defined: bool
		Returns:
	True if the box currently has a well-defined width,
False otherwise.

	
property height: int
		Returns:
	The height of the box.

	Raises:
	BoxSpecificationError – if the box’s height could not be determined.

	
property height_defined: bool
		Returns:
	True if the box currently has a well-defined height,
False otherwise.

	
property aspect_ratio: Fraction
		Returns:
	The aspect ratio of the box.

	Raises:
	BoxSpecificationError – if the box’s aspect ratio could not be determined.

	
property aspect_ratio_defined: bool
		Returns:
	True if the box currently has a well-defined aspect ratio,
False otherwise.

	
class pyhanko.pdf_utils.layout.AxisAlignment(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)
	Bases: Enum

Class representing one-dimensional alignment along an axis.

	
ALIGN_MIN = 1
	Align maximally towards the negative end of the axis.

	
ALIGN_MID = 2
	Center content along the axis.

	
ALIGN_MAX = 3
	Align maximally towards the positive end of the axis.

	
classmethod from_x_align(align_str: str) → AxisAlignment
	Convert from a horizontal alignment config string.

	Parameters:
	align_str – A string: ‘left’, ‘mid’ or ‘right’.

	Returns:
	An AxisAlignment value.

	Raises:
	ConfigurationError – on unexpected string inputs.

	
classmethod from_y_align(align_str: str) → AxisAlignment
	Convert from a vertical alignment config string.

	Parameters:
	align_str – A string: ‘bottom’, ‘mid’ or ‘top’.

	Returns:
	An AxisAlignment value.

	Raises:
	ConfigurationError – on unexpected string inputs.

	
property flipped
	

	
align(container_len: int, inner_len: int, pre_margin, post_margin) → int
	

	
class pyhanko.pdf_utils.layout.Margins(left: int = 0, right: int = 0, top: int = 0, bottom: int = 0)
	Bases: ConfigurableMixin

Class describing a set of margins.

	
left: int = 0
	

	
right: int = 0
	

	
top: int = 0
	

	
bottom: int = 0
	

	
classmethod uniform(num)
	Return a set of uniform margins.

	Parameters:
	num – The uniform margin to apply to all four sides.

	Returns:
	Margins(num, num, num, num)

	
static effective(dim_name, container_len, pre, post)
	Internal helper method to compute effective margins.

	
effective_width(width)
	Compute width without margins.

	Parameters:
	width – The container width.

	Returns:
	The width after subtracting the left and right margins.

	Raises:
	LayoutError – if the container width is too short to accommodate the margins.

	
effective_height(height)
	Compute height without margins.

	Parameters:
	height – The container height.

	Returns:
	The height after subtracting the top and bottom margins.

	Raises:
	LayoutError – if the container height is too short to accommodate the margins.

	
classmethod from_config(config_dict)
	Attempt to instantiate an object of the class on which it is called,
by means of the configuration settings passed in.

First, we check that the keys supplied in the dictionary correspond
to data fields on the current class.
Then, the dictionary is processed using the process_entries()
method. The resulting dictionary is passed to the initialiser
of the current class as a kwargs dict.

	Parameters:
	config_dict – A dictionary containing configuration values.

	Returns:
	An instance of the class on which it is called.

	Raises:
	ConfigurationError – when an unexpected configuration key is encountered or left
unfilled, or when there is a problem processing one of the config
values.

	
class pyhanko.pdf_utils.layout.InnerScaling(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)
	Bases: Enum

Class representing a scaling convention.

	
NO_SCALING = 1
	Never scale content.

	
STRETCH_FILL = 2
	Scale content to fill the entire container.

	
STRETCH_TO_FIT = 3
	Scale content while preserving aspect ratio until either the maximal
width or maximal height is reached.

	
SHRINK_TO_FIT = 4
	Scale content down to fit in the container, while preserving the original
aspect ratio.

	
classmethod from_config(config_str: str) → InnerScaling
	Convert from a configuration string.

	Parameters:
	config_str – A string: ‘none’, ‘stretch-fill’, ‘stretch-to-fit’, ‘shrink-to-fit’

	Returns:
	An InnerScaling value.

	Raises:
	ConfigurationError – on unexpected string inputs.

	
class pyhanko.pdf_utils.layout.SimpleBoxLayoutRule(x_align: AxisAlignment, y_align: AxisAlignment, margins: Margins = Margins(left=0, right=0, top=0, bottom=0), inner_content_scaling: InnerScaling = InnerScaling.SHRINK_TO_FIT)
	Bases: ConfigurableMixin

Class describing alignment, scaling and margin rules for a box
positioned inside another box.

	
x_align: AxisAlignment
	Horizontal alignment settings.

	
y_align: AxisAlignment
	Vertical alignment settings.

	
margins: Margins = Margins(left=0, right=0, top=0, bottom=0)
	Container (inner) margins. Defaults to all zeroes.

	
inner_content_scaling: InnerScaling = 4
	Inner content scaling rule.

	
classmethod process_entries(config_dict)
	Hook method that can modify the configuration dictionary
to overwrite or tweak some of their values (e.g. to convert string
parameters into more complex Python objects)

Subclasses that override this method should call
super().process_entries(), and leave keys that they do not
recognise untouched.

	Parameters:
	config_dict – A dictionary containing configuration values.

	Raises:
	ConfigurationError – when there is a problem processing a relevant entry.

	
substitute_margins(new_margins: Margins) → SimpleBoxLayoutRule
	

	
fit(container_box: BoxConstraints, inner_nat_width: int, inner_nat_height: int) → Positioning
	Position and possibly scale a box within a container, according
to this layout rule.

	Parameters:
		container_box – BoxConstraints describing the container.

	inner_nat_width – The inner box’s natural width.

	inner_nat_height – The inner box’s natural height.

