

 pyHanko

 latest

 Contents:

	CLI user’s guide
	Library (SDK) user’s guide
	API reference	pyhanko package	Subpackages	pyhanko.config package
	pyhanko.cli package
	pyhanko.pdf_utils package
	pyhanko.sign package

	Submodules
	pyhanko.keys module
	pyhanko.stamp module
	pyhanko.version module

	pyhanko_certvalidator package

	Release history
	Frequently asked questions (FAQ)
	Known issues
	Release artifact authenticity
	Licenses

 pyHanko

 	
	API reference
	pyhanko package
	pyhanko.sign package
	pyhanko.sign.signers package
	
 Edit on GitHub

pyhanko.sign.signers package

Submodules

pyhanko.sign.signers.cms_embedder module

This module describes and implements the low-level PdfCMSEmbedder
protocol for embedding CMS payloads into PDF signature objects.

	
class pyhanko.sign.signers.cms_embedder.PdfCMSEmbedder(new_field_spec: SigFieldSpec | None = None)
	Bases: object

Low-level class that handles embedding CMS objects into PDF signature
fields.

It also takes care of appearance generation and DocMDP configuration,
but does not otherwise offer any of the conveniences of
PdfSigner.

	Parameters:
	new_field_spec – SigFieldSpec to use when creating new fields on-the-fly.

	
write_cms(field_name: str | None, writer: BasePdfFileWriter, existing_fields_only=False)
	
New in version 0.3.0.

Changed in version 0.7.0: Digest wrapped in
PreparedByteRangeDigest
in step 3; output returned in step 3 instead of step 4.

This method returns a generator coroutine that controls the process
of embedding CMS data into a PDF signature field.
Can be used for both timestamps and regular signatures.

Danger

This is a very low-level interface that performs virtually no
error checking, and is intended to be used in situations
where the construction of the CMS object to be embedded
is not under the caller’s control (e.g. a remote signer
that produces full-fledged CMS objects).

In almost every other case, you’re better of using
PdfSigner instead, with a custom Signer
implementation to handle the cryptographic operations if necessary.

The coroutine follows the following specific protocol.

	First, it retrieves or creates the signature field to embed the
CMS object in, and yields a reference to said field.

	The caller should then send in a SigObjSetup object, which
is subsequently processed by the coroutine. For convenience, the
coroutine will then yield a reference to the signature dictionary
(as embedded in the PDF writer).

	Next, the caller should send a SigIOSetup object,
describing how the resulting document should be hashed and written
to the output. The coroutine will write the entire document with a
placeholder region reserved for the signature and compute the
document’s hash and yield it to the caller.
It will then yield a prepared_digest, output tuple, where
prepared_digest is a PreparedByteRangeDigest object
containing the document digest and the relevant offsets, and
output is the output stream to which the document to be
signed was written.

From this point onwards, no objects may be changed or added to
the IncrementalPdfFileWriter currently in use.

	Finally, the caller should pass in a CMS object to place inside
the signature dictionary. The CMS object can be supplied as a raw
bytes object, or an asn1crypto-style object.
The coroutine’s final yield is the value of the signature
dictionary’s /Contents entry, given as a hexadecimal string.

Caution

It is the caller’s own responsibility to ensure that enough room
is available in the placeholder signature object to contain
the final CMS object.

	Parameters:
		field_name – The name of the field to fill in. This should be a field of type
/Sig.

	writer – An IncrementalPdfFileWriter containing the
document to sign.

	existing_fields_only – If True, never create a new empty signature field to contain
the signature.
If False, a new field may be created if no field matching
field_name exists.

	Returns:
	A generator coroutine implementing the protocol described above.

	
class pyhanko.sign.signers.cms_embedder.SigMDPSetup(md_algorithm: str, certify: bool = False, field_lock: pyhanko.sign.fields.FieldMDPSpec | None = None, docmdp_perms: pyhanko.sign.fields.MDPPerm | None = None)
	Bases: object

	
md_algorithm: str
	Message digest algorithm to write into the signature reference dictionary,
if one is written at all.

Warning

It is the caller’s responsibility to make sure that this value agrees
with the value embedded into the CMS object, and with the algorithm
used to hash the document.
The low-level PdfCMSEmbedder API will simply take it at
face value.

	
certify: bool = False
	Sign with an author (certification) signature, as opposed to an approval
signature. A document can contain at most one such signature, and it must
be the first one.

	
field_lock: FieldMDPSpec | None = None
	Field lock information to write to the signature reference dictionary.

	
docmdp_perms: MDPPerm | None = None
	DocMDP permissions to write to the signature reference dictionary.

	
apply(sig_obj_ref, writer)
	Apply the settings to a signature object.

Danger

This method is internal API.

	
class pyhanko.sign.signers.cms_embedder.SigObjSetup(sig_placeholder: PdfSignedData, mdp_setup: SigMDPSetup | None = None, appearance_setup: SigAppearanceSetup | None = None)
	Bases: object

Describes the signature dictionary to be embedded as the form field’s value.

	
sig_placeholder: PdfSignedData
	Bare-bones placeholder object, usually of type SignatureObject
or DocumentTimestamp.

In particular, this determines the number of bytes to allocate for the
CMS object.

	
mdp_setup: SigMDPSetup | None = None
	Optional DocMDP settings, see SigMDPSetup.

	
appearance_setup: SigAppearanceSetup | None = None
	Optional appearance settings, see SigAppearanceSetup.

	
class pyhanko.sign.signers.cms_embedder.SigAppearanceSetup(style: BaseStampStyle, timestamp: datetime, name: str | None, text_params: dict | None = None)
	Bases: object

Signature appearance configuration.

Part of the low-level PdfCMSEmbedder API, see
SigObjSetup.

	
style: BaseStampStyle
	Stamp style to use to generate the appearance.

	
timestamp: datetime
	Timestamp to show in the signature appearance.

	
name: str | None
	Signer name to show in the signature appearance.

	
text_params: dict | None = None
	Additional text interpolation parameters to pass to the underlying
stamp style.

	
apply(sig_annot, writer)
	Apply the settings to an annotation.

Danger

This method is internal API.

	
class pyhanko.sign.signers.cms_embedder.SigIOSetup(md_algorithm: str, in_place: bool = False, chunk_size: int = 4096, output: IO | None = None)
	Bases: object

I/O settings for writing signed PDF documents.

Objects of this type are used in the penultimate phase of
the PdfCMSEmbedder protocol.

	
md_algorithm: str
	Message digest algorithm to use to compute the document hash.
It should be supported by pyca/cryptography.

Warning

This is also the message digest algorithm that should appear in the
corresponding signerInfo entry in the CMS object that ends up
being embedded in the signature field.

	
in_place: bool = False
	Sign the input in-place. If False, write output to a BytesIO
object, or output if the latter is not None.

	
chunk_size: int = 4096
	Size of the internal buffer (in bytes) used to feed data to the message
digest function if the input stream does not support memoryview.

	
output: IO | None = None
	Write the output to the specified output stream. If None, write to a
new BytesIO object. Default is None.

pyhanko.sign.signers.constants module

This module defines constants & defaults used by pyHanko when creating digital
signatures.

	
pyhanko.sign.signers.constants.DEFAULT_MD = 'sha256'
	Default message digest algorithm used when computing digests for use in
signatures.

	
pyhanko.sign.signers.constants.DEFAULT_SIG_SUBFILTER = SigSeedSubFilter.ADOBE_PKCS7_DETACHED
	Default SubFilter to use for a PDF signature.

	
pyhanko.sign.signers.constants.DEFAULT_SIGNER_KEY_USAGE = {'non_repudiation'}
	Default key usage bits required for the signer’s certificate.

	
pyhanko.sign.signers.constants.SIG_DETAILS_DEFAULT_TEMPLATE = 'Digitally signed by %(signer)s.\nTimestamp: %(ts)s.'
	Default template string for signature appearances.

	
pyhanko.sign.signers.constants.DEFAULT_SIGNING_STAMP_STYLE = TextStampStyle(border_width=3, background=<pyhanko.pdf_utils.content.RawContent object>, background_layout=SimpleBoxLayoutRule(x_align=<AxisAlignment.ALIGN_MID: 2>, y_align=<AxisAlignment.ALIGN_MID: 2>, margins=Margins(left=5, right=5, top=5, bottom=5), inner_content_scaling=<InnerScaling.SHRINK_TO_FIT: 4>), background_opacity=0.6, text_box_style=TextBoxStyle(font=<pyhanko.pdf_utils.font.basic.SimpleFontEngineFactory object>, font_size=10, leading=None, border_width=0, box_layout_rule=None, vertical_text=False), inner_content_layout=None, stamp_text='Digitally signed by %(signer)s.\nTimestamp: %(ts)s.', timestamp_format='%Y-%m-%d %H:%M:%S %Z')
	Default stamp style used for visible signatures.

	
pyhanko.sign.signers.constants.ESIC_EXTENSION_1 = DeveloperExtension(prefix_name='/ESIC', base_version='/1.7', extension_level=1, url=None, extension_revision=None, compare_by_level=True, subsumed_by=(), subsumes=(), multivalued=<DevExtensionMultivalued.NEVER: 2>)
	ESIC extension for PDF 1.7. Used to declare usage of PAdES structures.

	
pyhanko.sign.signers.constants.ISO32001 = DeveloperExtension(prefix_name='/ISO_', base_version='/2.0', extension_level=32001, url='https://www.iso.org/standard/45874.html', extension_revision=':2022', compare_by_level=False, subsumed_by=(), subsumes=(), multivalued=<DevExtensionMultivalued.ALWAYS: 1>)
	ISO extension to PDF 2.0 to include SHA-3 and SHAKE256 support.
This extension is defined in ISO/TS 32001.

Declared automatically whenever either of these is used in the signing or
document digesting process.

	
pyhanko.sign.signers.constants.ISO32002 = DeveloperExtension(prefix_name='/ISO_', base_version='/2.0', extension_level=32002, url='https://www.iso.org/standard/45875.html', extension_revision=':2022', compare_by_level=False, subsumed_by=(), subsumes=(), multivalued=<DevExtensionMultivalued.ALWAYS: 1>)
	ISO extension to PDF 2.0 to include EdDSA support and clarify supported curves
for ECDSA. This extension is defined in ISO/TS 32002.

Declared automatically whenever Ed25519 or Ed448 are used, and
when ECDSA is used with one of the curves listed in ISO/TS 32002.

pyhanko.sign.signers.csc_signer module

New in version 0.10.0.

Asynchronous Signer implementation for
interacting with a remote signing service using the Cloud Signature Consortium
(CSC) API.

This implementation is based on version 1.0.4.0 (2019-06) of the CSC API
specification.

Usage notes

This module’s CSCSigner class supplies an implementation of the
Signer class in pyHanko.
As such, it is flexible enough to be used either through pyHanko’s high-level
API (sign_pdf() et al.), or through
the interrupted signing API.

CSCSigner overview

CSCSigner is only directly responsible for calling the
signatures/signHash endpoint in the CSC API. Other than that, it only
handles batch control. This means that the following tasks require further
action on the API user’s part:

	authenticating to the signing service (typically using OAuth2);

	obtaining Signature Activation Data (SAD) from the signing service;

	provisioning the certificates to embed into the document (usually
those are supplied by the signing service as well).

The first two involve a degree of implementation/vendor dependence that is
difficult to cater to in full generality, and the third is out of scope
for Signer subclasses in general.

However, this module still provides a number of convenient hooks and guardrails
that should allow you to fill in these blanks with relative ease. We briefly
discuss these below.

