

 pyHanko

 latest

 Contents:

	CLI user’s guide
	Library (SDK) user’s guide
	API reference
	Release history	Dependency changes
	New features and enhancements	Signing
	CLI

	Bugs fixed
	Dependency changes
	New features and enhancements	Signing
	Validation
	CLI

	Bugs fixed
	Miscellaneous
	Dependency changes
	Miscellaneous
	Dependency changes
	Miscellaneous
	Dependency changes
	Breaking changes
	New features and enhancements	Encryption
	CLI

	Bugs fixed
	Dependency changes
	Note
	Breaking changes
	Organisational changes
	Dependency changes
	Bugs fixed
	New features and enhancements	Signing
	Validation	0.17.2

	Note
	Bugs fixed
	Note
	Bugs fixed
	Note
	Dependency updates
	Breaking changes
	New features and enhancements	Validation	0.16.0

	Dependency updates
	Breaking changes
	New features and enhancements	Signing
	Validation

	Bugs fixed
	Note
	Dependency updates
	Bugs fixed
	Note
	Bugs fixed
	New features and enhancements	Signing
	Validation	0.14.0

	Note
	Breaking changes
	Dependency updates
	Bugs fixed
	New features and enhancements	Signing
	Validation
	Encryption
	Layout
	Miscellaneous	0.13.2

	Note
	Dependency updates
	Bugs fixed
	Note
	Dependency updates
	Note
	Dependency updates
	Bugs fixed
	New features and enhancements	Miscellaneous
	Encryption
	Signing
	Validation	0.12.1

	Dependency updates
	Bugs fixed
	Note
	New features and enhancements	Miscellaneous

	Bugs fixed
	Dependency changes
	Breaking changes
	New features and enhancements	Signing
	Validation
	Miscellaneous

	Bugs fixed
	Dependency changes
	New features and enhancements	Signing
	Validation
	Miscellaneous

	Bugs fixed
	Dependency changes
	API-breaking changes
	New features and enhancements	Signing
	Validation
	Miscellaneous

	Bugs fixed
	Dependency changes
	API-breaking changes
	New features and enhancements	Signing
	Validation
	Encryption
	Miscellaneous

	Bugs fixed
	Dependency changes
	API-breaking changes	Signing code refactor
	Fonts
	Miscellaneous

	New features and enhancements	Signing
	Validation
	Encryption
	Miscellaneous

	Bugs fixed	Signing
	Validation
	Encryption
	Miscellaneous	0.6.1

	Dependency changes
	Bugs fixed
	Dependency changes
	New features and enhancements	Signing
	Validation
	Encryption
	Miscellaneous

	Bugs fixed
	Bugs fixed
	Dependency changes
	New features and enhancements	Encryption
	Signing
	Validation
	Miscellaneous

	Bugs fixed
	New features and enhancements	Encryption
	Signing
	Validation
	Miscellaneous

	Bugs fixed
	New features and enhancements	Encryption
	Signing
	Miscellaneous
	Validation

	Bugs fixed
	New features and enhancements	Signing
	Validation
	CLI
	General PDF API

	Bugs fixed

	Frequently asked questions (FAQ)
	Known issues
	Release artifact authenticity
	Licenses

 pyHanko

 	
	Release history
	
 Edit on GitHub

Release history

Release date: 2024-03-07

Dependency changes

	Relax upper bounds on xsdata and uharfbuzz.

	cryptography` to ``42.0.1

	Get rid of pytest-runner

New features and enhancements

Signing

	Relax processing of PKCS#11 options, setting better defaults so
users have to write less config to select their key/certificate.
(see PR #296 <https://github.com/MatthiasValvekens/pyHanko/issues/296>)

CLI

	Add timestamp command to CLI to add a document timestamp without
performing any PAdES validation.

Bugs fixed

	Gracefully handle lack of /Type entry in signature objects vailidation.

Release date: 2023-11-26

Dependency changes

	Bumped the minimal supported Python version to 3.8 (dropping 3.7).

	Bumped the lower bound on qrcode to 7.3.1.

	Bumped pyhanko-certvalidator to 0.26.x.

	Bumped the lower bound on click to 8.1.3.

	Bumped the lower bound on requests to 2.31.0.

	Bumped the lower bound on pyyaml to 6.0.

	Bumped the lower bound on cryptography to 41.0.5.

	Bumped aiohttp to 3.9.x.

	Bumped certomancer-csc-dummy test dependency to 0.2.3.

	Introduced new dependency group etsi with xsdata for features
implementing functionality from AdES and related ETSI standards.

New features and enhancements

Signing

	Add support for /ContactInfo, /Prop_AuthTime and /Prop_AuthType.

Validation

	Experimental support for AdES validation reports (requires new etsi optional deps)

	New API function for simulating PAdES-LTA validation at a time in the future;
see simulate_future_ades_lta_validation().

	Add support for asserting the nonrevoked status of a certificate chain.

CLI

	Add --resave flag to addfields subcommand.

Bugs fixed

	Fixed an oversight in the serialisation of the /ByteRange entry
in a signature that prevented large documents from being signed correctly.

	Various adjustments to the (still experimental) AdES validation API.

	Various local documentation fixes.

	PDF signatures that do not omit the eContent field in their encapsulated
content info are now rejected as invalid.

Miscellaneous

	Include PyPDF2 licence file in package metadata.

	Cleaned up loading logic in PdfFileReader.
The most important impact of this change is that structural errors in the
encryption dictionary will now cause exceptions to be thrown when decryption
is attempted, not in the __init__ function.

Release date: 2023-09-17

Dependency changes

	Upgrade pyhanko-certvalidator to 0.24.x

Miscellaneous

	Tolerate missing D: in date strings (see PR #296 <https://github.com/MatthiasValvekens/pyHanko/issues/296>).

	Various minor documentation improvements.

	Release workflow dependency bumps and minor improvements.

Release date: 2023-07-28

Dependency changes

	Relax upper bound on uharfbuzz to <0.38.0 (allows more users to benefit from prebuilt wheels)

	Bump python-barcode from 0.14.0 to 0.15.1.

	Bump pytest-asyncio from 0.21.0 to 0.21.1.

	Relax pytest-cov bound to allow 4.1.x

Miscellaneous

	Various minor documentation improvements.

	Improved unit test coverage, especially for error handling.

Release date: 2023-06-18

Dependency changes

	Bump pyhanko-certvalidator to 0.23.0

	certomancer updated to 0.11.0, certomancer-csc-dummy to 0.2.2

Breaking changes

	Minor reorganisation of the EnvelopeKeyDecrypter.
The change moves the cert property from an attribute to an abstract property, and adds
a method to allow us to handle protocols based on key agreement in addition to key transport.
Implementations need not implement both.