	Returns:
	A Positioning describing the scaling & position of the
lower left corner of the inner box.

	
class pyhanko.pdf_utils.layout.Positioning(x_pos: int, y_pos: int, x_scale: float, y_scale: float)
	Bases: ConfigurableMixin

Class describing the position and scaling of an object in a container.

	
x_pos: int
	Horizontal coordinate

	
y_pos: int
	Vertical coordinate

	
x_scale: float
	Horizontal scaling

	
y_scale: float
	Vertical scaling

	
as_cm()
	Convenience method to convert this Positioning into a PDF
cm operator.

	Returns:
	A byte string representing the cm operator corresponding
to this Positioning.

pyhanko.pdf_utils.misc module

Utility functions for PDF library.
Taken from PyPDF2 with modifications and additions, see
here for the original license of the PyPDF2 project.

Generally, all of these constitute internal API, except for the exception
classes.

	
exception pyhanko.pdf_utils.misc.PdfError(msg: str, *args)
	Bases: Exception

	
exception pyhanko.pdf_utils.misc.PdfReadError(msg: str, *args)
	Bases: PdfError

	
exception pyhanko.pdf_utils.misc.PdfStrictReadError(msg: str, *args)
	Bases: PdfReadError

	
exception pyhanko.pdf_utils.misc.PdfWriteError(msg: str, *args)
	Bases: PdfError

	
exception pyhanko.pdf_utils.misc.PdfStreamError(msg: str, *args)
	Bases: PdfReadError

	
exception pyhanko.pdf_utils.misc.IndirectObjectExpected(msg: str | None = None)
	Bases: PdfReadError

	
pyhanko.pdf_utils.misc.get_and_apply(dictionary: dict, key, function: Callable, *, default=None)
	

	
class pyhanko.pdf_utils.misc.OrderedEnum(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)
	Bases: Enum

Ordered enum (from the Python documentation)

	
class pyhanko.pdf_utils.misc.StringWithLanguage(value: str, lang_code: str | None = None, country_code: str | None = None)
	Bases: object

A string with a language attached to it.

	
value: str
	

	
lang_code: str | None = None
	

	
country_code: str | None = None
	

	
pyhanko.pdf_utils.misc.is_regular_character(byte_value: int)
	

	
pyhanko.pdf_utils.misc.read_non_whitespace(stream, seek_back=False, allow_eof=False)
	Finds and reads the next non-whitespace character (ignores whitespace).

	
pyhanko.pdf_utils.misc.read_until_whitespace(stream, maxchars: int | None = None) → bytes
	Reads non-whitespace characters and returns them.
Stops upon encountering whitespace, or, if maxchars is not None,
when maxchars is reached.

	Parameters:
		stream – stream to read

	maxchars – maximal number of bytes to read before returning

	
pyhanko.pdf_utils.misc.read_until_delimiter(stream) → bytes
	Read until a token delimiter (i.e. a delimiter character or a PDF
whitespace character) is encountered, and rewind the stream to the previous
character.

	Parameters:
	stream – A stream.

	Returns:
	The bytes read.

	
pyhanko.pdf_utils.misc.read_until_regex(stream, regex, ignore_eof: bool = False)
	Reads until the regular expression pattern matched (ignore the match)
Raise PdfStreamError on premature end-of-file.

	Parameters:
		stream – stream to search

	regex – regex to match

	ignore_eof – if true, ignore end-of-line and return immediately

	Raises:
	PdfStreamError – on premature EOF

	
pyhanko.pdf_utils.misc.skip_over_whitespace(stream, stop_after_eol=False) → bool
	Similar to read_non_whitespace(), but returns a bool if more than
one whitespace character was read.

Will return the cursor to before the first non-whitespace character
encountered, or after the first end-of-line sequence if one is encountered.

	
pyhanko.pdf_utils.misc.skip_over_comment(stream) → bool
	Skip over a comment and position the cursor at the first byte after
the EOL sequence following the comment. If there is no comment under
the cursor, do nothing.

	Parameters:
	stream – stream to read

	Returns:
	True if a comment was read.

	
pyhanko.pdf_utils.misc.instance_test(cls)
	

	
pyhanko.pdf_utils.misc.peek(itr)
	

	
pyhanko.pdf_utils.misc.assert_writable_and_random_access(output)
	Raise an error if the buffer in question is not writable, and return
a boolean to indicate whether it supports random-access reading.

	Parameters:
	output –

	Returns:
	

	
pyhanko.pdf_utils.misc.prepare_rw_output_stream(output)
	Prepare an output stream that supports both reading and writing.
Intended to be used for writing & updating signed files:
when producing a signature, we render the PDF to a byte buffer with
placeholder values for the signature data, or straight to the provided
output stream if possible.

More precisely: this function will return the original output stream
if it is writable, readable and seekable.
If the output parameter is None, not readable or not seekable,
this function will return a BytesIO instance instead.
If the output parameter is not None and not writable,
IOError will be raised.

	Parameters:
	output – A writable file-like object, or None.

	Returns:
	A file-like object that supports reading, writing and seeking.

	
pyhanko.pdf_utils.misc.finalise_output(orig_output, returned_output)
	Several internal APIs transparently replaces non-readable/seekable
buffers with BytesIO for signing operations, but we don’t want to
expose that to the public API user.
This internal API function handles the unwrapping.

	
pyhanko.pdf_utils.misc.DEFAULT_CHUNK_SIZE = 4096
	Default chunk size for stream I/O.