Throughout, the particulars of how pyHanko should connect to a signing
service are supplied in a CSCServiceSessionInfo object.
This object contains the base CSC API URL, the CSC credential ID to use,
and authentication data.

Authenticating to the signing service

While the authentication process itself is the API user’s responsibility,
CSCServiceSessionInfo includes an
oauth_token field that will (by default)
be used to populate the HTTP Authorization header for every request.

To handle OAuth-specific tasks, you might want to use a library like
OAuthLib.

Obtaining SAD from the signing service

This is done by subclassing CSCAuthorizationInfo and passing
an instance to the CSCSigner. The CSCAuthorizationInfo
instance should call the signer’s credentials/authorize endpoint with
the proper parameters required by the service.
See the documentation for CSCAuthorizationInfo for details and=
information about helper functions.

Certificate provisioning

In pyHanko’s API, Signer instances
need to be initialised with the signer’s certificate, preferably together
with other relevant CA certificates.
In a CSC context, these are typically retrieved from the signing service by
calling the credentials/info endpoint.

This module offers a helper function to handle that task, see
fetch_certs_in_csc_credential().

	
class pyhanko.sign.signers.csc_signer.CSCSigner(session: ClientSession, auth_manager: CSCAuthorizationManager, sign_timeout: int = 300, prefer_pss: bool = False, embed_roots: bool = True, client_data: str | None = None, batch_autocommit: bool = True, batch_size: int | None = None, est_raw_signature_size=512)
	Bases: Signer

Implements the Signer interface
for a remote CSC signing service.
Requests are made asynchronously, using aiohttp.

	Parameters:
		session – The aiohttp session to use when performing queries.

	auth_manager – A CSCAuthorizationManager instance capable of procuring
signature activation data from the signing service.

	sign_timeout – Timeout for signing operations, in seconds.
Defaults to 300 seconds (5 minutes).

	prefer_pss – When signing using an RSA key, prefer PSS padding to legacy PKCS#1 v1.5
padding. Default is False. This option has no effect on non-RSA
signatures.

	embed_roots – Option that controls whether or not additional self-signed certificates
should be embedded into the CMS payload. The default is True.

	client_data – CSC client data to add to any signing request(s), if applicable.

	batch_autocommit – Whether to automatically commit a signing transaction as soon as a
batch is full. The default is True.
If False, the caller has to trigger commit() manually.

	batch_size – The number of signatures to sign in one transaction.
This defaults to 1 (i.e. a separate signatures/signHash call is made
for every signature).

	est_raw_signature_size – Estimated raw signature size (in bytes). Defaults to 512 bytes, which,
combined with other built-in safety margins, should provide a generous
overestimate.

	
get_signature_mechanism_for_digest(digest_algorithm)
	Get the signature mechanism for this signer to use.
If signature_mechanism is set, it will be used.
Otherwise, this method will attempt to put together a default
based on mechanism used in the signer’s certificate.

	Parameters:
	digest_algorithm – Digest algorithm to use as part of the signature mechanism.
Only used if a signature mechanism object has to be put together
on-the-fly.

	Returns:
	A SignedDigestAlgorithm object.

	
async format_csc_signing_req(tbs_hashes: List[str], digest_algorithm: str) → dict
	Populate the request data for a CSC signing request

	Parameters:
		tbs_hashes – Base64-encoded hashes that require signing.

	digest_algorithm – The digest algorithm to use.

	Returns:
	A dict that, when encoded as a JSON object, be used as the request
body for a call to signatures/signHash.

	
async async_sign_raw(data: bytes, digest_algorithm: str, dry_run=False) → bytes
	Compute the raw cryptographic signature of the data provided, hashed
using the digest algorithm provided.

	Parameters:
		data – Data to sign.

	digest_algorithm –
Digest algorithm to use.

Warning

If signature_mechanism also specifies a digest, they
should match.

	dry_run – Do not actually create a signature, but merely output placeholder
bytes that would suffice to contain an actual signature.

	Returns:
	Signature bytes.

	
async commit()
	Commit the current batch by calling the signatures/signHash endpoint
on the CSC service.

This coroutine does not return anything; instead, it notifies all
waiting signing coroutines that their signature has been fetched.

	
class pyhanko.sign.signers.csc_signer.CSCServiceSessionInfo(service_url: str, credential_id: str, oauth_token: str | None = None, api_ver: str = 'v1')
	Bases: object

Information about the CSC service, together with the required authentication
data.

	
service_url: str
	Base URL of the CSC service. This is the part that precedes
/csc/<version>/... in the API endpoint URLs.

	
credential_id: str
	The identifier of the CSC credential to use when signing.
The format is vendor-dependent.

	
oauth_token: str | None = None
	OAuth token to use when making requests to the CSC service.

	
api_ver: str = 'v1'
	CSC API version.

Note

This section does not affect any of the internal logic, it only changes
how the URLs are formatted.

	
endpoint_url(endpoint_name)
	Complete an endpoint name to a full URL.

	Parameters:
	endpoint_name – Name of the endpoint (e.g. credentials/info).

	Returns:
	A URL.

	
property auth_headers
	HTTP Header(s) necessary for authentication, to be passed with every
request.

Note

By default, this supplies the Authorization header
with the value of oauth_token as the Bearer value.

	Returns:
	A dict of headers.

	
class pyhanko.sign.signers.csc_signer.CSCCredentialInfo(signing_cert: Certificate, chain: List[Certificate], supported_mechanisms: FrozenSet[str], max_batch_size: int, hash_pinning_required: bool, response_data: dict)
	Bases: object

Information about a CSC credential, typically fetched using a
credentials/info call. See also fetch_certs_in_csc_credential().

	
signing_cert: Certificate
	The signer’s certificate.

	
chain: List[Certificate]
	Other relevant CA certificates.

	
supported_mechanisms: FrozenSet[str]
	Signature mechanisms supported by the credential.

	
max_batch_size: int
	The maximal batch size that can be used with this credential.

	
hash_pinning_required: bool
	Flag controlling whether SAD must be tied to specific hashes.

	
response_data: dict
	The JSON response data from the server as an otherwise unparsed dict.

	
as_cert_store() → CertificateStore
	Register the relevant certificates into a CertificateStore
and return it.

	Returns:
	A CertificateStore.

	
async pyhanko.sign.signers.csc_signer.fetch_certs_in_csc_credential(session: ClientSession, csc_session_info: CSCServiceSessionInfo, timeout: int = 30) → CSCCredentialInfo
	Call the credentials/info endpoint of the CSC service for a specific
credential, and encode the result into a CSCCredentialInfo
object.

	Parameters:
		session – The aiohttp session to use when performing queries.

	csc_session_info – General information about the CSC service and the credential.

	timeout – How many seconds to allow before time-out.

	Returns:
	A CSCCredentialInfo object with the processed response.

	
class pyhanko.sign.signers.csc_signer.CSCAuthorizationInfo(sad: str, expires_at: datetime | None = None)
	Bases: object

Authorization data to make a signing request.
This is the result of a call to credentials/authorize.

	
sad: str
	Signature activation data; opaque to the client.

	
expires_at: datetime | None = None
	Expiry date of the signature activation data.

	
class pyhanko.sign.signers.csc_signer.CSCAuthorizationManager(csc_session_info: CSCServiceSessionInfo, credential_info: CSCCredentialInfo)
	Bases: ABC

Abstract class that handles authorisation requests for the CSC signing
client.

Note

Implementations may wish to make use of the
format_csc_auth_request() convenience method to format
requests to the credentials/authorize endpoint.

	Parameters:
		csc_session_info – General information about the CSC service and the credential.

	credential_info – Details about the credential.

	
async authorize_signature(hash_b64s: List[str]) → CSCAuthorizationInfo
	Request a SAD token from the signing service, either freshly or to
extend the current transaction.

Depending on the lifecycle of this object, pre-fetched SAD values
may be used. All authorization transaction management is left to
implementing subclasses.

	Parameters:
	hash_b64s – Base64-encoded hash values about to be signed.

	Returns:
	Authorization data.

	
format_csc_auth_request(num_signatures: int = 1, pin: str | None = None, otp: str | None = None, hash_b64s: List[str] | None = None, description: str | None = None, client_data: str | None = None) → dict
	Format the parameters for a call to credentials/authorize.

	Parameters:
		num_signatures – The number of signatures to request authorisation for.

	pin – The user’s PIN (if applicable).

	otp – The current value of an OTP token, provided by the user
(if applicable).

	hash_b64s – An explicit list of base64-encoded hashes to be tied to the SAD.
Is optional if the service’s SCAL value is 1, i.e.
when hash_pinning_required is false.

	description – A free-form description of the authorisation request
(optional).

	client_data – Custom vendor-specific data (if applicable).

	Returns:
	A dict that, when encoded as a JSON object, be used as the request
body for a call to credentials/authorize.

	
static parse_csc_auth_response(response_data: dict) → CSCAuthorizationInfo
	Parse the response from a credentials/authorize call into
a CSCAuthorizationInfo object.

	Parameters:
	response_data – The decoded response JSON.

	Returns:
	A CSCAuthorizationInfo object.

	
property auth_headers
	HTTP Header(s) necessary for authentication, to be passed with every
request. By default, this delegates to
CSCServiceSessionInfo.auth_headers.

	Returns:
	A dict of headers.

	
class pyhanko.sign.signers.csc_signer.PrefetchedSADAuthorizationManager(csc_session_info: CSCServiceSessionInfo, credential_info: CSCCredentialInfo, csc_auth_info: CSCAuthorizationInfo)
	Bases: CSCAuthorizationManager

Simplistic CSCAuthorizationManager for use with pre-fetched
signature activation data.

This class is effectively only useful for CSC services that do not require
SAD to be pinned to specific document hashes. It allows you to use a SAD
that was fetched before starting the signing process, for a one-shot
signature.

This can simplify resource management in cases where obtaining a
SAD is time-consuming, but the caller still wants the conveniences of
pyHanko’s high-level API without having to keep too many pyHanko objects
in memory while waiting for a credentials/authorize call to go through.

Legitimate uses are limited, but the implementation is trivial, so we
provide it here.

	Parameters:
		csc_session_info – General information about the CSC service and the credential.

	credential_info – Details about the credential.

	csc_auth_info – The pre-fetched signature activation data.

	
async authorize_signature(hash_b64s: List[str]) → CSCAuthorizationInfo
	Return the prefetched SAD, or raise an error if called twice.

	Parameters:
	hash_b64s – List of hashes to be signed; ignored.

	Returns:
	The prefetched authorisation data.

pyhanko.sign.signers.functions module

This module defines pyHanko’s high-level API entry points.

	
pyhanko.sign.signers.functions.sign_pdf(pdf_out: BasePdfFileWriter, signature_meta: PdfSignatureMetadata, signer: Signer, timestamper: TimeStamper | None = None, new_field_spec: SigFieldSpec | None = None, existing_fields_only=False, bytes_reserved=None, in_place=False, output=None)
	Thin convenience wrapper around PdfSigner.sign_pdf().

	Parameters:
		pdf_out – An IncrementalPdfFileWriter.

	bytes_reserved – Bytes to reserve for the CMS object in the PDF file.
If not specified, make an estimate based on a dummy signature.

	signature_meta – The specification of the signature to add.

	signer – Signer object to use to produce the signature object.

	timestamper – TimeStamper object to use to produce any time stamp tokens
that might be required.

	in_place – Sign the input in-place. If False, write output to a
BytesIO object.

	existing_fields_only – If True, never create a new empty signature field to contain
the signature.
If False, a new field may be created if no field matching
field_name exists.

	new_field_spec – If a new field is to be created, this parameter allows the caller
to specify the field’s properties in the form of a
SigFieldSpec. This parameter is only meaningful if
existing_fields_only is False.

	output – Write the output to the specified output stream.
If None, write to a new BytesIO object.
Default is None.