	Move ignore_key_usage into to new
RecipientEncryptionPolicy class.

New features and enhancements

Encryption

	Support RSAES-OAEP for file encryption with the public-key security handler.
This is not widely supported by PDF viewers in the wild.

	Support some ECDH-based key exchange methods for file encryption with the
public-key security handler. Concretely, pyHanko now supports
the dhSinglePass-stdDH-sha*kdf family from RFC 5753, which is also implemented in
Acrobat (for NIST curves). X25519 and X448 are also included.

CLI

	Better UX for argument errors relating to visible signature creation.

Bugs fixed

	Allow processing OCSP responses without nextUpdate.

	Run non-cryptographic CLI commands in nonstrict mode.

	Treat nulls the same as missing entries in dictionaries, as required by
the standard.

	Fix several default stamp style selection issues in CLI

Release date: 2023-04-29

Dependency changes

	Remove dependency on pytz with fallback to backports.zoneinfo

	Bump tzlocal version to 4.3.

	Do not rely on deprecated timezone API anymore in the tests.
See PR #257.

Release date: 2023-04-26

Note

This is largely a maintenance release in the sense that it adds relatively little
in the way of core features, but it nevertheless comes with some major
reorganisation and work to address technical debt.

This release also marks pyHanko’s move to beta status. That doesn’t mean that
it’s feature-complete in every respect, but it does mean that we’ve now entered
a stabilisation phase in anticipation of the 1.0.0 release, so until then
the focus will be on fixing bugs and clearing up issues in the documentation (in
particular regarding the API contract). After the 1.0.0 release, pyHanko
will simply follow SemVer.

Breaking changes

Some changes have been made to the Signer class.
For all practical purposes, these are mostly relevant for custom
Signer implementations. Regular users should see
fairly little impact.

	The arguments to __init__ have been made keyword-only.

	Several attributes have been turned into read-only properties:

	signing_cert

	cert_registry

	attribute_certs

	signature_mechanism

This change was made to better reflect the way the properties were used internally, and made it easier to set
expectations for the API: it doesn’t make sense to allow arbitrary modifications to these properties for all
Signer implementations.
The parameters to __init__ have been extended to allow setting defaults more cleanly.
Implementation-wise, the properties are backed by an underscored internal variable
(e.g. _signing_cert for signing_cert).
Subclasses can of course still elect to make some of these read-only properties writable by declaring setters.

	get_signature_mechanism was renamed to
get_signature_mechanism_for_digest()
to make it more clear that it does more than just fetch the underlying value of
signature_mechanism.

Concretely, this means that init logic of the form

class MySigner(Signer):
 def __init__(
 self,
 signing_cert: x509.Certificate,
 cert_registry: CertificateStore,
 *args, **kwargs
):
 self.signing_cert = signing_cert
 self.cert_registry = cert_registry
 self.signature_mechanism = signature_mechanism
 super().__init__()

needs to be rewritten as

class MySigner(Signer):
 def __init__(
 self,
 signing_cert: x509.Certificate,
 cert_registry: CertificateStore,
 *args, **kwargs
):
 self._signing_cert = signing_cert
 self._cert_registry = cert_registry
 self._signature_mechanism = signature_mechanism
 super().__init__()

or, alternatively, as

class MySigner(Signer):
 def __init__(
 self,
 signing_cert: x509.Certificate,
 cert_registry: CertificateStore,
 *args, **kwargs
):
 super().__init__(
 signing_cert=signing_cert,
 cert_registry=cert_registry,
 signature_mechanism=signature_mechanism
)

Other than these, there have been some miscellaneous changes.

	The CLI no longer allows signing files encrypted using public-key encryption targeted towards the signer’s
certificate, because that feature didn’t make much sense in key management terms, was rarely used, and hard to
integrate with the new plugin system.

	APIs with status_cls parameters have made certain args keyword-only for strict type checking purposes.

	Move add_content_to_page to add_to_page() to deal with a
(conceptual) circular dependency between modules.

	CertificateStore is no longer reexported by pyhanko.sign.general.

	The BEIDSigner no longer allows convenient access to the authentication certificate.

	Packaging-wise, underscores have been replaced with hyphens in optional dependency groups.

	In pyhanko_certvalidator, InvalidCertificateError
is no longer a subclass of PathValidationError.

Finally, some internal refactoring took place as well:

	The cli.py module was refactored into a new subpackage (pyhanko.cli) and is now
also tested systematically.

	CLI config classes have been refactored, some configuration was moved to the new pyhanko.config package.

	Time tolerance config now passes around timedelta objects instead of second values.

	The qualify() function in the difference analysis
has been split into qualify() and
qualify_transforming().

Organisational changes

	Certificate and key loading was moved to a new pyhanko.keys module, but pyhanko.sign.general
still reexports the relevant functions for backwards compatibility.
Concretely, the affected functions are

	pyhanko.keys.load_cert_from_pemder(),

	pyhanko.keys.load_certs_from_pemder(),

	pyhanko.keys.load_certs_from_pemder_data(),

	pyhanko.keys.load_private_key_from_pemder(),

	pyhanko.keys.load_private_key_from_pemder_data().

	Onboarded mypy and flag pyHanko as a typed library by adding py.typed.

	Package metadata and tooling settings have now been centralised to pyproject.toml.
Other configuration files like setup.py, requirements.txt and most tool-specific config
have been eliminated.

	The docstring-based documentation for pyhanko_certvalidator was added to the API reference.

	Some non-autogenerated API reference documentation pages were consolidated to reduce the sprawl.

	Heavily reworked the CI/CD pipeline. PyHanko releases are now published via GitHub Actions
and signed with Sigstore. GPG signatures will continue to be provided for the time being.

Dependency changes

	Bump pyhanko-certvalidator to 0.22.0.

	Relax the upper bound on uharfbuzz for better Python 3.11 support

Bugs fixed

	The AdES LTA validator now tolerates documents that don’t have a DSS (assuming
that all the required information is otherwise present).

	Ensure that the trusted
attribute on SignatureStatus is not set
if the validation path is not actually available.

	Correct the typing on
validation_path.

	Fix several result presentation bugs in the AdES code.

	Fix overeager sharing of POEManager objects in AdES code.

	Correct algo policy handling in AdES-with-time validation.

	Ensure that container_ref is also populated on past versions of the
trailer dictionary.

New features and enhancements

Signing

	The CLI now features plugins!
All current addsig subcommands have been reimplemented to use the plugin
interface. Other plugins will be auto-detected through package entry points.

Validation

	Refine algorithm policy handling; put in place a subclass of
AlgorithmUsagePolicy specifically
for CMS validation;
see CMSAlgorithmUsagePolicy.