	
pyhanko.pdf_utils.misc.chunked_write(temp_buffer: bytearray, stream, output, max_read=None)
	

	
pyhanko.pdf_utils.misc.chunked_digest(temp_buffer: bytearray, stream, md, max_read=None)
	

	
pyhanko.pdf_utils.misc.chunk_stream(temp_buffer: bytearray | memoryview, stream, max_read=None) → Iterable[bytearray | memoryview]
	

	
class pyhanko.pdf_utils.misc.ConsList(head: 'Optional[ListElem]', tail: 'Optional[ConsList[ListElem]]' = None)
	Bases: Generic[ListElem]

	
head: ListElem | None
	

	
tail: ConsList[ListElem] | None = None
	

	
static empty() → ConsList[ListElem]
	

	
static sing(value: ListElem) → ConsList[ListElem]
	

	
property last: ListElem | None
	

	
cons(head: ListElem) → ConsList[ListElem]
	

	
class pyhanko.pdf_utils.misc.Singleton(name, bases, dct)
	Bases: type

	
pyhanko.pdf_utils.misc.rd(x)
	

	
pyhanko.pdf_utils.misc.isoparse(dt_str: str) → datetime
	

	
pyhanko.pdf_utils.misc.lift_iterable_async(i: Iterable[X]) → CancelableAsyncIterator[X]
	

pyhanko.pdf_utils.qr module

	
class pyhanko.pdf_utils.qr.PdfStreamQRImage(border, width, box_size, *args, **kwargs)
	Bases: BaseImage

Quick-and-dirty implementation of the Image interface required
by the qrcode package.

	
kind: str | None = 'PDF'
	

	
allowed_kinds: Tuple[str] | None = ('PDF',)
	

	
qr_color = (0, 0, 0)
	

	
new_image(**kwargs)
	Build the image class. Subclasses should return the class created.

	
drawrect(row, col)
	Draw a single rectangle of the QR code.

	
append_single_rect(command_stream, row, col)
	

	
format_qr_color()
	

	
setup_drawing_area()
	

	
render_command_stream()
	

	
save(stream, kind=None)
	Save the image file.

	
process()
	Processes QR code after completion

	
drawrect_context(row, col, active, context)
	Draw a single rectangle of the QR code given the surrounding context

	
class pyhanko.pdf_utils.qr.PdfFancyQRImage(border, width, box_size, *_args, version, center_image: PdfContent | None = None, **kwargs)
	Bases: PdfStreamQRImage

	
centerpiece_corner_radius = 0.2
	

	
save(stream, kind=None)
	Save the image file.

	
process()
	Processes QR code after completion

	
append_single_rect(command_stream, row, col)
	

	
is_major_position_pattern(row, col)
	

	
is_position_pattern(row, col)
	

	
draw_position_patterns()
	

	
draw_centerpiece()
	

	
setup_drawing_area()
	

	
render_command_stream()
	

	
pyhanko.pdf_utils.qr.rounded_square(x_pos: float, y_pos: float, sz: float, rad: float) → List[bytes]
	Add a subpath of a square with rounded corners at the given position.
Doesn’t include any painting or clipping operations.

The path is drawn counterclockwise.

	Parameters:
		x_pos – The x-coordinate of the enveloping square’s lower left corner.

	y_pos – The y-coordinate of the enveloping square’s lower left corner.

	sz – The side length of the enveloping square.

	rad – The corner radius.

	Returns:
	A list of graphics operators.

pyhanko.pdf_utils.reader module

Utility to read PDF files.
Contains code from the PyPDF2 project; see here
for the original license.

The implementation was tweaked with the express purpose of facilitating
historical inspection and auditing of PDF files with multiple revisions
through incremental updates.
This comes at a cost, and future iterations of this module may offer more
flexibility in terms of the level of detail with which file size is scrutinised.

	
class pyhanko.pdf_utils.reader.PdfFileReader(stream, strict: bool = True)
	Bases: PdfHandler

Class implementing functionality to read a PDF file and cache
certain data about it.

	
xrefs: XRefCache
	

	
last_startxref = None
	

	
has_xref_stream = False
	

	
property security_handler
	

	
property document_meta_view: DocumentMetadata
	

	
property input_version
	

	
property encrypt_dict: DictionaryObject | None
	

	
property trailer_view: DictionaryObject
	Returns a view of the document trailer of the document represented
by this PdfHandler instance.

The view is effectively read-only, in the sense that any writes
will not be reflected in the actual trailer (if the handler supports
writing, that is).

	Returns:
	A generic.DictionaryObject representing the current state
of the document trailer.

	
property root_ref: Reference
		Returns:
	A reference to the document catalog of this PDF handler.

	
property document_id: Tuple[bytes, bytes]
	

	
get_historical_root(revision: int)
	Get the document catalog for a specific revision.

	Parameters:
	revision – The revision to query, the oldest one being 0.

	Returns:
	The value of the document catalog dictionary for that revision.

	
property total_revisions: int
		Returns:
	The total number of revisions made to this file.

	
get_object(ref, revision=None, never_decrypt=False, transparent_decrypt=True, as_metadata_stream=False)
	Read an object from the input stream.

	Parameters:
		ref – Reference to the object.

	revision – Revision number, to return the historical value of a reference.
This always bypasses the cache.
The oldest revision is numbered 0.
See also HistoricalResolver.

	never_decrypt – Skip decryption step (only needed for parsing /Encrypt)

	transparent_decrypt –
If True, all encrypted objects are transparently decrypted by
default (in the sense that a user of the API in a PyPDF2 compatible
way would only “see” decrypted objects).
If False, this method may return a proxy object that still
allows access to the “original”.

Danger

The encryption parameters are considered internal,
undocumented API, and subject to change without notice.

	as_metadata_stream – Whether to dereference the object as an XMP metadata stream.

	Returns:
	A PdfObject.

	Raises:
	PdfReadError – Raised if there is an issue reading the object from the file.

	
cache_get_indirect_object(generation, idnum)
	

	
cache_indirect_object(generation, idnum, obj)
	

	
decrypt(password: str | bytes) → AuthResult
	When using an encrypted PDF file with the standard PDF encryption
handler, this function will allow the file to be decrypted.
It checks the given password against the document’s user password and
owner password, and then stores the resulting decryption key if either
password is correct.

Both legacy encryption schemes and PDF 2.0 encryption (based on AES-256)
are supported.

Danger

Supplying either user or owner password will work.
Cryptographically, both allow the decryption key to be computed,
but processors are expected to adhere to the /P flags in the
encryption dictionary when accessing a file with the user password.
Currently, pyHanko does not enforce these restrictions, but it
may in the future.