	Returns:
	The output stream containing the signed output.

	
async pyhanko.sign.signers.functions.async_sign_pdf(pdf_out: BasePdfFileWriter, signature_meta: PdfSignatureMetadata, signer: Signer, timestamper: TimeStamper | None = None, new_field_spec: SigFieldSpec | None = None, existing_fields_only=False, bytes_reserved=None, in_place=False, output=None)
	Thin convenience wrapper around PdfSigner.async_sign_pdf().

	Parameters:
		pdf_out – An IncrementalPdfFileWriter.

	bytes_reserved – Bytes to reserve for the CMS object in the PDF file.
If not specified, make an estimate based on a dummy signature.

	signature_meta – The specification of the signature to add.

	signer – Signer object to use to produce the signature object.

	timestamper – TimeStamper object to use to produce any time stamp tokens
that might be required.

	in_place – Sign the input in-place. If False, write output to a
BytesIO object.

	existing_fields_only – If True, never create a new empty signature field to contain
the signature.
If False, a new field may be created if no field matching
field_name exists.

	new_field_spec – If a new field is to be created, this parameter allows the caller
to specify the field’s properties in the form of a
SigFieldSpec. This parameter is only meaningful if
existing_fields_only is False.

	output – Write the output to the specified output stream.
If None, write to a new BytesIO object.
Default is None.

	Returns:
	The output stream containing the signed output.

	
pyhanko.sign.signers.functions.embed_payload_with_cms(pdf_writer: BasePdfFileWriter, file_spec_string: str, payload: EmbeddedFileObject, cms_obj: ContentInfo, extension='.sig', file_name: str | None = None, file_spec_kwargs=None, cms_file_spec_kwargs=None)
	Embed some data as an embedded file stream into a PDF, and associate it
with a CMS object.

The resulting CMS object will also be turned into an embedded file, and
associated with the original payload through a related file relationship.

This can be used to bundle (non-PDF) detached signatures with PDF
attachments, for example.

New in version 0.7.0.

	Parameters:
		pdf_writer – The PDF writer to use.

	file_spec_string – See file_spec_string in
FileSpec.

	payload – Payload object.

	cms_obj – CMS object pertaining to the payload.

	extension – File extension to use for the CMS attachment.

	file_name – See file_name in
FileSpec.

	file_spec_kwargs – Extra arguments to pass to the
FileSpec constructor
for the main attachment specification.

	cms_file_spec_kwargs – Extra arguments to pass to the
FileSpec constructor
for the CMS attachment specification.

pyhanko.sign.signers.pdf_byterange module

This module contains the low-level building blocks for dealing with bookkeeping
around /ByteRange digests in PDF files.

	
class pyhanko.sign.signers.pdf_byterange.PreparedByteRangeDigest(document_digest: bytes, reserved_region_start: int, reserved_region_end: int)
	Bases: object

New in version 0.7.0.

Changed in version 0.14.0: Removed md_algorithm attribute since it was unused.

Bookkeeping class that contains the digest of a document that is about to be
signed (or otherwise authenticated) based on said digest. It also keeps
track of the region in the output stream that is omitted in the byte range.

Instances of this class can easily be serialised, which allows for
interrupting the signing process partway through.

	
document_digest: bytes
	Digest of the document, computed over the appropriate /ByteRange.

	
reserved_region_start: int
	Start of the reserved region in the output stream that is not part of the
/ByteRange.

	
reserved_region_end: int
	End of the reserved region in the output stream that is not part of the
/ByteRange.

	
fill_with_cms(output: IO, cms_data: bytes | ContentInfo)
	Write a DER-encoded CMS object to the reserved region indicated
by reserved_region_start and reserved_region_end in the
output stream.

	Parameters:
		output – Output stream to use. Must be writable and seekable.

	cms_data – CMS object to write. Can be provided as an
asn1crypto.cms.ContentInfo object, or as raw DER-encoded
bytes.

	Returns:
	A bytes object containing the contents that were written,
plus any additional padding.

	
fill_reserved_region(output: IO, content_bytes: bytes)
	Write hex-encoded contents to the reserved region indicated
by reserved_region_start and reserved_region_end in the
output stream.

	Parameters:
		output – Output stream to use. Must be writable and seekable.

	content_bytes – Content bytes. These will be padded, hexadecimally encoded and
written to the appropriate location in output stream.

	Returns:
	A bytes object containing the contents that were written,
plus any additional padding.

	
class pyhanko.sign.signers.pdf_byterange.PdfByteRangeDigest(data_key='/Contents', *, bytes_reserved=None)
	Bases: DictionaryObject

General class to model a PDF Dictionary that has a /ByteRange entry
and a another data entry (named /Contents by default) that will contain
a value based on a digest computed over said /ByteRange.
The /ByteRange will cover the entire file, except for the value of the
data entry itself.

Danger

This is internal API.

	Parameters:
		data_key – Name of the data key, which is /Contents by default.

	bytes_reserved – Number of bytes to reserve for the contents placeholder.
If None, a generous default is applied, but you should try to
estimate the size as accurately as possible.

	
fill(writer: BasePdfFileWriter, md_algorithm, in_place=False, output=None, chunk_size=4096)
	Generator coroutine that handles the document hash computation and
the actual filling of the placeholder data.

Danger

This is internal API; you should use use PdfSigner
wherever possible. If you really need fine-grained control,
use PdfCMSEmbedder
instead.

	
class pyhanko.sign.signers.pdf_byterange.PdfSignedData(obj_type, subfilter: SigSeedSubFilter = SigSeedSubFilter.ADOBE_PKCS7_DETACHED, timestamp: datetime | None = None, bytes_reserved=None)
	Bases: PdfByteRangeDigest

Generic class to model signature dictionaries in a PDF file.
See also SignatureObject and DocumentTimestamp.

	Parameters:
		obj_type – The type of signature object.

	subfilter – See SigSeedSubFilter.

	timestamp – The timestamp to embed into the /M entry.

	bytes_reserved –
The number of bytes to reserve for the signature.
Defaults to 16 KiB.

Warning

Since the CMS object is written to the output file as a hexadecimal
string, you should request twice the (estimated) number of bytes
in the DER-encoded version of the CMS object.

	
class pyhanko.sign.signers.pdf_byterange.SignatureObject(timestamp: datetime | None = None, subfilter: SigSeedSubFilter = SigSeedSubFilter.ADOBE_PKCS7_DETACHED, name=None, location=None, reason=None, contact_info=None, app_build_props: BuildProps | None = None, prop_auth_time: int | None = None, prop_auth_type: SigAuthType | None = None, bytes_reserved=None)
	Bases: PdfSignedData

Class modelling a (placeholder for) a regular PDF signature.

	Parameters:
		timestamp – The (optional) timestamp to embed into the /M entry.

	subfilter – See SigSeedSubFilter.

	bytes_reserved –
The number of bytes to reserve for the signature.
Defaults to 16 KiB.

Warning

Since the CMS object is written to the output file as a hexadecimal
string, you should request twice the (estimated) number of bytes
in the DER-encoded version of the CMS object.

	name – Signer name. You probably want to leave this blank, viewers should
default to the signer’s subject name.

	location – Optional signing location.

	reason – Optional signing reason. May be restricted by seed values.

	app_build_props – Optional dictionary containing informations about the computer environment used for signing.
See BuildProps.

	prop_auth_time – Optional information representing the number of seconds since signer was last authenticated.

	prop_auth_type – Optional information about the method of user’s authentication
See SigAuthType.

	Params contact_info:
	Optional information from the signer to enable the receiver to contact
the signer and verify the signature.

	
class pyhanko.sign.signers.pdf_byterange.DocumentTimestamp(bytes_reserved=None)
	Bases: PdfSignedData

Class modelling a (placeholder for) a regular PDF signature.

	Parameters:
	bytes_reserved –
The number of bytes to reserve for the signature.
Defaults to 16 KiB.

Warning

Since the CMS object is written to the output file as a hexadecimal
string, you should request twice the (estimated) number of bytes
in the DER-encoded version of the CMS object.

	
class pyhanko.sign.signers.pdf_byterange.BuildProps(name: str, revision: str | None = None)
	Bases: object

Entries in a signature build properties dictionary; see Adobe PDF Signature
Build Dictionary Specification.

	
name: str
	The application’s name.

	
revision: str | None = None
	The application’s revision ID string.

Note

This corresponds to the REx entry in the build properties
dictionary.

	
as_pdf_object() → DictionaryObject
	Render the build properties as a PDF object.

	Returns:
	A PDF dictionary.

pyhanko.sign.signers.pdf_cms module

This module defines utility classes to format CMS objects for use in PDF
signatures.

	
class pyhanko.sign.signers.pdf_cms.Signer(*, prefer_pss: bool = False, embed_roots: bool = True, signature_mechanism: SignedDigestAlgorithm | None = None, signing_cert: Certificate | None = None, cert_registry: CertificateStore | None = None, attribute_certs: Iterable[AttributeCertificateV2] = ())
	Bases: object

Abstract signer object that is agnostic as to where the cryptographic
operations actually happen.

As of now, pyHanko provides two implementations:

	SimpleSigner implements the easy case where all the key material
can be loaded into memory.

	PKCS11Signer implements a signer that is
capable of interfacing with a PKCS#11 device.

	Parameters:
		prefer_pss – When signing using an RSA key, prefer PSS padding to legacy PKCS#1 v1.5
padding. Default is False. This option has no effect on non-RSA
signatures.

	embed_roots –

New in version 0.9.0.

Option that controls whether or not additional self-signed certificates
should be embedded into the CMS payload. The default is True.

Note

The signer’s certificate is always embedded, even if it is
self-signed.

Note

Trust roots are configured by the validator, so embedding them
doesn’t affect the semantics of a typical validation process.
Therefore, they can be safely omitted in most cases.
Nonetheless, embedding the roots can be useful for documentation
purposes. In addition, some validators are poorly implemented,
and will refuse to build paths if the roots are not present
in the file.

Warning

To be precise, if this flag is False, a certificate will be
dropped if (a) it is not the signer’s, (b) it is self-issued and
(c) its subject and authority key identifiers match (or either is
missing). In other words, we never validate the actual
self-signature. This heuristic is sufficiently accurate
for most applications.

	signature_mechanism – The (cryptographic) signature mechanism to use for all signing
operations. If unset, the default behaviour is to try to impute
a reasonable one given the preferred digest algorithm and public key.

	signing_cert – See signing_cert.

	attribute_certs – See attribute_certs.

	cert_registry – Initial value for cert_registry. If unset, an empty certificate
store will be initialised.

	
property signature_mechanism: SignedDigestAlgorithm | None
	
Changed in version 0.18.0: Turned into a property instead of a class attribute.

The (cryptographic) signature mechanism to use for all signing
operations.

	
property signing_cert: Certificate | None
	
Changed in version 0.14.0: Made optional (see note)

Changed in version 0.18.0: Turned into a property instead of a class attribute.

The certificate that will be used to create the signature.

Note

This is an optional field only to a limited extent. Subclasses may
require it to be present, and not setting it at the beginning of
the signing process implies that certain high-level convenience
features will no longer work or be limited in function (e.g.,
automatic hash selection, appearance generation, revocation
information collection, …).

However, making signing_cert optional enables certain
signing workflows where the certificate of the signer is not known
until the signature has actually been produced. This is most
relevant in certain types of remote signing scenarios.

	
property cert_registry: CertificateStore
	
Changed in version 0.18.0: Turned into a property instead of a class attribute.