	Try to remember paths when validation fails.

	Make certificates from local CMS context available during path building
for past certificate validation (subject to PoE checks).

	Move docmdp_ok up in
the hierarchy to ModificationInfo.

0.17.2

Release date: 2023-03-10

Note

This is a follow-up on yesterday’s bugfix release, addressing a number of similar issues.

Bugs fixed

	Address another potential infinite loop in the comment processing logic.

	Fix some (rather esoteric) correctness issues w.r.t. PDF whitespace.

Release date: 2023-03-09

Note

This is a maintenance release without significant functionality changes.
It contains a bugfix, addresses some documentation issues and applies the Black
formatter to the codebase.

Bugs fixed

	Address a potential infinite loop in the PDF parsing logic.
See PR #237.

Release date: 2023-01-31

Note

This is a bit of an odd release. It comes with relatively few functional
changes or enhancements to existing features, but it has nevertheless been
in the works for quite a long time.

In early 2022, I decided that the time was right to equip pyHanko with its
own AdES validation engine, implementing the machinery specified by
ETSI EN 319 102-1. I knew ahead of time that this would not be an easy task:

	PyHanko’s own validation code was put together in a fairly ad-hoc manner
starting from the provisions in the CMS specification, so some refactoring
would be necessary.

	pyhanko-certvalidator also was never designed to be anything more than an
RFC 5280 validation engine, and retrofitting the fine-tuning required by the
AdES spec definitely wasn’t easy.

Initially, I estimated that this effort would take a few months tops. Yet here
we are, approximately one year down the road: pyhanko.sign.validation.ades.

Truth be told, the implementation isn’t yet ready for prime time, but it is in
a state where it’s at least useful for experimentation purposes, and can be
iterated on.
Also, given the volume of subtle changes and far-reaching refactoring in the
internals of both the pyhanko and pyhanko-certvalidator packages,
continually rebasing the feature/ades-validation feature branch turned
into a chore quite quickly.

So, if you’re keen to start playing around with AdES validation: please do so,
and let me know what you think. If standards-based validation is not something
you care about, feel free to disregard everything I wrote above, it almost
certainly won’t affect any of your code.

My plan is to incrementally build upon and polish the code in
pyhanko.sign.validation.ades, and eventually deprecate the current
ad-hoc LTV validation logic in
pyhanko.sign.validation.ltv.async_validate_pdf_ltv_signature().
That’s still a ways off from now, though.

Dependency updates

	pyhanko-certvalidator updated to 0.20.0

Breaking changes

	There are various changes in the validation internals that are not
backwards compatible, but all of those concern internal APIs.

	There are some noteworthy changes to the pyhanko-certvalidator API.
Those are documented in
the change log.
Most of these do not affect basic usage.

New features and enhancements

Validation

	Experimental AdES validation engine pyhanko.sign.validation.ades.

	In the status API, make a more meaningful distinction between valid and
intact, and document that distinction.

0.16.0

Release date: 2022-12-21

Dependency updates

	pyhanko-certvalidator updated to 0.19.8

Breaking changes

This release includes breaking changes to the difference analysis engine.
Unless you’re implementing your own difference analysis policies, this
change should break your API usage.

New features and enhancements

Signing

	Add support for Prop_Build metadata in signatures.
See PR #192

Validation

	Improvements to the difference analysis engine that allow more
nuance to be expressed in the rule system.

Bugs fixed

	Tolerate an indirect Extensions and MarkInfo dictionary in
difference analysis. See PR #177.

	Gracefully handle unreadable/undecodable producer strings.

Release date: 2022-10-27

Note

This release adds Python 3.11 to the list of supported Python versions.

Dependency updates

	pyhanko-certvalidator updated to 0.19.6

	certomancer updated to 0.9.1

Bugs fixed

	Be more tolerant towards deviations from DER restrictions in
signed attributes when validating signatures.

Release date: 2022-10-11

Note

Other than a few bug fixes, the highlight of this release is the addition of
support for two very recently published PDF extension standards, ISO/TS 32001
and ISO/TS 32002.

Bugs fixed

	Fix metadata handling in encrypted documents
see issue #160.

	Make sure XMP stream dictionaries contain the required typing entries.

	Respect visible_sig_settings on field autocreation.

	Fix a division by zero corner case in the stamp layout code;
see issue #170.

New features and enhancements

Signing

	Add support for the new PDF extensions defined by ISO/TS 32001 and ISO/TS 32002;
see PR #169.

	SHA-3 support

	EdDSA support for both the PKCS#11 signer and the in-memory signer

	Auto-register developer extensions in the file

	Make it easier to extract keys from bytes objects.

Validation

	Add support for validating EdDSA signatures (as defined in ISO/TS 32002)

0.14.0

Release date: 2022-09-17

Note

This release contains a mixture of minor and major changes.
Of particular note is the addition of automated metadata management support,
including XMP metadata. This change affects almost every PDF write operation
in the background. While pyHanko has very good test coverage, some instability
and regressions may ensue. Bug reports are obviously welcome.

Breaking changes

The breaking changes in this release are all relatively minor.
Chances are that your code isn’t affected at all, other than perhaps by
the change to
PreparedByteRangeDigest.

	md_algorithm attribute removed from
PreparedByteRangeDigest since
it wasn’t necessary for further processing.

	Low-level change in raw_get for PDF container object types
(ArrayObject and
DictionaryObject): the decrypt
parameter is no longer a boolean, but a tri-state enum value of type
EncryptedObjAccess.

	Developer extension management API moved into pyhanko.pdf_utils.extensions.

	get_courier() convenience function moved into
pyhanko.pdf_utils.font.basic and now takes a mandatory writer argument.

	The token_label attribute was removed from
PKCS11SignatureConfig, but will still be parsed
(with a deprecation warning).

	The prompt_pin attribute in
PKCS11SignatureConfig was changed from a bool to
an enum. See PKCS11PinEntryMode.

Dependency updates

	pytest-aiohttp updated to 1.0.4

	certomancer updated to 0.9.0

	certomancer-csc-dummy updated to 0.2.1

	Relax bounds on uharfbuzz to allow everything up to the current version
(i.e. 0.30.0) as well.

	New optional dependency group xmp, which for now only contains defusedxml

Bugs fixed

	Allow certificates with no CN in the certificate subject.

	The extension dictionary handling logic can now deal with encrypted
documents without actually decrypting the document contents.

	Fix processing error when passing empty strings to uharfbuzz;
see issue #132.

	Use proper PDF text string serialisation routine in simple font handler, to ensure
everything is escaped correctly.

	Ensure that output_version is set to at least the input version in
incrementally updated files.