Danger

One should also be aware that the legacy encryption schemes used
prior to PDF 2.0 are (very) weak, and we only support them for
compatibility reasons.
Under no circumstances should these still be used to encrypt new
files.

	Parameters:
	password – The password to match.

	
decrypt_pubkey(credential: EnvelopeKeyDecrypter) → AuthResult
	Decrypt a PDF file encrypted using public-key encryption by providing
a credential representing the private key of one of the recipients.

Danger

The same caveats as in decrypt() w.r.t. permission handling
apply to this method.

Danger

The robustness of the public key cipher being used is not the only
factor in the security of public-key encryption in PDF.
The standard still permits weak schemes to encrypt the actual file
data and file keys.
PyHanko uses sane defaults everywhere, but other software may not.

	Parameters:
	credential – The EnvelopeKeyDecrypter handling the recipient’s
private key.

	
property encrypted
		Returns:
	True if a document is encrypted, False otherwise.

	
get_historical_resolver(revision: int) → HistoricalResolver
	Return a PdfHandler instance that provides a view
on the file at a specific revision.

	Parameters:
	revision – The revision number to use, with 0 being the oldest.

	Returns:
	An instance of HistoricalResolver.

	
property embedded_signatures
		Returns:
	The signature objects embedded in this document, in signing order;
see EmbeddedPdfSignature.

	
property embedded_regular_signatures
		Returns:
	The signature objects of type /Sig embedded in this document,
in signing order;
see EmbeddedPdfSignature.

	
property embedded_timestamp_signatures
		Returns:
	The signature objects of type /DocTimeStamp embedded in
this document, in signing order;
see EmbeddedPdfSignature.

	
class pyhanko.pdf_utils.reader.HistoricalResolver(reader: PdfFileReader, revision)
	Bases: PdfHandler

PdfHandler implementation that provides a view
on a particular revision of a PDF file.

Instances of HistoricalResolver should be created by calling the
get_historical_resolver() method on a
PdfFileReader object.

Instances of this class cache the result of get_object() calls.

Danger

This class is documented, but is nevertheless considered internal API,
and easy to misuse.

In particular, the container_ref attribute must not be relied upon
for objects retrieved from a HistoricalResolver.
Internally, it is only used to make lazy decryption work in historical
revisions.

Note

Be aware that instances of this class transparently rewrite the PDF
handler associated with any reference objects returned from the reader,
so calling get_object() on an indirect
reference object will cause the reference to be resolved within the
selected revision.

	
property document_meta_view: DocumentMetadata
	

	
property document_id: Tuple[bytes, bytes]
	

	
property trailer_view: DictionaryObject
	Returns a view of the document trailer of the document represented
by this PdfHandler instance.

The view is effectively read-only, in the sense that any writes
will not be reflected in the actual trailer (if the handler supports
writing, that is).

	Returns:
	A generic.DictionaryObject representing the current state
of the document trailer.

	
get_object(ref: Reference, as_metadata_stream: bool = False)
	Retrieve the object associated with the provided reference from
this PDF handler.

	Parameters:
		ref – An instance of generic.Reference.

	as_metadata_stream – Whether to dereference the object as an XMP metadata stream.

	Returns:
	A PDF object.

	
property root_ref: Reference
		Returns:
	A reference to the document catalog of this PDF handler.

	
explicit_refs_in_revision()
	

	
refs_freed_in_revision()
	

	
object_streams_used()
	

	
is_ref_available(ref: Reference) → bool
	Check if the reference in question was in scope for this revision.
This call doesn’t care about the specific semantics of free vs. used
objects; it conservatively answers ‘no’ in any situation where
the object ID _could_ have been assigned by the revision in question.

	Parameters:
	ref – A reference object (usually one written to by a newer revision)

	Returns:
	True if the reference is unassignable, False otherwise.

	
collect_dependencies(obj: PdfObject, since_revision=None) → Set[Reference]
	Collect all indirect references used by an object and its descendants.

	Parameters:
		obj – The object to inspect.

	since_revision –
Optionally specify a revision number that tells the scanner to only
include objects IDs that were added in that revision or later.

Warning

In particular, this means that the scanner will not recurse
into older objects either.

	Returns:
	A set of Reference objects.

	
pyhanko.pdf_utils.reader.parse_catalog_version(version_str) → Tuple[int, int] | None
	

	
class pyhanko.pdf_utils.reader.RawPdfPath(*path: str | int)
	Bases: object

Class to model raw paths in a file.

This class is internal API.

	
walk_nodes(from_obj, transparent_dereference=True) → Generator[Tuple[int | str | None, PdfObject], None, None]
	

	
access_on(from_obj, dereference_last=True) → PdfObject
	

	
access_reference_on(from_obj) → Reference
	

	
pyhanko.pdf_utils.reader.process_data_at_eof(stream) → int
	Auxiliary function that reads backwards from the current position
in a stream to find the EOF marker and startxref value

This is internal API.

	Parameters:
	stream – A stream to read from

	Returns:
	The value of the startxref pointer, if found.
Otherwise a PdfReadError is raised.

pyhanko.pdf_utils.rw_common module

Utilities common to reading and writing PDF files.

	
class pyhanko.pdf_utils.rw_common.PdfHandler
	Bases: object

Abstract class providing a general interface for quering objects
in PDF readers and writers alike.

	
get_object(ref: Reference, as_metadata_stream: bool = False)
	Retrieve the object associated with the provided reference from
this PDF handler.

	Parameters:
		ref – An instance of generic.Reference.

	as_metadata_stream – Whether to dereference the object as an XMP metadata stream.

	Returns:
	A PDF object.

	
property trailer_view: DictionaryObject
	Returns a view of the document trailer of the document represented
by this PdfHandler instance.

The view is effectively read-only, in the sense that any writes
will not be reflected in the actual trailer (if the handler supports
writing, that is).