Collection of certificates associated with this signer.
Note that this is simply a bookkeeping tool; in particular it
doesn’t care about trust.

	
property attribute_certs: Iterable[AttributeCertificateV2]
	
Changed in version 0.18.0: Turned into a property instead of a class attribute.

Attribute certificates to include with the signature.

Note

Only v2 attribute certificates are supported.

	
get_signature_mechanism_for_digest(digest_algorithm: str | None) → SignedDigestAlgorithm
	Get the signature mechanism for this signer to use.
If signature_mechanism is set, it will be used.
Otherwise, this method will attempt to put together a default
based on mechanism used in the signer’s certificate.

	Parameters:
	digest_algorithm – Digest algorithm to use as part of the signature mechanism.
Only used if a signature mechanism object has to be put together
on-the-fly.

	Returns:
	A SignedDigestAlgorithm object.

	
property subject_name: str | None
		Returns:
	The subject’s common name as a string, extracted from
signing_cert, or None if no signer’s certificate is
available

	
static format_revinfo(ocsp_responses: list | None = None, crls: list | None = None)
	Format Adobe-style revocation information for inclusion into a CMS
object.

	Parameters:
		ocsp_responses – A list of OCSP responses to include.

	crls – A list of CRLs to include.

	
signer_info(digest_algorithm: str, signed_attrs, signature)
	Format the SignerInfo entry for a CMS signature.

	Parameters:
		digest_algorithm – Digest algorithm to use.

	signed_attrs – Signed attributes (see signed_attrs()).

	signature – The raw signature to embed (see sign_raw()).

	Returns:
	An asn1crypto.cms.SignerInfo object.

	
async async_sign_raw(data: bytes, digest_algorithm: str, dry_run=False) → bytes
	Compute the raw cryptographic signature of the data provided, hashed
using the digest algorithm provided.

	Parameters:
		data – Data to sign.

	digest_algorithm –
Digest algorithm to use.

Warning

If signature_mechanism also specifies a digest, they
should match.

	dry_run – Do not actually create a signature, but merely output placeholder
bytes that would suffice to contain an actual signature.

	Returns:
	Signature bytes.

	
async unsigned_attrs(digest_algorithm: str, signature: bytes, signed_attrs: CMSAttributes, timestamper=None, dry_run=False) → CMSAttributes | None
	
Changed in version 0.9.0: Made asynchronous _(breaking change)_

Changed in version 0.14.0: Added signed_attrs parameter _(breaking change)_

Compute the unsigned attributes to embed into the CMS object.
This function is called after signing the hash of the signed attributes
(see signed_attrs()).

By default, this method only handles timestamp requests, but other
functionality may be added by subclasses

If this method returns None, no unsigned attributes will be
embedded.

	Parameters:
		digest_algorithm – Digest algorithm used to hash the signed attributes.

	signed_attrs – Signed attributes of the signature.

	signature – Signature of the signed attribute hash.

	timestamper – Timestamp supplier to use.

	dry_run – Flag indicating “dry run” mode. If True, only the approximate
size of the output matters, so cryptographic
operations can be replaced by placeholders.

	Returns:
	The unsigned attributes to add, or None.

	
async signed_attrs(data_digest: bytes, digest_algorithm: str, attr_settings: PdfCMSSignedAttributes | None = None, content_type='data', use_pades=False, timestamper=None, dry_run=False, is_pdf_sig=True)
	
Changed in version 0.4.0: Added positional digest_algorithm parameter _(breaking change)_.

Changed in version 0.5.0: Added dry_run, timestamper and cades_meta parameters.

Changed in version 0.9.0: Made asynchronous, grouped some parameters under attr_settings
(breaking change)

Format the signed attributes for a CMS signature.

	Parameters:
		data_digest – Raw digest of the data to be signed.

	digest_algorithm –

New in version 0.4.0.

Name of the digest algorithm used to compute the digest.

	use_pades – Respect PAdES requirements.

	dry_run –

New in version 0.5.0.

Flag indicating “dry run” mode. If True, only the approximate
size of the output matters, so cryptographic
operations can be replaced by placeholders.

	attr_settings – PdfCMSSignedAttributes object describing the attributes
to be added.

	timestamper –

New in version 0.5.0.

Timestamper to use when creating timestamp tokens.

	content_type –
CMS content type of the encapsulated data. Default is data.

Danger

This parameter is internal API, and non-default values must not
be used to produce PDF signatures.

	is_pdf_sig –
Whether the signature being generated is for use in a PDF document.

Danger

This parameter is internal API.

	Returns:
	An asn1crypto.cms.CMSAttributes object.

	
async async_sign(data_digest: bytes, digest_algorithm: str, dry_run=False, use_pades=False, timestamper=None, signed_attr_settings: PdfCMSSignedAttributes | None = None, is_pdf_sig=True, encap_content_info=None) → ContentInfo
	
New in version 0.9.0.

Produce a detached CMS signature from a raw data digest.

	Parameters:
		data_digest – Digest of the actual content being signed.

	digest_algorithm – Digest algorithm to use. This should be the same digest method
as the one used to hash the (external) content.

	dry_run –
If True, the actual signing step will be replaced with
a placeholder.

In a PDF signing context, this is necessary to estimate the size
of the signature container before computing the actual digest of
the document.

	signed_attr_settings – PdfCMSSignedAttributes object describing the attributes
to be added.

	use_pades – Respect PAdES requirements.

	timestamper –
TimeStamper used to obtain a trusted timestamp
token that can be embedded into the signature container.

Note

If dry_run is true, the timestamper’s
dummy_response() method will be
called to obtain a placeholder token.
Note that with a standard HTTPTimeStamper,
this might still hit the timestamping server (in order to
produce a realistic size estimate), but the dummy response will
be cached.

	is_pdf_sig –
Whether the signature being generated is for use in a PDF document.

Danger

This parameter is internal API.

	encap_content_info –
Data to encapsulate in the CMS object.

Danger

This parameter is internal API, and must not be used to produce
PDF signatures.

	Returns:
	An ContentInfo object.

	
async async_sign_prescribed_attributes(digest_algorithm: str, signed_attrs: CMSAttributes, cms_version='v1', dry_run=False, timestamper=None, encap_content_info=None) → ContentInfo
	
New in version 0.9.0.

Start the CMS signing process with the prescribed set of signed
attributes.

	Parameters:
		digest_algorithm – Digest algorithm to use. This should be the same digest method
as the one used to hash the (external) content.

	signed_attrs – CMS attributes to sign.

	dry_run –
If True, the actual signing step will be replaced with
a placeholder.

In a PDF signing context, this is necessary to estimate the size
of the signature container before computing the actual digest of
the document.

	timestamper –
TimeStamper used to obtain a trusted timestamp
token that can be embedded into the signature container.

Note

If dry_run is true, the timestamper’s
dummy_response() method will be
called to obtain a placeholder token.
Note that with a standard HTTPTimeStamper,
this might still hit the timestamping server (in order to
produce a realistic size estimate), but the dummy response will
be cached.

	cms_version – CMS version to use.

	encap_content_info –
Data to encapsulate in the CMS object.

Danger

This parameter is internal API, and must not be used to produce
PDF signatures.

	Returns:
	An ContentInfo object.

	
async async_sign_general_data(input_data: IO | bytes | ContentInfo | EncapsulatedContentInfo, digest_algorithm: str, detached=True, use_cades=False, timestamper=None, chunk_size=4096, signed_attr_settings: PdfCMSSignedAttributes | None = None, max_read=None) → ContentInfo
	
New in version 0.9.0.

Produce a CMS signature for an arbitrary data stream
(not necessarily PDF data).

	Parameters:
		input_data –
The input data to sign. This can be either a bytes object
a file-type object, a cms.ContentInfo object or
a cms.EncapsulatedContentInfo object.

Warning

asn1crypto mandates cms.ContentInfo for CMS v1
signatures. In practical terms, this means that you need to
use cms.ContentInfo if the content type is data,
and cms.EncapsulatedContentInfo otherwise.

Warning

We currently only support CMS v1, v3 and v4 signatures.
This is only a concern if you need certificates or CRLs
of type ‘other’, in which case you can change the version
yourself (this will not invalidate any signatures).
You’ll also need to do this if you need support for version 1
attribute certificates, or if you want to sign with
subjectKeyIdentifier in the sid field.

	digest_algorithm – The name of the digest algorithm to use.

	detached – If True, create a CMS detached signature (i.e. an object where
the encapsulated content is not embedded in the signature object
itself). This is the default. If False, the content to be
signed will be embedded as encapsulated content.

	signed_attr_settings – PdfCMSSignedAttributes object describing the attributes
to be added.

	use_cades – Construct a CAdES-style CMS object.

	timestamper –
PdfTimeStamper to use to create a signature timestamp

Note

If you want to create a content timestamp (as opposed to
a signature timestamp), see CAdESSignedAttrSpec.

	chunk_size – Chunk size to use when consuming input data.

	max_read – Maximal number of bytes to read from the input stream.

	Returns:
	A CMS ContentInfo object of type signedData.

	
sign(data_digest: bytes, digest_algorithm: str, timestamp: datetime | None = None, dry_run=False, revocation_info=None, use_pades=False, timestamper=None, cades_signed_attr_meta: CAdESSignedAttrSpec | None = None, encap_content_info=None) → ContentInfo
	
Deprecated since version 0.9.0: Use async_sign() instead.
The implementation of this method will invoke async_sign()
using asyncio.run().

Produce a detached CMS signature from a raw data digest.

	Parameters:
		data_digest – Digest of the actual content being signed.

	digest_algorithm – Digest algorithm to use. This should be the same digest method
as the one used to hash the (external) content.

	timestamp –
Signing time to embed into the signed attributes
(will be ignored if use_pades is True).

Note

This timestamp value is to be interpreted as an unfounded
assertion by the signer, which may or may not be good enough
for your purposes.

	dry_run –
If True, the actual signing step will be replaced with
a placeholder.

In a PDF signing context, this is necessary to estimate the size
of the signature container before computing the actual digest of
the document.

	revocation_info – Revocation information to embed; this should be the output
of a call to Signer.format_revinfo()
(ignored when use_pades is True).

	use_pades – Respect PAdES requirements.

	timestamper –
TimeStamper used to obtain a trusted timestamp
token that can be embedded into the signature container.

Note

If dry_run is true, the timestamper’s
dummy_response() method will be
called to obtain a placeholder token.
Note that with a standard HTTPTimeStamper,
this might still hit the timestamping server (in order to
produce a realistic size estimate), but the dummy response will
be cached.

	cades_signed_attr_meta –

New in version 0.5.0.

Specification for CAdES-specific signed attributes.

	encap_content_info –
Data to encapsulate in the CMS object.

Danger

This parameter is internal API, and must not be used to produce
PDF signatures.

	Returns:
	An ContentInfo object.

	
sign_prescribed_attributes(digest_algorithm: str, signed_attrs: CMSAttributes, cms_version='v1', dry_run=False, timestamper=None, encap_content_info=None) → ContentInfo
	
Deprecated since version 0.9.0: Use async_sign_prescribed_attributes() instead.
The implementation of this method will invoke
async_sign_prescribed_attributes() using
asyncio.run().

Start the CMS signing process with the prescribed set of signed
attributes.

	Parameters:
		digest_algorithm – Digest algorithm to use. This should be the same digest method
as the one used to hash the (external) content.

	signed_attrs – CMS attributes to sign.

	dry_run –
If True, the actual signing step will be replaced with
a placeholder.