New features and enhancements

Signing

	Drop the requirement for signing_cert
to be set from the start of the signing process in an interrupted signing workflow.
This has come up on several occasions in the past, since it’s necessary in remote
signing scenarios where the certificate is generated or provided on-demand when
submitting the document digest to the signing service.
See pull #141 for details.

	Add convenience API to set the /TU entry on a signature field;
see readable_field_name.

	Allow greater control over the initialisation of document timestamp fields.

	New class hierarchy for (un)signed attribute provisioning;
see SignedAttributeProviderSpec
and UnsignedAttributeProviderSpec.

	Allow greater control over annotation flags for visible signatures.
This is implemented using VisibleSigSettings.
See discussion #150.

	Factor out and improve PKCS#11 token finding; see
TokenCriteria
and issue #149.

	Factor out and improve PKCS#11 mechanism selection, allowing more raw modes.

	Change pin entry settings for PKCS#11 to be more granular, in order to also
allow PROTECTED_AUTH;
see issue #133.

	Allow the PKCS#11 PIN to be sourced from an environment variable when
pyHanko is invoked through the CLI and no PIN is provided in the configuration.
PyHanko will now first check the PYHANKO_PKCS11_PIN variable before
prompting for a PIN. This also works when prompting for PIN entry is
disabled altogether.

Note

The PKCS#11 code is now also tested in CI, using
SoftHSMv2.

Validation

	Allow validation time overrides in the CLI. Passing in the special value
claimed tells pyHanko to take the stated signing time in the file at
face value.
See issue #130.

Encryption

	Also return permissions on owner access to allow for easier inspection.

	Better version enforcement for security handlers.

Layout

	Allow metrics to be specified for simple fonts.

	Provide metrics for default Courier font.

	Experimental option that allows graphics to be embedded in the central area
of the QR code; see qr_inner_content.

Miscellaneous

	Basic XMP metadata support with optional xmp dependency group.

	Automated metadata management (document info dictionary, XMP metadata).

	Refactor some low-level digesting and CMS validation code.

	Make the CLI print a warning when the key passphrase is left empty.

	Tweak configuration management utilities to better cope with fallback
logic for deprecated configuration parameters.

	Move all cross-reference writing logic into pyhanko.pdf_utils.xref.

	Improve error classes and error reporting in the CLI so that errors in non-verbose mode
still provide a little more info.

0.13.2

Release date: 2022-07-02

Note

This is a patch release to address some dependency issues and bugs.

Dependency updates

	python-barcode updated and pinned to 0.14.0.

Bugs fixed

	Fix lack of newline after XRef stream header.

	Do not write DigestMethod in signature reference dictionaries
(deprecated/nonfunctional entry).

	Make pyhanko.pdf_utils.writer.copy_into_new_writer() more flexible by allowing
caller-specified keyword arguments for the writer object.

	Refine settings for invisible signature fields (see pyhanko.sign.fields.InvisSigSettings).

	Correctly read objects from object streams in encrypted documents.

Release date: 2022-05-01

Note

This is a patch release to update fontTools and uharfbuzz to address
a conflict between the latest fontTools and older uharfbuzz versions.

Dependency updates

	fontTools updated to 4.33.3

	uharfbuzz updated to 0.25.0

Release date: 2022-04-25

Note

Like the previous two releases, this is largely a maintenance release.

Dependency updates

	asn1crypto updated to 1.5.1

	pyhanko-certvalidator updated to 0.19.5

	certomancer updated to 0.8.2

	Depend on certomancer-csc-dummy for tests;
get rid of python-pae test dependency.

Bugs fixed

	Various parsing robustness improvements.

	Be consistent with security handler version bounds.

	Improve coverage of encryption code.

	Ensure owner password gets prioritised in the legacy security handler.

New features and enhancements

Miscellaneous

	Replaced some ValueError usages with PdfError

	Improvements to error handling in strict mode.

	Make CLI stack traces less noisy by default.

Encryption

	Refactor internal crypt module into package.

	Add support for serialising credentials.

	Cleaner credential inheritance for incremental writers.

Signing

	Allow post-signing actions on encrypted files with serialised credentials.

	Improve --use-pades-lta ergonomics in CLI.

	Add --no-pass parameter to pemder CLI.

Validation

	Preparatory scaffolding for AdES status reporting.

	Provide some tolerance against malformed ACs.

	Increase robustness against invalid DNs.

0.12.1

Release date: 2022-02-26

Dependency updates

	uharfbuzz updated to 0.19.0

	pyhanko-certvalidator updated to 0.19.4

	certomancer updated to 0.8.1

Bugs fixed

	Fix typing issue in DSS reading logic (see
issue #81)

Release date: 2022-01-26

Note

This is largely a maintenance release, and contains no new high-level features or public
API changes. As such, upgrading is strongly recommended.

The most significant change is the (rather minimalistic) support for hybrid reference files.
Since working with hybrid reference files means dealing with potential ambiguity (which is dangerous
when dealing with signatures), creation and validation of signatures in hybrid reference documents
is only enabled in nonstrict mode. Hybrid reference files are relatively rare these days, but the
internals need to be able to cope with them either way, in order to be able to update such files
safely.

New features and enhancements

Miscellaneous

	Significant refactor of cross-reference parsing internals. This doesn’t affect any public API
entrypoints, but read the reference documentation for pyhanko.pdf_utils.xref if you happen
to have code that directly relies on that internal logic.

	Minimal support for hybrid reference files.

	Add strict flag to IncrementalPdfFileWriter.

	Expose --no-strict-syntax CLI flag in the addsig subcommand.

Bugs fixed

	Ensure that signature appearance bounding boxes are rounded to a reasonable precision.
Failure to do so caused issues with some viewers.

	To be consistent with the purpose of the strictness flag, non-essential xref consistency
checking is now only enabled when running in strict mode (which is the default).

	The hybrid reference support indirectly fixes some potential silent file corruption issues
that could arise when working on particularly ill-behaved hybrid reference files.

Release date: 2021-12-23

Dependency changes

	Update pyhanko-certvalidator to 0.19.2

	Bump fontTools to 4.28.2

	Update certomancer test dependency to 0.7.1

Breaking changes

Due to import order issues resulting from refactoring of the validation code, some classes
and class hierarchies in the higher-level API had to be moved. The affected classes are listed
below, with links to their respective new locations in the API reference.

	KeyUsageConstraints

	SignatureValidationError

	WeakHashAlgorithmError

	SigSeedValueValidationError

	SignatureStatus

	StandardCMSSignatureStatus

	PdfSignatureStatus

	TimestampSignatureStatus

	DocumentTimestampStatus

The low-level function validate_sig_integrity() was also
moved.

New features and enhancements

Signing

	Support embedding attribute certificates into CMS signatures, either in the certificates
field or using the CAdES signer-attrs-v2 attribute.