	Returns:
	A generic.DictionaryObject representing the current state
of the document trailer.

	
property document_meta_view: DocumentMetadata
	

	
property root_ref: Reference
		Returns:
	A reference to the document catalog of this PDF handler.

	
property root: DictionaryObject
		Returns:
	The document catalog of this PDF handler.

	
property document_id: Tuple[bytes, bytes]
	

	
find_page_container(page_ix)
	Retrieve the node in the page tree containing the
page with index page_ix, along with the necessary objects
to modify it in an incremental update scenario.

	Parameters:
	page_ix – The (zero-indexed) number of the page for which we want to
retrieve the parent.
A negative number counts pages from the back of the document,
with index -1 referring to the last page.

	Returns:
	A triple with the /Pages object (or a reference to it),
the index of the target page in said /Pages object, and a
(possibly inherited) resource dictionary.

	
find_page_for_modification(page_ix)
	Retrieve the page with index page_ix from the page tree, along with
the necessary objects to modify it in an incremental update scenario.

	Parameters:
	page_ix – The (zero-indexed) number of the page to retrieve.
A negative number counts pages from the back of the document,
with index -1 referring to the last page.

	Returns:
	A tuple with a reference to the page object and a
(possibly inherited) resource dictionary.

pyhanko.pdf_utils.text module

Utilities related to text rendering & layout.

	
class pyhanko.pdf_utils.text.TextStyle(font: ~pyhanko.pdf_utils.font.api.FontEngineFactory = <factory>, font_size: int = 10, leading: int | None = None)
	Bases: ConfigurableMixin

Container for basic test styling settings.

	
font: FontEngineFactory
	The FontEngineFactory to be used for this text style.
Defaults to Courier (as a non-embedded standard font).

	
font_size: int = 10
	Font size to be used.

	
leading: int | None = None
	Text leading. If None, the font_size parameter is used instead.

	
classmethod process_entries(config_dict)
	Hook method that can modify the configuration dictionary
to overwrite or tweak some of their values (e.g. to convert string
parameters into more complex Python objects)

Subclasses that override this method should call
super().process_entries(), and leave keys that they do not
recognise untouched.

	Parameters:
	config_dict – A dictionary containing configuration values.

	Raises:
	ConfigurationError – when there is a problem processing a relevant entry.

	
class pyhanko.pdf_utils.text.TextBoxStyle(font: ~pyhanko.pdf_utils.font.api.FontEngineFactory = <factory>, font_size: int = 10, leading: int | None = None, border_width: int = 0, box_layout_rule: ~pyhanko.pdf_utils.layout.SimpleBoxLayoutRule | None = None, vertical_text: bool = False)
	Bases: TextStyle

Extension of TextStyle for use in text boxes.

	
border_width: int = 0
	Border width, if applicable.

	
box_layout_rule: SimpleBoxLayoutRule | None = None
	Layout rule to nest the text within its containing box.

Warning

This only affects the position of the text object, not the alignment of
the text within.

	
vertical_text: bool = False
	Switch layout code to vertical mode instead of horizontal mode.

	
class pyhanko.pdf_utils.text.TextBox(style: TextBoxStyle, writer, resources: PdfResources | None = None, box: BoxConstraints | None = None, font_name='F1')
	Bases: PdfContent

Implementation of a text box that implements the PdfContent
interface.

Note

Text boxes currently don’t offer automatic word wrapping.

	
put_string_line(txt)
	

	
property content_lines
		Returns:
	Text content of the text box, broken up into lines.

	
property content
		Returns:
	
The actual text content of the text box.
This is a modifiable property.

In textboxes that don’t have a fixed size, setting this property
can cause the text box to be resized.

	
property leading
		Returns:
	The effective leading value, i.e. the
leading attribute of the associated
TextBoxStyle, or font_size if
not specified.

	
render()
	Compile the content to graphics operators.

pyhanko.pdf_utils.writer module

Utilities for writing PDF files.
Contains code from the PyPDF2 project; see here
for the original license.

	
class pyhanko.pdf_utils.writer.BasePdfFileWriter(root: IndirectObject | DictionaryObject, info: IndirectObject | DictionaryObject | None, document_id: ArrayObject, obj_id_start: int = 0, stream_xrefs: bool = True)
	Bases: PdfHandler

Base class for PDF writers.

	
output_version = (1, 7)
	Output version to be declared in the output file.

	
stream_xrefs: bool
	Boolean controlling whether or not the output file will contain
its cross-references in stream format, or as a classical XRef table.

The default for new files is True. For incremental updates,
the writer adapts to the system used in the previous iteration of the
document (as mandated by the standard).

	
get_subset_collection(base_postscript_name: str)
	

	
property document_meta: DocumentMetadata
	

	
property document_meta_view: DocumentMetadata
	

	
ensure_output_version(version)
	

	
set_info(info: IndirectObject | DictionaryObject | None) → IndirectObject | None
	Set the /Info entry of the document trailer.

	Parameters:
	info – The new /Info dictionary, as an indirect reference.

	
set_custom_trailer_entry(key: NameObject, value: PdfObject)
	Set a custom, unmanaged entry in the document trailer or cross-reference
stream dictionary.

Warning

Calling this method to set an entry that is managed by pyHanko
internally (info dictionary, document catalog, etc.) has undefined
results.

	Parameters:
		key – Dictionary key to use in the trailer.

	value – Value to set

	
property document_id: Tuple[bytes, bytes]
	

	
mark_update(obj_ref: Reference | IndirectObject)
	Mark an object reference to be updated.
This is only relevant for incremental updates, but is included
as a no-op by default for interoperability reasons.

	Parameters:
	obj_ref – An indirect object instance or a reference.

	
update_container(obj: PdfObject)
	Mark the container of an object (as indicated by the
container_ref attribute on
PdfObject) for an update.

As with mark_update(), this only applies to incremental updates,
but defaults to a no-op.