In a PDF signing context, this is necessary to estimate the size
of the signature container before computing the actual digest of
the document.

	timestamper –
TimeStamper used to obtain a trusted timestamp
token that can be embedded into the signature container.

Note

If dry_run is true, the timestamper’s
dummy_response() method will be
called to obtain a placeholder token.
Note that with a standard HTTPTimeStamper,
this might still hit the timestamping server (in order to
produce a realistic size estimate), but the dummy response will
be cached.

	cms_version – CMS version to use.

	encap_content_info –
Data to encapsulate in the CMS object.

Danger

This parameter is internal API, and must not be used to produce
PDF signatures.

	Returns:
	An ContentInfo object.

	
sign_general_data(input_data: IO | bytes | ContentInfo | EncapsulatedContentInfo, digest_algorithm: str, detached=True, timestamp: datetime | None = None, use_cades=False, timestamper=None, cades_signed_attr_meta: CAdESSignedAttrSpec | None = None, chunk_size=4096, max_read=None) → ContentInfo
	
New in version 0.7.0.

Deprecated since version 0.9.0: Use async_sign_general_data() instead.
The implementation of this method will invoke
async_sign_general_data() using asyncio.run().

Produce a CMS signature for an arbitrary data stream
(not necessarily PDF data).

	Parameters:
		input_data –
The input data to sign. This can be either a bytes object
a file-type object, a cms.ContentInfo object or
a cms.EncapsulatedContentInfo object.

Warning

asn1crypto mandates cms.ContentInfo for CMS v1
signatures. In practical terms, this means that you need to
use cms.ContentInfo if the content type is data,
and cms.EncapsulatedContentInfo otherwise.

Warning

We currently only support CMS v1, v3 and v4 signatures.
This is only a concern if you need certificates or CRLs
of type ‘other’, in which case you can change the version
yourself (this will not invalidate any signatures).
You’ll also need to do this if you need support for version 1
attribute certificates, or if you want to sign with
subjectKeyIdentifier in the sid field.

	digest_algorithm – The name of the digest algorithm to use.

	detached – If True, create a CMS detached signature (i.e. an object where
the encapsulated content is not embedded in the signature object
itself). This is the default. If False, the content to be
signed will be embedded as encapsulated content.

	timestamp –
Signing time to embed into the signed attributes
(will be ignored if use_cades is True).

Note

This timestamp value is to be interpreted as an unfounded
assertion by the signer, which may or may not be good enough
for your purposes.

	use_cades – Construct a CAdES-style CMS object.

	timestamper –
PdfTimeStamper to use to create a signature timestamp

Note

If you want to create a content timestamp (as opposed to
a signature timestamp), see CAdESSignedAttrSpec.

	cades_signed_attr_meta – Specification for CAdES-specific signed attributes.

	chunk_size – Chunk size to use when consuming input data.

	max_read – Maximal number of bytes to read from the input stream.

	Returns:
	A CMS ContentInfo object of type signedData.

	
class pyhanko.sign.signers.pdf_cms.SimpleSigner(signing_cert: Certificate, signing_key: PrivateKeyInfo, cert_registry: CertificateStore, signature_mechanism: SignedDigestAlgorithm | None = None, prefer_pss: bool = False, embed_roots: bool = True, attribute_certs: Iterable[AttributeCertificateV2] | None = None)
	Bases: Signer

Simple signer implementation where the key material is available in local
memory.

	
signing_key: PrivateKeyInfo
	Private key associated with the certificate in signing_cert.

	
async async_sign_raw(data: bytes, digest_algorithm: str, dry_run=False) → bytes
	Compute the raw cryptographic signature of the data provided, hashed
using the digest algorithm provided.

	Parameters:
		data – Data to sign.

	digest_algorithm –
Digest algorithm to use.

Warning

If signature_mechanism also specifies a digest, they
should match.

	dry_run – Do not actually create a signature, but merely output placeholder
bytes that would suffice to contain an actual signature.

	Returns:
	Signature bytes.

	
sign_raw(data: bytes, digest_algorithm: str) → bytes
	Synchronous raw signature implementation.

	Parameters:
		data – Data to be signed.

	digest_algorithm – Digest algorithm to use.

	Returns:
	Raw signature encoded according to the conventions of the
signing algorithm used.

	
classmethod load_pkcs12(pfx_file, ca_chain_files=None, other_certs=None, passphrase=None, signature_mechanism=None, prefer_pss=False)
	Load certificates and key material from a PCKS#12 archive
(usually .pfx or .p12 files).

	Parameters:
		pfx_file – Path to the PKCS#12 archive.

	ca_chain_files – Path to (PEM/DER) files containing other relevant certificates
not included in the PKCS#12 file.

	other_certs – Other relevant certificates, specified as a list of
asn1crypto.x509.Certificate objects.

	passphrase – Passphrase to decrypt the PKCS#12 archive, if required.

	signature_mechanism – Override the signature mechanism to use.

	prefer_pss – Prefer PSS signature mechanism over RSA PKCS#1 v1.5 if
there’s a choice.

	Returns:
	A SimpleSigner object initialised with key material loaded
from the PKCS#12 file provided.

	
classmethod load(key_file, cert_file, ca_chain_files=None, key_passphrase=None, other_certs=None, signature_mechanism=None, prefer_pss=False)
	Load certificates and key material from PEM/DER files.

	Parameters:
		key_file – File containing the signer’s private key.

	cert_file – File containing the signer’s certificate.

	ca_chain_files – File containing other relevant certificates.

	key_passphrase – Passphrase to decrypt the private key (if required).

	other_certs – Other relevant certificates, specified as a list of
asn1crypto.x509.Certificate objects.

	signature_mechanism – Override the signature mechanism to use.

	prefer_pss – Prefer PSS signature mechanism over RSA PKCS#1 v1.5 if
there’s a choice.

	Returns:
	A SimpleSigner object initialised with key material loaded
from the files provided.

	
class pyhanko.sign.signers.pdf_cms.ExternalSigner(signing_cert: Certificate | None, cert_registry: CertificateStore | None, signature_value: bytes | int | None = None, signature_mechanism: SignedDigestAlgorithm | None = None, prefer_pss: bool = False, embed_roots: bool = True)
	Bases: Signer

Class to help formatting CMS objects for use with remote signing.
It embeds a fixed signature value into the CMS, set at initialisation.

Intended for use with Interrupted signing.

	Parameters:
		signing_cert – The signer’s certificate.

	cert_registry – The certificate registry to use in CMS generation.

	signature_value – The value of the signature as a byte string, a placeholder length,
or None.

	signature_mechanism – The signature mechanism used by the external signing service.

	prefer_pss – Switch to prefer PSS when producing RSA signatures, as opposed to
RSA with PKCS#1 v1.5 padding.

	embed_roots – Whether to embed relevant root certificates into the CMS payload.

	
async async_sign_raw(data: bytes, digest_algorithm: str, dry_run=False) → bytes
	Return a fixed signature value.

	
class pyhanko.sign.signers.pdf_cms.PdfCMSSignedAttributes(signing_time: datetime | None = None, cades_signed_attrs: CAdESSignedAttrSpec | None = None, adobe_revinfo_attr: RevocationInfoArchival | None = None)
	Bases: CMSSignedAttributes

New in version 0.7.0.

Changed in version 0.14.0: Split off some fields into CMSSignedAttributes.

Serialisable container class describing input for various signed attributes
in a CMS object for a PDF signature.

	
adobe_revinfo_attr: RevocationInfoArchival | None = None
	Adobe-style signed revocation info attribute.

	
async pyhanko.sign.signers.pdf_cms.format_attributes(attr_provs: List[CMSAttributeProvider], other_attrs: Iterable[CMSAttributes] = (), dry_run: bool = False) → CMSAttributes
	Format CMS attributes obtained from attribute providers.

	Parameters:
		attr_provs – List of attribute providers.

	other_attrs – Other (predetermined) attributes to include.

	dry_run – Whether to invoke the attribute providers in dry-run mode or not.

	Returns:
	A cms.CMSAttributes value.

	
async pyhanko.sign.signers.pdf_cms.format_signed_attributes(data_digest: bytes, attr_provs: List[CMSAttributeProvider], content_type='data', dry_run=False) → CMSAttributes
	Format signed attributes for a CMS SignerInfo value.

	Parameters:
		data_digest – The byte string to put in the messageDigest attribute.

	attr_provs – List of attribute providers to source attributes from.

	content_type – The content type of the data being signed (default is data).

	dry_run – Whether to invoke the attribute providers in dry-run mode or not.

	Returns:
	A cms.CMSAttributes value representing the signed attributes.

	
pyhanko.sign.signers.pdf_cms.asyncify_signer(signer_cls)
	Decorator to turn a legacy Signer subclass into one that works
with the new async API.

	
pyhanko.sign.signers.pdf_cms.select_suitable_signing_md(key: PublicKeyInfo) → str
	Choose a reasonable default signing message digest given the properties of
(the public part of) a key.

The fallback value is constants.DEFAULT_MD.

	Parameters:
	key – A keys.PublicKeyInfo object.

	Returns:
	The name of a message digest algorithm.

	
pyhanko.sign.signers.pdf_cms.signer_from_p12_config(config: PKCS12SignatureConfig, provided_pfx_passphrase: bytes | None = None)
	

	
pyhanko.sign.signers.pdf_cms.signer_from_pemder_config(config: PemDerSignatureConfig, provided_key_passphrase: bytes | None = None)
	

pyhanko.sign.signers.pdf_signer module

This module implements support for PDF-specific signing functionality.

	
class pyhanko.sign.signers.pdf_signer.PdfSignatureMetadata(field_name: str | None = None, md_algorithm: str | None = None, location: str | None = None, reason: str | None = None, contact_info: str | None = None, name: str | None = None, app_build_props: ~pyhanko.sign.signers.pdf_byterange.BuildProps | None = None, prop_auth_time: int | None = None, prop_auth_type: ~pyhanko.sign.fields.SigAuthType | None = None, certify: bool = False, subfilter: ~pyhanko.sign.fields.SigSeedSubFilter | None = None, embed_validation_info: bool = False, use_pades_lta: bool = False, timestamp_field_name: str | None = None, validation_context: ~pyhanko_certvalidator.context.ValidationContext | None = None, docmdp_permissions: ~pyhanko.sign.fields.MDPPerm = MDPPerm.FILL_FORMS, signer_key_usage: ~typing.Set[str] = <factory>, cades_signed_attr_spec: ~pyhanko.sign.ades.api.CAdESSignedAttrSpec | None = None, dss_settings: ~pyhanko.sign.signers.pdf_signer.DSSContentSettings = DSSContentSettings(include_vri=True, skip_if_unneeded=True, placement=<SigDSSPlacementPreference.TOGETHER_WITH_NEXT_TS: 3>, next_ts_settings=None), tight_size_estimates: bool = False, ac_validation_context: ~pyhanko_certvalidator.context.ValidationContext | None = None)
	Bases: object

Specification for a PDF signature.

	
field_name: str | None = None
	The name of the form field to contain the signature.
If there is only one available signature field, the name may be inferred.

	
md_algorithm: str | None = None
	The name of the digest algorithm to use.
It should be supported by pyca/cryptography.

If None, select_suitable_signing_md() will be invoked to generate
a suitable default, unless a seed value dictionary happens to be available.

	
location: str | None = None
	Location of signing.

	
reason: str | None = None
	Reason for signing (textual).

	
contact_info: str | None = None
	Information provided by the signer to enable the receiver to contact the
signer to verify the signature.

	
name: str | None = None
	Name of the signer. This value is usually not necessary to set, since
it should appear on the signer’s certificate, but there are cases
where it might be useful to specify it here (e.g. in situations where
signing is delegated to a trusted third party).

	
app_build_props: BuildProps | None = None
	Properties of the application that created the signature.