	More explicit errors on unfulfilled text parameters

	Better use of asyncio when collecting validation information for timestamps

	Internally disambiguate PAdES and CAdES for the purpose of attribute handling.

Validation

	Refactor diff_analysis module into sub-package

	Refactor validation module into sub-package
(together with portions of pyhanko.sign.general); see Breaking changes.

	Make extracted certificate information more easily accessible.

	Integrated attribute certificate validation (requires a separate validation context with trust
roots for attribute authorities)

	Report on signer attributes as supplied by the CAdES signer-attrs-v2 attribute.

Miscellaneous

	Various parsing and error handling improvements to xref processing, object streams, and object
header handling.

	Use NotImplementedError for unimplemented stream filters instead of
less-appropriate exceptions

	Always drop GPOS/GDEF/GSUB when subsetting OpenType and TrueType fonts

	Initial support for string-keyed CFF fonts as CIDFonts (subsetting is still inefficient)

	copy_into_new_writer() is now smarter about how it deals with the
/Producer line

	Fix a typo in the ASN.1 definition of signature-policy-store

	Various, largely aesthetic, cleanup & docstring fixes in internal APIs

Bugs fixed

	Fix a critical bug in content timestamp generation causing the wrong message imprint to be sent
to the timestamping service. The bug only affected the signed content-time-stamp attribute
from CAdES, not the (much more widely used) signature-time-stamp attribute. The former
timestamps the content (and is part of the signed data), while the latter timestamps the
signature (and is therefore not part of the signed data).

	Fix a bug causing an empty unsigned attribute sequence to be written if there were no
unsigned attributes. This is not allowed (although many validators accept it), and was a
regression introduced in 0.9.0.

	Ensure non-PDF CAdES signatures always have signingTime set.

	Fix and improve timestamp summary reporting

	Corrected TrueType subtype handling

	Properly set ts_validation_paths

	Gracefully deal with unsupported certificate types in CMS

	Ensure attribute inspection internals can deal with SignerInfo without signedAttrs.

Release date: 2021-11-28

Dependency changes

	Update pyhanko-certvalidator to 0.18.0

	Update aiohttp to 3.8.0 (optional dependency)

	Introduce python-pae==0.1.0 (tests)

New features and enhancements

Signing

	There’s a new Signer implementation
that allows pyHanko to be used with remote signing services that implement the
Cloud Signature Consortium API. Since auth handling differs from vendor to vendor, using
this feature requires still the caller to supply an authentication handler implementation;
see pyhanko.sign.signers.csc_signer for more information.
This feature is currently incubating.

Validation

	Add CLI option to skip diff analysis.

	Add CLI flag to disable strict syntax checks.

	Use chunked digests while validating.

	Improved difference analysis logging.

Miscellaneous

	Better handling of nonexistent objects: clearer errors in strict mode, better fallback behaviour
in nonstrict mode. This applies to both regular object dereferencing and xref history analysis.

	Added many new tests for various edge cases, mainly in validation code.

	Added Python :: 3 and Python :: 3.10 classifiers to distribution.

Bugs fixed

	Fix bug in output handler in timestamp updater that caused empty output in some configurations.

	Fix a config parsing error when no stamp styles are defined in the configuration file.

Release date: 2021-10-31

Dependency changes

	Update pyhanko-certvalidator to 0.17.3

	Update fontTools to 4.27.1

	Update certomancer to 0.6.0 (tests)

	Introduce pytest-aiohttp~=0.3.0 and aiohttp>=3.7.4 (tests)

API-breaking changes

This is a pretty big release, with a number of far-reaching changes in the
lower levels of the API that may cause breakage.
Much of pyHanko’s internal logic has been refactored to prefer asynchronous I/O
wherever possible (pyhanko-certvalidator was also refactored accordingly).
Some compromises were made to allow non-async-aware code to continue working as-is.

If you’d like a quick overview of how you can take advantage of the new
asynchronous library functions, take a look at
this section in the signing docs.

Here’s an overview of low-level functionality that changed:

	CMS signing logic was refactored and made asynchronous
(only relevant if you implemented your own custom signers)

	Time stamp client API was refactored and made asynchronous
(only relevant if you implemented your own time stamping clients)

	The interrupted signing workflow now involves more
asyncio as well.

	perform_presign_validation()
was made asynchronous.

	prepare_tbs_document(): the
bytes_reserved parameter is mandatory now.

	post_signature_processing()
was made asynchronous.

	collect_validation_info() was made asynchronous

Other functions have been deprecated in favour of asynchronous equivalents;
such deprecations are documented in the API reference.
The section on extending Signer
has also been updated.

Warning

Even though we have pretty good test coverage, due to the volume of changes,
some instability may ensue. Please do not hesitate to report bugs on
the issue tracker!

New features and enhancements

Signing

	Async-first signing API

	Relax token-label requirements in PKCS#11 config, allowing slot-no
as an alternative

	Allow selecting keys and certificates by ID in the PKCS#11 signer

	Allow the signer’s certificate to be sourced from a file in the PKCS#11 signer

	Allow BeID module path to be specified in config

	Tweak cert querying logic in PKCS#11 signer

	Add support for raw ECDSA to the PKCS#11 signer

	Basic DSA support (for completeness w.r.t. ISO 32000)

	Choose a default message digest more cleverly, based on the signing algorithm
and key size

	Fail loudly when trying to add a certifying signature to an already-signed
document using the high-level signing API

	Provide a flag to skip embedding root certificates

Validation

	Async-first validation API

	Use non-zero exit code on failed CLI validation

Miscellaneous

	Minor reorganisation of config.py functions

	Move PKCS#11 pin prompt logic to cli.py

	Improve font embedding efficiency (better stream management)

	Ensure idempotence of object stream flushing

	Improve PKCS#11 signer logging

	Make stream_xrefs=False by default in copy_into_new_writer()

	Removed a piece of fallback logic for md_algorithm that relied on
obsolete parts of the standard

	Fixed a number of issues related to unexpected cycles in PDF structures

Bugs fixed

	Treat ASCII form feed (\f) as PDF whitespace

	Fix a corner case with null incremental updates

	Fix some font compatibility issues (relax assumptions about the presence of
certain tables/entries)

	Be more tolerant when parsing name objects

	Correct some issues related to DSS update validation

	Correct pdf_date() output for negative
UTC offsets

Release date: 2021-08-23

Dependency changes

	Update pyhanko-certvalidator to 0.16.0.

API-breaking changes

Some fields and method names in the config API misspelled pkcs11` as ``pcks11. This has been
corrected in this release. This is unlikely to cause issues for library users (since the config API
is primarily used by the CLI code), but it’s a breaking change all the same.
If you do have code that relies on the config API, simply substituting s/pcks/pkcs/g should fix
things.