	Parameters:
	obj – The object whose top-level container needs to be rewritten.

	
property root_ref: Reference
		Returns:
	A reference to the document catalog.

	
update_root()
	Signal that the document catalog should be written to the output.
Equivalent to calling mark_update() with root_ref.

	
register_extension(ext: DeveloperExtension)
	

	
get_object(ido, as_metadata_stream: bool = False)
	Retrieve the object associated with the provided reference from
this PDF handler.

	Parameters:
		ref – An instance of generic.Reference.

	as_metadata_stream – Whether to dereference the object as an XMP metadata stream.

	Returns:
	A PDF object.

	
allocate_placeholder() → IndirectObject
	Allocate an object reference to populate later.
Calls to get_object() for this reference will
return NullObject until it is populated using
add_object().

This method is only relevant in certain advanced contexts where
an object ID needs to be known before the object it refers
to can be built; chances are you’ll never need it.

	Returns:
	A IndirectObject instance referring to
the object just allocated.

	
add_object(obj, obj_stream: ObjectStream | None = None, idnum=None) → IndirectObject
	Add a new object to this writer.

	Parameters:
		obj – The object to add.

	obj_stream – An object stream to add the object to.

	idnum – Manually specify the object ID of the object to be added.
This is only allowed for object IDs that have previously been
allocated using allocate_placeholder().

	Returns:
	A IndirectObject instance referring to
the object just added.

	
prepare_object_stream(compress=True)
	Prepare and return a new ObjectStream object.

	Parameters:
	compress – Indicates whether the resulting object stream should be compressed.

	Returns:
	An ObjectStream object.

	
property trailer_view: DictionaryObject
	Returns a view of the document trailer of the document represented
by this PdfHandler instance.

The view is effectively read-only, in the sense that any writes
will not be reflected in the actual trailer (if the handler supports
writing, that is).

	Returns:
	A generic.DictionaryObject representing the current state
of the document trailer.

	
write(stream)
	Write the contents of this PDF writer to a stream.

	Parameters:
	stream – A writable output stream.

	
register_annotation(page_ref, annot_ref)
	Register an annotation to be added to a page.
This convenience function takes care of calling mark_update()
where necessary.

	Parameters:
		page_ref – Reference to the page object involved.

	annot_ref – Reference to the annotation object to be added.

	
insert_page(new_page, after=None)
	Insert a page object into the tree.

	Parameters:
		new_page – Page object to insert.

	after – Page number (zero-indexed) after which to insert the page.

	Returns:
	A reference to the newly inserted page.

	
import_object(obj: PdfObject, obj_stream: ObjectStream | None = None) → PdfObject
	Deep-copy an object into this writer, dealing with resolving indirect
references in the process.

Danger

The table mapping indirect references in the input to indirect
references in the writer is not preserved between calls.
Concretely, this means that invoking import_object() twice
on the same input reader may cause object duplication.

	Parameters:
		obj – The object to import.

	obj_stream –
The object stream to import objects into.

Note

Stream objects and bare references will not be put into
the object stream; the standard forbids this.

	Returns:
	The object as associated with this writer.
If the input object was an indirect reference, a dictionary
(incl. streams) or an array, the returned value will always be
a new instance.

	
import_page_as_xobject(other: PdfHandler, page_ix=0, inherit_filters=True)
	Import a page content stream from some other
PdfHandler into the current one as a form XObject.

	Parameters:
		other – A PdfHandler

	page_ix – Index of the page to copy (default: 0)

	inherit_filters – Inherit the content stream’s filters, if present.

	Returns:
	An IndirectObject referring to the page object
as added to the current reader.

	
add_stream_to_page(page_ix, stream_ref, resources=None, prepend=False)
	Append an indirect stream object to a page in a PDF as a content
stream.

	Parameters:
		page_ix – Index of the page to modify.
The first page has index 0.

	stream_ref – IndirectObject reference to the stream
object to add.

	resources – Resource dictionary containing resources to add to the page’s
existing resource dictionary.

	prepend – Prepend the content stream to the list of content streams, as
opposed to appending it to the end.
This has the effect of causing the stream to be rendered
underneath the already existing content on the page.

	Returns:
	An IndirectObject reference to the page object
that was modified.

	
merge_resources(orig_dict: DictionaryObject, new_dict: DictionaryObject) → bool
	Update an existing resource dictionary object with data from another
one. Returns True if the original dict object was modified directly.

The caller is responsible for avoiding name conflicts with existing
resources.

	
class pyhanko.pdf_utils.writer.PageObject(contents, media_box, resources=None)
	Bases: DictionaryObject

Subclass of DictionaryObject that handles some of the
initialisation boilerplate for page objects.

	
class pyhanko.pdf_utils.writer.PdfFileWriter(stream_xrefs=True, init_page_tree=True, info=None)
	Bases: BasePdfFileWriter

Class to write new PDF files.

	
encrypt(owner_pass, user_pass=None, **kwargs)
	Mark this document to be encrypted with PDF 2.0 encryption (AES-256).

Caution

While pyHanko supports legacy PDF encryption as well, the API
to create new documents using outdated encryption is left
largely undocumented on purpose to discourage its use.

This caveat does not apply to incremental updates added to
existing documents.

Danger

The PDF 2.0 standard mandates AES-256 in CBC mode, and also includes
12 bytes of known plaintext by design. This implies that a
sufficiently knowledgeable attacker can inject arbitrary content
into your encrypted files without knowledge of the password.

Adding a digital signature to the encrypted document is not
a foolproof way to deal with this either, since most viewers will
still allow the document to be opened before signatures are
validated, and therefore end users are still exposed to potentially
malicious content.

Until the standard supports authenticated encryption schemes, you
should never rely on its encryption provisions if tampering
is a concern.

	Parameters:
		owner_pass – The desired owner password.

	user_pass – The desired user password (defaults to the owner password
if not specified)

	kwargs – Other keyword arguments to be passed to
StandardSecurityHandler.build_from_pw().

	
encrypt_pubkey(recipients: List[Certificate], **kwargs)
	Mark this document to be encrypted with PDF 2.0 public key encryption.
The certificates passed in should be RSA certificates.