If specified, this data will be recorded in the Prop_Build
dictionary of the signature.

	
prop_auth_time: int | None = None
	Number of seconds since signer was last authenticated.

	
prop_auth_type: SigAuthType | None = None
	Signature /Prop_AuthType to use.

This should be one of
PIN or
PASSWORD or
FINGERPRINT
If not specified, this property won’t be set on the signature dictionary.

	
certify: bool = False
	Sign with an author (certification) signature, as opposed to an approval
signature. A document can contain at most one such signature, and it must
be the first one.

	
subfilter: SigSeedSubFilter | None = None
	Signature subfilter to use.

This should be one of
ADOBE_PKCS7_DETACHED or
PADES.
If not specified, the value may be inferred from the signature field’s
seed value dictionary. Failing that,
ADOBE_PKCS7_DETACHED is used as the
default value.

	
embed_validation_info: bool = False
	Flag indicating whether validation info (OCSP responses and/or CRLs)
should be embedded or not. This is necessary to be able to validate
signatures long after they have been made.
This flag requires validation_context to be set.

The precise manner in which the validation info is embedded depends on
the (effective) value of subfilter:

	With ADOBE_PKCS7_DETACHED, the
validation information will be embedded inside the CMS object containing
the signature.

	With PADES, the validation information
will be embedded into the document security store (DSS).

	
use_pades_lta: bool = False
	If True, the signer will append an additional document timestamp after
writing the signature’s validation information to the document security
store (DSS).
This flag is only meaningful if subfilter is
PADES.

The PAdES B-LTA profile solves the long-term validation problem by
adding a timestamp chain to the document after the regular signatures, which
is updated with new timestamps at regular intervals.
This provides an audit trail that ensures the long-term integrity of the
validation information in the DSS, since OCSP responses and CRLs also have
a finite lifetime.

See also PdfTimeStamper.update_archival_timestamp_chain().

	
timestamp_field_name: str | None = None
	Name of the timestamp field created when use_pades_lta is True.
If not specified, a unique name will be generated using uuid.

	
validation_context: ValidationContext | None = None
	The validation context to use when validating signatures.
If provided, the signer’s certificate and any timestamp certificates
will be validated before signing.

This parameter is mandatory when embed_validation_info is True.

	
docmdp_permissions: MDPPerm = 2
	Indicates the document modification policy that will be in force after
this signature is created. Only relevant for certification signatures
or signatures that apply locking.

Warning

For non-certification signatures, this is only explicitly allowed since
PDF 2.0 (ISO 32000-2), so older software may not respect this setting
on approval signatures.

	
signer_key_usage: Set[str]
	Key usage extensions required for the signer’s certificate.
Defaults to non_repudiation only, but sometimes digital_signature
or a combination of both may be more appropriate.
See x509.KeyUsage for a complete list.

Only relevant if a validation context is also provided.

	
cades_signed_attr_spec: CAdESSignedAttrSpec | None = None
	
New in version 0.5.0.

Specification for CAdES-specific attributes.

	
dss_settings: DSSContentSettings = DSSContentSettings(include_vri=True, skip_if_unneeded=True, placement=<SigDSSPlacementPreference.TOGETHER_WITH_NEXT_TS: 3>, next_ts_settings=None)
	
New in version 0.8.0.

DSS output settings. See DSSContentSettings.

	
tight_size_estimates: bool = False
	
New in version 0.8.0.

When estimating the size of a signature container,
do not add safety margins.

Note

This should be OK if the entire CMS object is produced by pyHanko, and
the signing scheme produces signatures of a fixed size.
However, if the signature container includes unsigned attributes such
as signature timestamps, the size of the signature is never entirely
predictable.

	
ac_validation_context: ValidationContext | None = None
	
New in version 0.11.0.

Validation context for attribute certificates

	
class pyhanko.sign.signers.pdf_signer.DSSContentSettings(include_vri: bool = True, skip_if_unneeded: bool = True, placement: SigDSSPlacementPreference = SigDSSPlacementPreference.TOGETHER_WITH_NEXT_TS, next_ts_settings: TimestampDSSContentSettings | None = None)
	Bases: GeneralDSSContentSettings

New in version 0.8.0.

Settings for a DSS update with validation information for a signature.

	
placement: SigDSSPlacementPreference = 3
	Preference for where to perform a DSS update with validation information
for a specific signature. See SigDSSPlacementPreference.

The default is SigDSSPlacementPreference.TOGETHER_WITH_NEXT_TS.

	
next_ts_settings: TimestampDSSContentSettings | None = None
	Explicit settings for DSS updates pertaining to a document timestamp
added as part of the same signing workflow, if applicable.

If None, a default will be generated based on the values of this
settings object.

Note

When consuming DSSContentSettings objects, you should
call get_settings_for_ts() instead of relying on the value of
this field.

	
get_settings_for_ts() → TimestampDSSContentSettings
	Retrieve DSS update settings for document timestamps that are
part of our signing workflow, if there are any.

	
assert_viable()
	Check settings for consistency, and raise SigningError
otherwise.

	
class pyhanko.sign.signers.pdf_signer.TimestampDSSContentSettings(include_vri: bool = True, skip_if_unneeded: bool = True, update_before_ts: bool = False)
	Bases: GeneralDSSContentSettings

New in version 0.8.0.

Settings for a DSS update with validation information for a document
timestamp.

Note

In most workflows, adding a document timestamp doesn’t trigger any DSS
updates beyond VRI additions, because the same TSA is used for signature
timestamps and for document timestamps.

	
update_before_ts: bool = False
	Perform DSS update before creating the timestamp, instead of after.

Warning

This setting can only be used if include_vri is False.

	
assert_viable()
	Check settings for consistency, and raise SigningError
otherwise.

	
class pyhanko.sign.signers.pdf_signer.GeneralDSSContentSettings(include_vri: bool = True, skip_if_unneeded: bool = True)
	Bases: object

New in version 0.8.0.

Settings that govern DSS creation and updating in general.

	
include_vri: bool = True
	Flag to control whether to create and update entries in the VRI dictionary.
The default is to always update the VRI dictionary.

Note

The VRI dictionary is a relic of the past that is effectively
deprecated in the current PAdES standards, and most modern validators
don’t rely on it being there.

That said, there’s no real harm in creating these entries, other than
that it occasionally forces DSS updates where none would otherwise
be necessary, and that it prevents the DSS from being updated prior
to signing (as opposed to after signing).

	
skip_if_unneeded: bool = True
	Do not perform a write if updating the DSS would not add any new
information.

Note

This setting is only used if the DSS update would happen in its own
revision.

	
class pyhanko.sign.signers.pdf_signer.SigDSSPlacementPreference(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)
	Bases: Enum

New in version 0.8.0.

Preference for where to perform a DSS update with validation information
for a specific signature.

	
TOGETHER_WITH_SIGNATURE = 1
	Update the DSS in the revision that contains the signature.
Doing so can be useful to create a PAdES-B-LT signature in a single
revision.
Such signatures can be processed by a validator that isn’t capable of
incremental update analysis.

Warning

This setting can only be used if include_vri is False.

	
SEPARATE_REVISION = 2
	Always perform the DSS update in a separate revision, after the signature,
but before any timestamps are added.

Note

This is the old default behaviour.

	
TOGETHER_WITH_NEXT_TS = 3
	If the signing workflow includes a document timestamp after the signature,
update the DSS in the same revision as the timestamp.
In the absence of document timestamps, this is equivalent to
SEPARATE_REVISION.

Warning

This option controls the addition of validation info for the signature
and its associated signature timestamp, not the validation info for the
document timestamp itself.
See DSSContentSettings.next_ts_settings.

In most practical situations, the distinction is only relevant in
interrupted signing workflows (see Interrupted signing),
where the lifecycle of the validation context is out of pyHanko’s hands.

	
class pyhanko.sign.signers.pdf_signer.PdfTimeStamper(timestamper: TimeStamper, field_name: str | None = None, invis_settings: InvisSigSettings = InvisSigSettings(set_print_flag=True, set_hidden_flag=False, box_out_of_bounds=False), readable_field_name: str = 'Timestamp')
	Bases: object

Class to encapsulate the process of appending document timestamps to
PDF files.

	
property field_name: str
	Retrieve or generate the field name for the signature field to contain
the document timestamp.

	Returns:
	The field name, as a (Python) string.

	
timestamp_pdf(pdf_out: IncrementalPdfFileWriter, md_algorithm, validation_context=None, bytes_reserved=None, validation_paths=None, timestamper: TimeStamper | None = None, *, in_place=False, output=None, dss_settings: TimestampDSSContentSettings = TimestampDSSContentSettings(include_vri=True, skip_if_unneeded=True, update_before_ts=False), chunk_size=4096, tight_size_estimates: bool = False)
	
Changed in version 0.9.0: Wrapper around async_timestamp_pdf().

Timestamp the contents of pdf_out.
Note that pdf_out should not be written to after this operation.

	Parameters:
		pdf_out – An IncrementalPdfFileWriter.

	md_algorithm – The hash algorithm to use when computing message digests.

	validation_context – The pyhanko_certvalidator.ValidationContext
against which the TSA response should be validated.
This validation context will also be used to update the DSS.

	bytes_reserved –
Bytes to reserve for the CMS object in the PDF file.
If not specified, make an estimate based on a dummy signature.

Warning

Since the CMS object is written to the output file as a
hexadecimal string, you should request twice the (estimated)
number of bytes in the DER-encoded version of the CMS object.

	validation_paths – If the validation path(s) for the TSA’s certificate are already
known, you can pass them using this parameter to avoid having to
run the validation logic again.

	timestamper – Override the default TimeStamper associated with this
PdfTimeStamper.

	output – Write the output to the specified output stream.
If None, write to a new BytesIO object.
Default is None.

	in_place – Sign the original input stream in-place.
This parameter overrides output.

	chunk_size – Size of the internal buffer (in bytes) used to feed data to the
message digest function if the input stream does not support
memoryview.

	dss_settings – DSS output settings. See TimestampDSSContentSettings.

	tight_size_estimates –
When estimating the size of a document timestamp container,
do not add safety margins.

Note

External TSAs cannot be relied upon to always produce the
exact same output length, which makes this option risky to use.

	Returns:
	The output stream containing the signed output.

	
async async_timestamp_pdf(pdf_out: IncrementalPdfFileWriter, md_algorithm, validation_context=None, bytes_reserved=None, validation_paths=None, timestamper: TimeStamper | None = None, *, in_place=False, output=None, dss_settings: TimestampDSSContentSettings = TimestampDSSContentSettings(include_vri=True, skip_if_unneeded=True, update_before_ts=False), chunk_size=4096, tight_size_estimates: bool = False, embed_roots: bool = True)
	
New in version 0.9.0.

Timestamp the contents of pdf_out.
Note that pdf_out should not be written to after this operation.

	Parameters:
		pdf_out – An IncrementalPdfFileWriter.

	md_algorithm – The hash algorithm to use when computing message digests.

	validation_context – The pyhanko_certvalidator.ValidationContext
against which the TSA response should be validated.
This validation context will also be used to update the DSS.

	bytes_reserved –
Bytes to reserve for the CMS object in the PDF file.
If not specified, make an estimate based on a dummy signature.