New features and enhancements

Signing

	Make certificate fetching in the PKCS#11 signer more flexible.

	Allow passing in the signer’s certificate from outside the token.

	Improve certificate registry initialisation.

	Give more control over updating the DSS in complex signature workflows.
By default, pyHanko now tries to update the DSS in the revision that adds a document timestamp,
after the signature (if applicable). In the absence of a timestamp, the old behaviour persists.

	Added a flag to (attempt to) produce CMS signature containers without any padding.

	Use signing-certificate-v2 instead of signing-certificate when producing signatures.

	Default to empty appearance streams for empty signature fields.

	Much like the pkcs11-setups config entry, there are now pemder-setups and
pkcs12-setups at the top level of pyHanko’s config file. You can use those to store arguments
for the pemder and pkcs12 subcommands of pyHanko’s addsig command, together with
passphrases for non-interactive use. See Named setups for on-disk key material.

Validation

	Enforce the end-entity cert constraint imposed by the signing-certificate or
signing-certificate-v2 attribute (if present).

	Improve issuer-serial matching logic.

	Improve CMS attribute lookup routines.

Encryption

	Add a flag to suppress creating “legacy compatibility” entries in the encryption dictionary
if they aren’t actually required or meaningful (for now, this only applies to /Length).

Miscellaneous

	Lazily load the version entry in the catalog.

	Minor internal I/O handling improvements.

	Allow constructing an IncrementalPdfFileWriter
from a PdfFileReader object.

	Expose common API to modify (most) trailer entries.

	Automatically recurse into all configurable fields when processing configuration data.

	Replace some certificate storage/indexing classes by references to their corresponding classes
in pyhanko-certvalidator.

Bugs fixed

	Add /NeedAppearances in the AcroForm dictionary to the whitelist for incremental update
analysis.

	Fixed several bugs related to difference analysis on encrypted files.

	Improve behaviour of dev extensions in difference analysis.

	Fix encoding issues with SignedDigestAlgorithm, in particular ensuring that the signature
mechanism encodes the relevant digest when using ECDSA.

	Process passfile contents more robustly in the CLI.

	Correct timestamp revinfo fetching (by ensuring that a dummy response is present)

Release date: 2021-07-25

Dependency changes

Warning

If you used OTF/TTF fonts with pyHanko prior to the 0.7.0 release, you’ll need HarfBuzz
going forward. Install pyHanko with the [opentype] optional dependency group to grab
everything you need.

	Update pyhanko-certvalidator to 0.15.3

	TrueType/OpenType support moved to new optional dependency group labelled [opentype].

	Dependency on fontTools moved from core dependencies to [opentype] group.

	We now use HarfBuzz (uharfbuzz==0.16.1) for text shaping with OTF/TTF fonts.

API-breaking changes

Warning

If you use any of pyHanko’s lower-level APIs, review this section carefully before updating.

Signing code refactor

This release includes a refactor of the pyhanko.sign.signers module into a
package with several submodules. The original API exposed by this
module is reexported in full at the package level, so existing code using pyHanko’s publicly
documented signing APIs should continue to work without modification.

There is one notable exception: as part of this refactor, the low-level
PdfCMSEmbedder protocol was tweaked slightly, to support
the new interrupted signing workflow (see below). The required changes to existing code should be
minimal; have a look at the relevant section in the library
documentation for a concrete description of the changes, and an updated usage example.

In addition, if you extended the PdfSigner
class, then you’ll have to adapt to the new internal signing workflow as well. This may be
tricky due to the fact that the separation of concerns between different steps in the signing
process is now enforced more strictly.
I’m not aware of use cases requiring PdfSigner
to be extended, but if you’re having trouble migrating your custom subclass to the new API
structure, feel free to open an issue.
Merely having subclassed Signer shouldn’t require
you to change anything.

Fonts

The low-level font loading API has been refactored to make font resource handling less painful,
to provide smoother HarfBuzz integration and to expose more OpenType tweaks in the API.

To this end, the old pyhanko.pdf_utils.font module was turned into a package containing three
modules: api, basic and
opentype. The api
module contains the definitions for the general FontEngine and FontEngineFactory classes,
together with some other general plumbing logic.
The basic module provides a minimalist implementation with a
(non-embedded) monospaced font.
If you need TrueType/OpenType support, you’ll need the opentype
module together with the optional dependencies in the [opentype] dependency group (currently
fontTools and uharfbuzz, see above).
Take a look at the section for pyhanko.pdf_utils.font in
the API reference documentation for further details.

For the time being, there are no plans to support embedding Type1 fonts, or to offer support for
Type3 fonts at all.

Miscellaneous

	The content_stream parameter was removed from
import_page_as_xobject().
Content streams are now merged automatically, since treating a page content stream array
non-atomically is a bad idea.

	PdfSigner is no longer a subclass of
PdfTimeStamper.

New features and enhancements

Signing

	Interrupted signing workflow: segmented signing workflow that can be
interrupted partway through and resumed later (possibly in a different process or on a different
machine). Useful for dealing with signing processes that rely on user interaction and/or remote
signing services.

	Generic data signing support: construct CMS signedData objects for
arbitrary data (not necessarily for use in PDF signature fields).

	Experimental API for signing individual embedded files (nonstandard).

	PKCS#11 settings can now be set in the configuration file.

Validation

	Add support for validating CMS signedData structures against arbitrary payloads
(see also: Generic data signing)

	Streamline CMS timestamp validation.

	Support reporting on (CAdES) content timestamps in addition to signature timestamps.

	Allow signer certificates to be identified by the subjectKeyIdentifier extension.

Encryption

	Support granular crypt filters for embedded files

	Add convenient API to encrypt and wrap a PDF document as a binary blob. The resulting file
will open as usual in a viewer that supports PDF collections; a fallback page with alternative
instructions is shown otherwise.

Miscellaneous

	Complete overhaul of appearance generation & layout system. Most of these changes are internal,
except for some font loading mechanics (see above). All use of OpenType / TrueType fonts now
requires the [opentype] optional dependency group. New features:

	Use HarfBuzz for shaping (incl. complex scripts)

	Support TrueType fonts and OpenType fonts without a CFF table.

	Support vertical writing (among other OpenType features).

	Use ActualText marked content in addition to ToUnicode.

	Introduce simple box layout & alignment rules, and apply them uniformly across all layout
decisions where possible. See pyhanko.stamp and pyhanko.pdf_utils.layout for
API documentation.

	Refactored stamp style dataclass hierarchy. This should not affect existing code.

	Allow externally generated PDF content to be used as a stamp appearance.

	Utility API for embedding files into PDF documents.