PyHanko defaults to AES-256 to encrypt the actual file contents.
The seed used to derive the file encryption key is also encrypted
using AES-256 and bundled in a CMS EnvelopedData object.
The envelope key is then encrypted separately for each recipient, using
their respective public keys.

Caution

The caveats for encrypt() also apply here.

	Parameters:
		recipients – Certificates of the recipients that should be able to decrypt
the document.

	kwargs – Other keyword arguments to be passed to
PubKeySecurityHandler.build_from_certs().

	
set_custom_trailer_entry(key: NameObject, value: PdfObject)
	Set a custom, unmanaged entry in the document trailer or cross-reference
stream dictionary.

Warning

Calling this method to set an entry that is managed by pyHanko
internally (info dictionary, document catalog, etc.) has undefined
results.

	Parameters:
		key – Dictionary key to use in the trailer.

	value – Value to set

	
pyhanko.pdf_utils.writer.init_xobject_dictionary(command_stream: bytes, box_width, box_height, resources: DictionaryObject | None = None) → StreamObject
	Helper function to initialise form XObject dictionaries.

Note

For utilities to handle image XObjects, see images.

	Parameters:
		command_stream – The XObject’s raw appearance stream.

	box_width – The width of the XObject’s bounding box.

	box_height – The height of the XObject’s bounding box.

	resources – A resource dictionary to include with the form object.

	Returns:
	A StreamObject representation of the form XObject.

	
pyhanko.pdf_utils.writer.copy_into_new_writer(input_handler: PdfHandler, writer_kwargs: dict | None = None) → PdfFileWriter
	Copy all objects in a given PDF handler into a new PdfFileWriter.
This operation will attempt to preserve the document catalog
of the original input_handler.

Very roughly, calling this function and then immediately invoking
write() on the resulting writer should result
in an equivalent document as far as presentation is concerned.
As a general rule, behaviour that is controlled from outside the document
catalog (e.g. encryption) or that requires byte-for-byte equivalence with
the original (e.g. digital signatures) will not survive this translation.

	Parameters:
		input_handler – PdfHandler to source objects from.

	writer_kwargs – Keyword arguments to pass to the writer.

	Returns:
	New PdfFileWriter containing all objects from the input
handler.

pyhanko.pdf_utils.xref module

Internal utilities to handle the processing of cross-reference data and
document trailer data.

This entire module is considered internal API.

	
class pyhanko.pdf_utils.xref.XRefCache(reader, xref_sections: List[XRefSection])
	Bases: object

Internal class to parse & store information from the xref section(s) of a
PDF document.

Stores both the most recent status of all xrefs in addition to their
historical values.

All members of this class are considered internal API and are subject
to change without notice.

	
property total_revisions
	

	
get_last_change(ref: Reference)
	

	
object_streams_used_in(revision)
	

	
get_introducing_revision(ref: Reference)
	

	
get_xref_container_info(revision) → XRefSectionMetaInfo
	

	
get_xref_data(revision) → XRefSectionData
	

	
explicit_refs_in_revision(revision) → Set[Reference]
	Look up the object refs for all objects explicitly added or overwritten
in a given revision.

	Parameters:
	revision – A revision number. The oldest revision is zero.

	Returns:
	A set of Reference objects.

	
refs_freed_in_revision(revision) → Set[Reference]
	Look up the object refs for all objects explicitly freed
in a given revision.

	Parameters:
	revision – A revision number. The oldest revision is zero.

	Returns:
	A set of Reference objects.

	
get_startxref_for_revision(revision) → int
	Look up the location of the XRef table/stream associated with a specific
revision, as indicated by startxref or /Prev.

	Parameters:
	revision – A revision number. The oldest revision is zero.

	Returns:
	An integer pointer

	
get_historical_ref(ref, revision) → int | ObjStreamRef | None
	Look up the location of the historical value of an object.

Note

This method is not suitable for determining whether or not
a particular object ID is available in a given revision, since
it treats unused objects and freed objects the same way.

	Parameters:
		ref – An object reference.

	revision – A revision number. The oldest revision is zero.

	Returns:
	An integer offset, an object stream reference, or None if
the reference does not resolve in the specified revision.

	
property hybrid_xrefs_present: bool
	Determine if a file uses hybrid references anywhere.

	Returns:
	True if hybrid references were detected, False otherwise.

	
class pyhanko.pdf_utils.xref.XRefBuilder(handler: PdfHandler, stream, strict: bool, last_startxref: int)
	Bases: object

	
err_limit = 10
	

	
read_xrefs()
	

	
class pyhanko.pdf_utils.xref.XRefType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)
	Bases: Enum

Different types of cross-reference entries.

	
FREE = 1
	A freeing instruction.

	
STANDARD = 2
	A regular top-level object.

	
IN_OBJ_STREAM = 3
	An object that is part of an object stream.

	
class pyhanko.pdf_utils.xref.XRefEntry(xref_type: XRefType, location: int | ObjStreamRef | None, idnum: int, generation: int = 0)
	Bases: object

Value type representing a single cross-reference entry.

	
xref_type: XRefType
	The type of cross-reference entry.

	
location: int | ObjStreamRef | None
	Location the cross-reference points to.

	
idnum: int
	The ID of the object being referenced.

	
generation: int = 0
	The generation number of the object being referenced.

	
class pyhanko.pdf_utils.xref.ObjStreamRef(obj_stream_id: int, ix_in_stream: int)
	Bases: object

Identifies an object that’s part of an object stream.

	
obj_stream_id: int
	The ID number of the object stream (its generation number is presumed zero).

	
ix_in_stream: int
	The index of the object in the stream.

	
exception pyhanko.pdf_utils.xref.ObjectHeaderReadError(msg: str, *args)
	Bases: PdfReadError

	
class pyhanko.pdf_utils.xref.XRefSection(meta_info: XRefSectionMetaInfo, xref_data: XRefSectionData)
	Bases: object