Warning

Since the CMS object is written to the output file as a
hexadecimal string, you should request twice the (estimated)
number of bytes in the DER-encoded version of the CMS object.

	validation_paths – If the validation path(s) for the TSA’s certificate are already
known, you can pass them using this parameter to avoid having to
run the validation logic again.

	timestamper – Override the default TimeStamper associated with this
PdfTimeStamper.

	output – Write the output to the specified output stream.
If None, write to a new BytesIO object.
Default is None.

	in_place – Sign the original input stream in-place.
This parameter overrides output.

	chunk_size – Size of the internal buffer (in bytes) used to feed data to the
message digest function if the input stream does not support
memoryview.

	dss_settings – DSS output settings. See TimestampDSSContentSettings.

	tight_size_estimates –
When estimating the size of a document timestamp container,
do not add safety margins.

Note

External TSAs cannot be relied upon to always produce the
exact same output length, which makes this option risky to use.

	embed_roots –
Option that controls whether the root certificate of each validation
path should be embedded into the DSS. The default is True.

Note

Trust roots are configured by the validator, so embedding them
typically does nothing in a typical validation process.
Therefore they can be safely omitted in most cases.
Nonetheless, embedding the roots can be useful for documentation
purposes.

	Returns:
	The output stream containing the signed output.

	
update_archival_timestamp_chain(reader: PdfFileReader, validation_context, in_place=True, output=None, chunk_size=4096, default_md_algorithm='sha256')
	
Changed in version 0.9.0: Wrapper around async_update_archival_timestamp_chain().

Validate the last timestamp in the timestamp chain on a PDF file, and
write an updated version to an output stream.

	Parameters:
		reader – A PdfReader encapsulating the input file.

	validation_context – pyhanko_certvalidator.ValidationContext object to validate
the last timestamp.

	output – Write the output to the specified output stream.
If None, write to a new BytesIO object.
Default is None.

	in_place – Sign the original input stream in-place.
This parameter overrides output.

	chunk_size – Size of the internal buffer (in bytes) used to feed data to the
message digest function if the input stream does not support
memoryview.

	default_md_algorithm – Message digest to use if there are no preceding timestamps in the
file.

	Returns:
	The output stream containing the signed output.

	
async async_update_archival_timestamp_chain(reader: PdfFileReader, validation_context, in_place=True, output=None, chunk_size=4096, default_md_algorithm='sha256', embed_roots: bool = True)
	
New in version 0.9.0.

Validate the last timestamp in the timestamp chain on a PDF file, and
write an updated version to an output stream.

	Parameters:
		reader – A PdfReader encapsulating the input file.

	validation_context – pyhanko_certvalidator.ValidationContext object to validate
the last timestamp.

	output – Write the output to the specified output stream.
If None, write to a new BytesIO object.
Default is None.

	in_place – Sign the original input stream in-place.
This parameter overrides output.

	chunk_size – Size of the internal buffer (in bytes) used to feed data to the
message digest function if the input stream does not support
memoryview.

	default_md_algorithm – Message digest to use if there are no preceding timestamps in the
file.

	embed_roots –
Option that controls whether the root certificate of each validation
path should be embedded into the DSS. The default is True.

Note

Trust roots are configured by the validator, so embedding them
typically does nothing in a typical validation process.
Therefore they can be safely omitted in most cases.
Nonetheless, embedding the roots can be useful for documentation
purposes.

	Returns:
	The output stream containing the signed output.

	
class pyhanko.sign.signers.pdf_signer.PdfSigner(signature_meta: PdfSignatureMetadata, signer: Signer, *, timestamper: TimeStamper | None = None, stamp_style: BaseStampStyle | None = None, new_field_spec: SigFieldSpec | None = None)
	Bases: object

Class to handle PDF signatures in general.

	Parameters:
		signature_meta – The specification of the signature to add.

	signer – Signer object to use to produce the signature object.

	timestamper – TimeStamper object to use to produce any time stamp tokens
that might be required.

	stamp_style – Stamp style specification to determine the visible style of the
signature, typically an object of type TextStampStyle or
QRStampStyle. Defaults to
constants.DEFAULT_SIGNING_STAMP_STYLE.

	new_field_spec – If a new field is to be created, this parameter allows the caller
to specify the field’s properties in the form of a
SigFieldSpec. This parameter is only meaningful if
existing_fields_only is False.

	
property default_md_for_signer: str | None
	Name of the default message digest algorithm for this signer, if there
is one.
This method will try the md_algorithm
attribute on the signer’s signature_meta, or try to retrieve
the digest algorithm associated with the underlying
Signer.

	Returns:
	The name of the message digest algorithm, or None.

	
register_extensions(pdf_out: BasePdfFileWriter, *, md_algorithm: str)
	

	
init_signing_session(pdf_out: BasePdfFileWriter, existing_fields_only=False) → PdfSigningSession
	Initialise a signing session with this PdfSigner for a
specified PDF file writer.

This step in the signing process handles all field-level operations
prior to signing: it creates the target form field if necessary, and
makes sure the seed value dictionary gets processed.

See also digest_doc_for_signing() and sign_pdf().

	Parameters:
		pdf_out – The writer containing the PDF file to be signed.

	existing_fields_only – If True, never create a new empty signature field to contain
the signature.
If False, a new field may be created if no field matching
field_name exists.

	Returns:
	A PdfSigningSession object modelling the signing session
in its post-setup stage.

	
digest_doc_for_signing(pdf_out: BasePdfFileWriter, existing_fields_only=False, bytes_reserved=None, *, appearance_text_params=None, in_place=False, output=None, chunk_size=4096) → Tuple[PreparedByteRangeDigest, PdfTBSDocument, IO]
	
Deprecated since version 0.9.0: Use async_digest_doc_for_signing() instead.

Set up all stages of the signing process up to and including the point
where the signature placeholder is allocated, and the document’s
/ByteRange digest is computed.

See sign_pdf() for a less granular, more high-level approach.

Note

This method is useful in remote signing scenarios, where you might
want to free up resources while waiting for the remote signer to
respond. The PreparedByteRangeDigest object returned
allows you to keep track of the required state to fill the
signature container at some later point in time.

	Parameters:
		pdf_out – A PDF file writer (usually an IncrementalPdfFileWriter)
containing the data to sign.

	existing_fields_only – If True, never create a new empty signature field to contain
the signature.
If False, a new field may be created if no field matching
field_name exists.

	bytes_reserved –
Bytes to reserve for the CMS object in the PDF file.
If not specified, make an estimate based on a dummy signature.

Warning

Since the CMS object is written to the output file as a
hexadecimal string, you should request twice the (estimated)
number of bytes in the DER-encoded version of the CMS object.

	appearance_text_params – Dictionary with text parameters that will be passed to the
signature appearance constructor (if applicable).

	output – Write the output to the specified output stream.
If None, write to a new BytesIO object.
Default is None.

	in_place – Sign the original input stream in-place.
This parameter overrides output.

	chunk_size – Size of the internal buffer (in bytes) used to feed data to the
message digest function if the input stream does not support
memoryview.

	Returns:
	A tuple containing a PreparedByteRangeDigest object,
a PdfTBSDocument object and an output handle to which the
document in its current state has been written.

	
async async_digest_doc_for_signing(pdf_out: BasePdfFileWriter, existing_fields_only=False, bytes_reserved=None, *, appearance_text_params=None, in_place=False, output=None, chunk_size=4096) → Tuple[PreparedByteRangeDigest, PdfTBSDocument, IO]
	
New in version 0.9.0.

Set up all stages of the signing process up to and including the point
where the signature placeholder is allocated, and the document’s
/ByteRange digest is computed.

See sign_pdf() for a less granular, more high-level approach.

Note

This method is useful in remote signing scenarios, where you might
want to free up resources while waiting for the remote signer to
respond. The PreparedByteRangeDigest object returned
allows you to keep track of the required state to fill the
signature container at some later point in time.

	Parameters:
		pdf_out – A PDF file writer (usually an IncrementalPdfFileWriter)
containing the data to sign.

	existing_fields_only – If True, never create a new empty signature field to contain
the signature.
If False, a new field may be created if no field matching
field_name exists.

	bytes_reserved –
Bytes to reserve for the CMS object in the PDF file.
If not specified, make an estimate based on a dummy signature.

Warning

Since the CMS object is written to the output file as a
hexadecimal string, you should request twice the (estimated)
number of bytes in the DER-encoded version of the CMS object.

	appearance_text_params – Dictionary with text parameters that will be passed to the
signature appearance constructor (if applicable).

	output – Write the output to the specified output stream.
If None, write to a new BytesIO object.
Default is None.

	in_place – Sign the original input stream in-place.
This parameter overrides output.

	chunk_size – Size of the internal buffer (in bytes) used to feed data to the
message digest function if the input stream does not support
memoryview.

	Returns:
	A tuple containing a PreparedByteRangeDigest object,
a PdfTBSDocument object and an output handle to which the
document in its current state has been written.

	
sign_pdf(pdf_out: BasePdfFileWriter, existing_fields_only=False, bytes_reserved=None, *, appearance_text_params=None, in_place=False, output=None, chunk_size=4096)
	
Changed in version 0.9.0: Wrapper around async_sign_pdf().

Sign a PDF file using the provided output writer.

	Parameters:
		pdf_out – A PDF file writer (usually an IncrementalPdfFileWriter)
containing the data to sign.

	existing_fields_only – If True, never create a new empty signature field to contain
the signature.
If False, a new field may be created if no field matching
field_name exists.

	bytes_reserved – Bytes to reserve for the CMS object in the PDF file.
If not specified, make an estimate based on a dummy signature.

	appearance_text_params – Dictionary with text parameters that will be passed to the
signature appearance constructor (if applicable).

	output – Write the output to the specified output stream.
If None, write to a new BytesIO object.
Default is None.

	in_place – Sign the original input stream in-place.
This parameter overrides output.

	chunk_size – Size of the internal buffer (in bytes) used to feed data to the
message digest function if the input stream does not support
memoryview.

	Returns:
	The output stream containing the signed data.

	
async async_sign_pdf(pdf_out: BasePdfFileWriter, existing_fields_only=False, bytes_reserved=None, *, appearance_text_params=None, in_place=False, output=None, chunk_size=4096)
	
New in version 0.9.0.

Sign a PDF file using the provided output writer.

	Parameters:
		pdf_out – A PDF file writer (usually an IncrementalPdfFileWriter)
containing the data to sign.

	existing_fields_only – If True, never create a new empty signature field to contain
the signature.
If False, a new field may be created if no field matching
field_name exists.

	bytes_reserved – Bytes to reserve for the CMS object in the PDF file.
If not specified, make an estimate based on a dummy signature.

	appearance_text_params – Dictionary with text parameters that will be passed to the
signature appearance constructor (if applicable).

	output – Write the output to the specified output stream.
If None, write to a new BytesIO object.
Default is None.

	in_place – Sign the original input stream in-place.
This parameter overrides output.

	chunk_size – Size of the internal buffer (in bytes) used to feed data to the
message digest function if the input stream does not support
memoryview.

	Returns:
	The output stream containing the signed data.

	
class pyhanko.sign.signers.pdf_signer.PdfSigningSession(pdf_signer: PdfSigner, pdf_out: BasePdfFileWriter, cms_writer, sig_field, md_algorithm: str, timestamper: TimeStamper | None, subfilter: SigSeedSubFilter, system_time: datetime | None = None, sv_spec: SigSeedValueSpec | None = None)
	Bases: object

New in version 0.7.0.

Class modelling a PDF signing session in its initial state.

The __init__ method is internal API, get an instance using
PdfSigner.init_signing_session().

	
async perform_presign_validation(pdf_out: BasePdfFileWriter | None = None) → PreSignValidationStatus | None
	Perform certificate validation checks for the signer’s certificate,
including any necessary revocation checks.