	Added support for PDF developer extension declarations.

Bugs fixed

Signing

	Declare ESIC extension when producing a PAdES signature on a PDF 1.x file.

Validation

	Fix handling of orphaned objects in diff analysis.

	Tighten up tolerances for (visible) signature field creation.

	Fix typo in BaseFieldModificationRule

	Deal with some VRI-related corner cases in the DSS diffing logic.

Encryption

	Improve identity crypt filter behaviour when applied to text strings.

	Correct handling of non-default public-key crypt filters.

Miscellaneous

	Promote stream manipulation methods to base writer.

	Correct some edge cases w.r.t. PDF content import

	Use floats for MediaBox.

	Handle escapes in PDF name objects.

	Correct ToUnicode CMap formatting.

	Do not close over GSUB when computing font subsets.

	Fix output_version handling oversight.

	Misc. export list & type annotation corrections.

0.6.1

Release date: 2021-05-22

Dependency changes

	Update pyhanko-certvalidator to 0.15.2

	Replace constraint on certomancer and pyhanko-certvalidator by
soft minor version constraint (~=)

	Set version bound for freezegun

Bugs fixed

	Add /Q and /DA keys to the whitelist for incremental update analysis
on form fields.

Release date: 2021-05-15

Dependency changes

Warning

pyHanko’s 0.6.0 release includes quite a few changes to dependencies, some of which may
break compatibility with existing code. Review this section carefully before updating.

The pyhanko-certvalidator dependency was updated to 0.15.1.
This update adds support for name constraints, RSASSA-PSS and EdDSA for the purposes of X.509 path
validation, OCSP checking and CRL validation.

Warning

Since pyhanko-certvalidator has considerably diverged from “mainline” certvalidator,
the Python package containing its modules was also renamed from certvalidator to
pyhanko_certvalidator, to avoid potential namespace conflicts down the line. You should
update your code to reflect this change.

Concretely,

from certvalidator import ValidationContext

turns into

from pyhanko_certvalidator import ValidationContext

in the new release.

There were several changes to dependencies with native binary components:

	The Pillow dependency has been relaxed to >=7.2.0, and is now optional.
The same goes for python-barcode. Image & 1D barcode support now needs to be installed
explicitly using the [image-support] installation parameter.

	PKCS#11 support has also been made optional, and can be added using the [pkcs11]
installation parameter.

The test suite now makes use of Certomancer.
This also removed the dependency on ocspbuilder.

New features and enhancements

Signing

	Make preferred hash inference more robust.

	Populate /AP when creating an empty visible signature field (necessary in PDF 2.0)

Validation

	Timestamp and DSS handling tweaks:

	Preserve OCSP resps / CRLs from validation kwargs when reading the DSS.

	Gracefully process revisions that don’t have a DSS.

	When creating document timestamps, the validation_context parameter is now optional.

	Enforce certvalidator’s weak_hash_algos when validating PDF signatures as well.
Previously, this setting only applied to certificate validation.
By default, MD5 and SHA-1 are considered weak (for digital signing purposes).

	Expose DocTimeStamp/Sig distinction in a more user-friendly manner.

	The sig_object_type property on EmbeddedPdfSignature
now returns the signature’s type as a PDF name object.

	PdfFileReader now has two extra convenience properties
named embedded_regular_signatures and embedded_timestamp_signatures, that return a
list of all regular signatures and document timestamps, respectively.

Encryption

	Refactor internal APIs in pyHanko’s security handler implementation to make them easier to
extend. Note that while anyone is free to register their own crypt filters for whatever purpose,
pyHanko’s security handler is still considered internal API, so behaviour is subject to change
between minor version upgrades (even after 1.0.0).

Miscellaneous

	Broaden the scope of --soft-revocation-check.

	Corrected a typo in the signature of validate_sig_integrity.

	Less opaque error message on missing PKCS#11 key handle.

	Ad-hoc hash selection now relies on pyca/cryptography rather than hashlib.

Bugs fixed

	Correct handling of DocMDP permissions in approval signatures.

	Refactor & correct handling of SigFlags when signing prepared form fields in unsigned files.

	Fixed issue with trailing whitespace and/or NUL bytes in array literals.

	Corrected the export lists of various modules.

Release date: 2021-03-24

Bugs fixed

	Fixed a packaging blunder that caused an import error on fresh installs.

Release date: 2021-03-22

Dependency changes

Update pyhanko-certvalidator dependency to 0.13.0.
Dependency on cryptography is now mandatory, and oscrypto has been marked optional.
This is because we now use the cryptography library for all signing and encryption operations,
but some cryptographic algorithms listed in the PDF standard are not available in cryptography,
so we rely on oscrypto for those. This is only relevant for the decryption of files encrypted
with a public-key security handler that uses DES, triple DES or RC2 to encrypt the key seed.

In the public API, we exclusively work with asn1crypto representations of ASN.1 objects, to
remain as backend-independent as possible.

Note: While oscrypto is listed as optional in pyHanko’s dependency list, it is still
required in practice, since pyhanko-certvalidator depends on it.

New features and enhancements

Encryption

	Enforce keyEncipherment key extension by default when using public-key encryption

	Show a warning when signing a document using public-key encryption through the CLI.
We currently don’t support using separate encryption credentials in the CLI, and using the same
key pair for decryption and signing is bad practice.

	Several minor CLI updates.

Signing

	Allow customisation of key usage requirements in signer & validator, also in the CLI.

	Actively preserve document timestamp chain in new PAdES-LTA signatures.

	Support setups where fields and annotations are separate (i.e. unmerged).

	Set the lock bit in the annotation flags by default.

	Tolerate signing fields that don’t have any annotation associated with them.

	Broader support for PAdES / CAdES signed attributes.

Validation

	Support validating PKCS #7 signatures that don’t use signedAttrs. Nowadays, those are rare in
the wild, but there’s at least one common commercial PDF library that outputs such signatures by
default (vendor name redacted to protect the guilty).

		Timestamp-related fixes:
		Improve signature vs. document timestamp handling in the validation CLI.

	Improve & test handling of malformed signature dictionaries in PDF files.

	Align document timestamp updating logic with validation logic.

	Correct key usage check for time stamp validation.

	Allow customisation of key usage requirements in signer & validator, also in the CLI.

	Allow LTA update function to be used to start the timestamp chain as well as continue it.

	Tolerate indirect references in signature reference dictionaries.

	Improve some potential ambiguities in the PAdES-LT and PAdES-LTA validation logic.

		Revocation info handling changes:
		Support “retroactive” mode for revocation info (i.e. treat revocation info as valid in the
past).

	Added functionality to append current revocation information to existing signatures.

	Related CLI updates.