Describes a cross-reference section and describes how it is serialised into
the PDF file.

	
meta_info: XRefSectionMetaInfo
	Metadata about the cross-reference section.

	
xref_data: XRefSectionData
	A description of the actual object pointer definitions.

	
class pyhanko.pdf_utils.xref.XRefSectionData
	Bases: object

Internal class for bookkeeping on a single cross-reference section,
independently of the others.

	
try_resolve(ref: Reference | IndirectObject) → int | ObjStreamRef | None
	

	
process_entries(entries: Iterator[XRefEntry], strict: bool)
	

	
process_hybrid_entries(entries: Iterator[XRefEntry], xref_meta_info: XRefSectionMetaInfo, strict: bool)
	

	
higher_generation_refs()
	

	
class pyhanko.pdf_utils.xref.XRefSectionType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)
	Bases: Enum

	
STANDARD = 1
	

	
STREAM = 2
	

	
HYBRID_MAIN = 3
	

	
HYBRID_STREAM = 4
	

	
class pyhanko.pdf_utils.xref.XRefSectionMetaInfo(xref_section_type: pyhanko.pdf_utils.xref.XRefSectionType, size: int, declared_startxref: int, start_location: int, end_location: int, stream_ref: pyhanko.pdf_utils.generic.Reference | None)
	Bases: object

	
xref_section_type: XRefSectionType
	The type of cross-reference section.

	
size: int
	The highest object ID in scope for this xref section.

	
declared_startxref: int
	Location pointed to by the startxref pointer in that revision.

	
start_location: int
	Actual start location of the xref data. This should be equal
to declared_startxref, but in broken files that may not be the case.

	
end_location: int
	Location where the xref data ended.

	
stream_ref: Reference | None
	Reference to the relevant xref stream, if applicable.

	
class pyhanko.pdf_utils.xref.TrailerDictionary
	Bases: PdfObject

The standard mandates that each trailer shall contain
at least all keys used in the preceding trailer, even if unmodified.
Of course, we cannot trust documents to actually follow this rule, so
this class implements fallbacks.

	
non_trailer_keys = {'/DecodeParms', '/Filter', '/Index', '/Length', '/Type', '/W', '/XRefStm'}
	

	
add_trailer_revision(trailer_dict: DictionaryObject)
	

	
raw_get(key, decrypt: EncryptedObjAccess = EncryptedObjAccess.TRANSPARENT, revision=None)
	

	
flatten(revision=None) → DictionaryObject
	

	
keys()
	

	
items()
	

	
write_to_stream(stream, handler=None, container_ref=None)
	Abstract method to render this object to an output stream.

	Parameters:
		stream – An output stream.

	container_ref – Local encryption key.

	handler – Security handler

	
pyhanko.pdf_utils.xref.read_object_header(stream, strict)
	

	
pyhanko.pdf_utils.xref.parse_xref_stream(xref_stream: StreamObject, strict: bool = True) → Iterator[XRefEntry]
	Parse a single cross-reference stream and yield its entries one by one.

This is internal API.

	Parameters:
		xref_stream – A StreamObject.

	strict – Boolean indicating whether we’re running in strict mode.

	Returns:
	A generator object yielding XRefEntry objects.

	
pyhanko.pdf_utils.xref.parse_xref_table(stream) → Iterator[XRefEntry]
	Parse a single cross-reference table and yield its entries one by one.

This is internal API.

	Parameters:
	stream – A file-like object pointed to the start of the cross-reference table.

	Returns:
	A generator object yielding XRefEntry objects.

	
pyhanko.pdf_utils.xref.write_xref_table(stream, position_dict: Dict[Tuple[int, int], int])
	

	
class pyhanko.pdf_utils.xref.ObjectStream(compress=True)
	Bases: object

Utility class to collect objects into a PDF object stream.

Object streams are mainly useful for space efficiency reasons.
They allow related objects to be grouped & compressed together in a
more flexible manner.

Warning

Object streams can only be used in files with a cross-reference
stream, as opposed to a classical XRef table.
In particular, this means that incremental updates to files with a
legacy XRef table cannot contain object streams either.
See § 7.5.7 in ISO 32000-1 for further details.

Danger

Use BasePdfFileWriter.prepare_object_stream() to create instances
of object streams. The __init__ function is internal API.

	
add_object(idnum: int, obj: PdfObject)
	Add an object to an object stream.
Note that objects in object streams always have their generation number
set to 0 by definition.

	Parameters:
		idnum – The object’s ID number.

	obj – The object to embed into the object stream.

	Raises:
	TypeError – Raised if obj is an instance of StreamObject
or IndirectObject.

	
as_pdf_object() → StreamObject
	Render the object stream to a PDF stream object

	Returns:
	An instance of StreamObject.

	
class pyhanko.pdf_utils.xref.XRefStream(position_dict: Dict[Tuple[int, int], int | Tuple[int, int]])
	Bases: StreamObject

	
write_to_stream(stream, handler=None, container_ref=None)
	Abstract method to render this object to an output stream.

	Parameters:
		stream – An output stream.

	container_ref – Local encryption key.

	handler – Security handler

Module contents

 Previous
 Next

 © Copyright 2020-2023, Matthias Valvekens.
 Revision 176ac0f4.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

 Read the Docs
 v: latest

 	Versions
	latest
	stable
	v0.22.0
	v0.21.0
	v0.20.1
	v0.20.0
	v0.19.0
	v0.18.1
	v0.18.0
	0.17.2
	0.17.1
	0.17.0
	0.16.0
	0.15.1
	0.15.0
	0.14.0
	0.13.2
	0.13.1
	0.13.0
	0.12.1
	0.12.0
	0.11.0
	0.10.0
	0.9.0
	0.8.0
	0.7.0
	0.6.1
	0.6.0
	0.5.1
	0.5.0
	0.4.0
	0.3.0
	0.2.0
	0.1.0

 	Downloads
	pdf
	html
	epub

 	On Read the Docs
	
 Project Home

	
 Builds