This function will also attempt to validate & collect revocation
information for the relevant TSA (by requesting a dummy timestamp).

	Parameters:
	pdf_out – Current PDF writer. Technically optional; only used to look for
the end of the timestamp chain in the previous revision when
producing a PAdES-LTA signature in a document that is already
signed (to ensure that the timestamp chain is uninterrupted).

	Returns:
	A PreSignValidationStatus object, or None if there
is no validation context available.

	
async estimate_signature_container_size(validation_info: PreSignValidationStatus | None, tight=False)
	

	
prepare_tbs_document(validation_info: PreSignValidationStatus | None, bytes_reserved, appearance_text_params=None) → PdfTBSDocument
	Set up the signature appearance (if necessary) and signature dictionary
in the PDF file, to put the document in its final pre-signing state.

	Parameters:
		validation_info – Validation information collected prior to signing.

	bytes_reserved – Bytes to reserve for the signature container.

	appearance_text_params – Optional text parameters for the signature appearance content.

	Returns:
	A PdfTBSDocument describing the document in its final
pre-signing state.

	
class pyhanko.sign.signers.pdf_signer.PdfTBSDocument(cms_writer, signer: Signer, md_algorithm: str, use_pades: bool, timestamper: TimeStamper | None = None, post_sign_instructions: PostSignInstructions | None = None, validation_context: ValidationContext | None = None)
	Bases: object

New in version 0.7.0.

A PDF document in its final pre-signing state.

The __init__ method is internal API, get an instance using
PdfSigningSession.prepare_tbs_document(). Alternatively, use
resume_signing() or finish_signing() to continue a previously
interrupted signing process without instantiating a new
PdfTBSDocument object.

	
digest_tbs_document(*, output: IO | None = None, in_place: bool = False, chunk_size=4096) → Tuple[PreparedByteRangeDigest, IO]
	Write the document to an output stream and compute the digest, while
keeping track of the (future) location of the signature contents in the
output stream.

The digest can then be passed to the next part of the signing pipeline.

Warning

This method can only be called once.

	Parameters:
		output – Write the output to the specified output stream.
If None, write to a new BytesIO object.
Default is None.

	in_place – Sign the original input stream in-place.
This parameter overrides output.

	chunk_size – Size of the internal buffer (in bytes) used to feed data to the
message digest function if the input stream does not support
memoryview.

	Returns:
	A tuple containing a PreparedByteRangeDigest and the
output stream to which the output was written.

	
async perform_signature(document_digest: bytes, pdf_cms_signed_attrs: PdfCMSSignedAttributes) → PdfPostSignatureDocument
	Perform the relevant cryptographic signing operations on the document
digest, and write the resulting CMS object to the appropriate location
in the output stream.

Warning

This method can only be called once, and must be invoked after
digest_tbs_document().

	Parameters:
		document_digest – Digest of the document, as computed over the relevant
/ByteRange.

	pdf_cms_signed_attrs – Description of the signed attributes to include.

	Returns:
	A PdfPostSignatureDocument object.

	
classmethod resume_signing(output: IO, prepared_digest: PreparedByteRangeDigest, signature_cms: bytes | ContentInfo, post_sign_instr: PostSignInstructions | None = None, validation_context: ValidationContext | None = None) → PdfPostSignatureDocument
	Resume signing after obtaining a CMS object from an external source.

This is a class method; it doesn’t require a PdfTBSDocument
instance. Contrast with perform_signature().

	Parameters:
		output – Output stream housing the document in its final pre-signing state.
This stream must at least be writable and seekable, and also
readable if post-signature processing is required.

	prepared_digest – The prepared digest returned by a prior call to
digest_tbs_document().

	signature_cms – CMS object to embed in the signature dictionary.

	post_sign_instr – Instructions for post-signing processing (DSS updates and document
timestamps).

	validation_context – Validation context to use in post-signing operations.
This is mainly intended for TSA certificate validation, but it can
also contain additional validation data to embed in the DSS.

	Returns:
	A PdfPostSignatureDocument.

	
classmethod finish_signing(output: IO, prepared_digest: PreparedByteRangeDigest, signature_cms: bytes | ContentInfo, post_sign_instr: PostSignInstructions | None = None, validation_context: ValidationContext | None = None, chunk_size=4096)
	Finish signing after obtaining a CMS object from an external source, and
perform any required post-signature processing.

This is a class method; it doesn’t require a PdfTBSDocument
instance. Contrast with perform_signature().

	Parameters:
		output – Output stream housing the document in its final pre-signing state.

	prepared_digest – The prepared digest returned by a prior call to
digest_tbs_document().

	signature_cms – CMS object to embed in the signature dictionary.

	post_sign_instr – Instructions for post-signing processing (DSS updates and document
timestamps).

	validation_context – Validation context to use in post-signing operations.
This is mainly intended for TSA certificate validation, but it can
also contain additional validation data to embed in the DSS.

	chunk_size – Size of the internal buffer (in bytes) used to feed data to the
message digest function if the input stream does not support
memoryview.

	
async classmethod async_finish_signing(output: IO, prepared_digest: PreparedByteRangeDigest, signature_cms: bytes | ContentInfo, post_sign_instr: PostSignInstructions | None = None, validation_context: ValidationContext | None = None, chunk_size=4096)
	Finish signing after obtaining a CMS object from an external source, and
perform any required post-signature processing.

This is a class method; it doesn’t require a PdfTBSDocument
instance. Contrast with perform_signature().

	Parameters:
		output – Output stream housing the document in its final pre-signing state.

	prepared_digest – The prepared digest returned by a prior call to
digest_tbs_document().

	signature_cms – CMS object to embed in the signature dictionary.

	post_sign_instr – Instructions for post-signing processing (DSS updates and document
timestamps).

	validation_context – Validation context to use in post-signing operations.
This is mainly intended for TSA certificate validation, but it can
also contain additional validation data to embed in the DSS.

	chunk_size – Size of the internal buffer (in bytes) used to feed data to the
message digest function if the input stream does not support
memoryview.

	
class pyhanko.sign.signers.pdf_signer.PdfPostSignatureDocument(sig_contents: bytes, post_sign_instr: PostSignInstructions | None = None, validation_context: ValidationContext | None = None)
	Bases: object

New in version 0.7.0.

Represents the final phase of the PDF signing process

	
async post_signature_processing(output: IO, chunk_size=4096)
	Handle DSS updates and LTA timestamps, if applicable.

	Parameters:
		output – I/O buffer containing the signed document. Must support
reading, writing and seeking.

	chunk_size – Chunk size to use for I/O operations that do not support the buffer
protocol.

	
class pyhanko.sign.signers.pdf_signer.PreSignValidationStatus(signer_path: ~pyhanko_certvalidator.path.ValidationPath, validation_paths: ~typing.List[~pyhanko_certvalidator.path.ValidationPath], ts_validation_paths: ~typing.List[~pyhanko_certvalidator.path.ValidationPath] | None = None, adobe_revinfo_attr: ~asn1crypto.pdf.RevocationInfoArchival | None = None, ocsps_to_embed: ~typing.List[~asn1crypto.ocsp.OCSPResponse] = <factory>, crls_to_embed: ~typing.List[~asn1crypto.crl.CertificateList] = <factory>, ac_validation_paths: ~typing.List[~pyhanko_certvalidator.path.ValidationPath] = <factory>)
	Bases: object

New in version 0.7.0.

Container for validation data collected prior to creating a signature, e.g.
for later inclusion in a document’s DSS, or as a signed attribute on
the signature.

	
signer_path: ValidationPath
	Validation path for the signer’s certificate.

	
validation_paths: List[ValidationPath]
	List of other relevant validation paths.

	
ts_validation_paths: List[ValidationPath] | None = None
	List of validation paths relevant for embedded timestamps.

	
adobe_revinfo_attr: RevocationInfoArchival | None = None
	Preformatted revocation info attribute to include, if requested by the
settings.

	
ocsps_to_embed: List[OCSPResponse]
	List of OCSP responses collected so far.

	
crls_to_embed: List[CertificateList]
	List of CRLS collected so far.

	
ac_validation_paths: List[ValidationPath]
	List of validation paths relevant for embedded attribute certificates.

	
class pyhanko.sign.signers.pdf_signer.PostSignInstructions(validation_info: ~pyhanko.sign.signers.pdf_signer.PreSignValidationStatus, timestamper: ~pyhanko.sign.timestamps.api.TimeStamper | None = None, timestamp_md_algorithm: str | None = None, timestamp_field_name: str | None = None, dss_settings: ~pyhanko.sign.signers.pdf_signer.DSSContentSettings = DSSContentSettings(include_vri=True, skip_if_unneeded=True, placement=<SigDSSPlacementPreference.TOGETHER_WITH_NEXT_TS: 3>, next_ts_settings=None), tight_size_estimates: bool = False, embed_roots: bool = True, file_credential: ~pyhanko.pdf_utils.crypt.cred_ser.SerialisedCredential | None = None)
	Bases: object

New in version 0.7.0.

Container class housing instructions for incremental updates
to the document after the signature has been put in place.
Necessary for PAdES-LT and PAdES-LTA workflows.

	
validation_info: PreSignValidationStatus
	Validation information to embed in the DSS (if not already present).

	
timestamper: TimeStamper | None = None
	Timestamper to use for produce document timestamps. If None, no
timestamp will be added.

	
timestamp_md_algorithm: str | None = None
	Digest algorithm to use when producing timestamps.
Defaults to DEFAULT_MD.

	
timestamp_field_name: str | None = None
	Name of the timestamp field to use. If not specified, a field name will be
generated.

	
dss_settings: DSSContentSettings = DSSContentSettings(include_vri=True, skip_if_unneeded=True, placement=<SigDSSPlacementPreference.TOGETHER_WITH_NEXT_TS: 3>, next_ts_settings=None)
	
New in version 0.8.0.

Settings to fine-tune DSS generation.

	
tight_size_estimates: bool = False
	
New in version 0.8.0.

When estimating the size of a document timestamp container,
do not add safety margins.

Note

External TSAs cannot be relied upon to always produce the
exact same output length, which makes this option risky to use.

	
embed_roots: bool = True
	
New in version 0.9.0.

Option that controls whether the root certificate of each validation
path should be embedded into the DSS. The default is True.

Note

Trust roots are configured by the validator, so embedding them
typically does nothing in a typical validation process.
Therefore they can be safely omitted in most cases.
Nonetheless, embedding the roots can be useful for documentation
purposes.

Note

This setting is not part of DSSContentSettings because
its value is taken from the corresponding property on the
Signer involved, not from the initial configuration.

	
file_credential: SerialisedCredential | None = None
	
New in version 0.13.0.

Serialised file credential, to update encrypted files.

 Previous
 Next

 © Copyright 2020-2023, Matthias Valvekens.
 Revision ff3a282c.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

 Read the Docs
 v: latest

 	Versions
	latest
	stable
	v0.23.0
	v0.22.0
	v0.21.0
	v0.20.1
	v0.20.0
	v0.19.0
	v0.18.1
	v0.18.0
	0.17.2
	0.17.1
	0.17.0
	0.16.0
	0.15.1
	0.15.0
	0.14.0
	0.13.2
	0.13.1
	0.13.0
	0.12.1
	0.12.0
	0.11.0
	0.10.0
	0.9.0
	0.8.0
	0.7.0
	0.6.1
	0.6.0
	0.5.1
	0.5.0
	0.4.0
	0.3.0
	0.2.0
	0.1.0

 	Downloads
	pdf
	html
	epub

 	On Read the Docs
	
 Project Home

	
 Builds