Miscellaneous

	Some key material loading functions were cleaned up a little to make them easier to use.

	I/O tweaks: use chunked writes with a fixed buffer when copying data for an incremental update

	Warn when revocation info is embedded with an offline validation context.

	Improve SV validation reporting.

Bugs fixed

	Fix issue with /Certs not being properly dereferenced in the DSS (#4).

	Fix loss of precision on FloatObject serialisation (#5).

	Add missing dunders to BooleanObject.

	Do not use .dump() with force=True in validation.

	Corrected digest algorithm selection in timestamp validation.

	Correct handling of writes with empty user password.

	Do not automatically add xref streams to the object cache. This avoids a class of bugs with
some kinds of updates to files with broken xref streams.

	Due to a typo, the /Annots array of a page would not get updated correctly if it was an
indirect object. This has been corrected.

Release date: 2021-02-14

New features and enhancements

Encryption

	Expose permission flags outside security handler

	Make file encryption key straightforward to grab

Signing

	Mildly refactor PdfSignedData for non-signing uses

		Make DSS API more flexible
		Allow direct input of cert/ocsp/CRL objects as opposed to only certvalidator output

	Allow input to not be associated with any concrete VRI.

		Greatly improved PKCS#11 support
		Added support for RSASSA-PSS and ECDSA.

	Added tests for RSA functionality using SoftHSMv2.

	Added a command to the CLI for generic PKCS#11.

	Note: Tests don’t run in CI, and ECDSA is not included in the test suite yet (SoftHSMv2 doesn’t seem to expose all the necessary mechanisms).

	Factor out unsigned_attrs in signer, added a digest_algorithm parameter to signed_attrs.

	Allow signing with any BasePdfFileWriter (in particular, this allows creating signatures in the initial revision of a PDF file)

	Add CMSAlgorithmProtection attribute when possible
* Note: Not added to PAdES signatures for the time being.

	Improved support for deep fields in the form hierarchy (arguably orthogonal to the standard, but it doesn’t hurt to be flexible)

Validation

		Path handling improvements:
		Paths in the structure tree are also simplified.

	Paths can be resolved relative to objects in a file.

		Limited support for tagged PDF in the validator.
		Existing form fields can be filled in without tripping up the modification analysis module.

	Adding new form fields to the structure tree after signing is not allowed for the time being.

		Internal refactoring in CMS validation logic:
		Isolate cryptographic integrity validation from trust validation

	Rename externally_invalid API parameter to encap_data_invalid

	Validate CMSAlgorithmProtection when present.

	Improved support for deep fields in the form hierarchy (arguably orthogonal to the standard, but it doesn’t hurt to be flexible).

	Added

Miscellaneous

	Export copy_into_new_writer.

	Transparently handle non-seekable output streams in the signer.

	Remove unused __iadd__ implementation from VRI class.

	Clean up some corner cases in container_ref handling.

	Refactored SignatureFormField initialisation (internal API).

Bugs fixed

	Deal with some XRef processing edge cases.

	Make signed_revision on embedded signatures more robust.

	Fix an issue where DocTimeStamp additions would trigger /All-type field locks.

	Fix some issues with modification_level handling in validation status reports.

	Fix a few logging calls.

	Fix some minor issues with signing API input validation logic.

Release date: 2021-01-26

New features and enhancements

Encryption

	Reworked internal crypto API.

	Added support for PDF 2.0 encryption.

	Added support for public key encryption.

	Got rid of the homegrown RC4 class (not that it matters all to much, RC4 isn’t secure anyhow); all cryptographic operations in crypt.py are now delegated to oscrypto.

Signing

	Encrypted files can now be signed from the CLI.

	With the optional cryptography dependency, pyHanko can now create RSASSA-PSS signatures.

	Factored out a low-level PdfCMSEmbedder API to cater to remote signing needs.

Miscellaneous

	The document ID can now be accessed more conveniently.

	The version number is now single-sourced in version.py.

	Initialising the page tree in a PdfFileWriter is now optional.

	Added a convenience function for copying files.

Validation

	With the optional cryptography dependency, pyHanko can now validate RSASSA-PSS signatures.

	Difference analysis checker was upgraded with capabilities to handle multiply referenced objects in a more straightforward way. This required API changes, and it comes at a significant performance cost, but the added cost is probably justified. The changes to the API are limited to the diff_analysis module itself, and do not impact the general validation API whatsoever.

Bugs fixed

	Allow /DR and /Version updates in diff analysis

	Fix revision handling in trailer.flatten()

Release date: 2021-01-10

New features and enhancements

Signing

	Allow the caller to specify an output stream when signing.

Validation

	The incremental update analysis functionality has been heavily refactored
into something more rule-based and modular. The new difference analysis system
is also much more user-configurable, and a (sufficiently motivated) library
user could even plug in their own implementation.

	The new validation system treats /Metadata updates more correctly, and fixes
a number of other minor stability problems.

	Improved validation logging and status reporting mechanisms.

	Improved seed value constraint enforcement support: this includes added
support for /V, /MDP, /LockDocument, /KeyUsage
and (passive) support for /AppearanceFilter and /LegalAttestation.

CLI

	You can now specify negative page numbers on the command line to refer to the
pages of a document in reverse order.

General PDF API

	Added convenience functions to retrieve references from dictionaries and
arrays.

	Tweaked handling of object freeing operations; these now produce PDF null
objects instead of (Python) None.

Bugs fixed

	root_ref now consistently returns a Reference object

	Corrected wrong usage of @freeze_time in tests that caused some failures
due to certificate expiry issues.

	Fixed a gnarly caching bug in HistoricalResolver that sometimes leaked
state from later revisions into older ones.

	Prevented cross-reference stream updates from accidentally being saved with
the same settings as their predecessor in the file. This was a problem when
updating files generated by other PDF processing software.

Release date: 2020-12-30

Initial release.

 Previous
 Next

 © Copyright 2020-2023, Matthias Valvekens.
 Revision 176ac0f4.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

 Read the Docs
 v: latest

 	Versions
	latest
	stable
	v0.22.0
	v0.21.0
	v0.20.1
	v0.20.0
	v0.19.0
	v0.18.1
	v0.18.0
	0.17.2
	0.17.1
	0.17.0
	0.16.0
	0.15.1
	0.15.0
	0.14.0
	0.13.2
	0.13.1
	0.13.0
	0.12.1
	0.12.0
	0.11.0
	0.10.0
	0.9.0
	0.8.0
	0.7.0
	0.6.1
	0.6.0
	0.5.1
	0.5.0
	0.4.0
	0.3.0
	0.2.0
	0.1.0

 	Downloads
	pdf
	html
	epub

 	On Read the Docs
	
 Project Home

	
 Builds

