

 pyHanko

 stable

 Contents:

	CLI user’s guide
	Library (SDK) user’s guide
	API reference	pyhanko package	Subpackages	pyhanko.config package
	pyhanko.cli package
	pyhanko.pdf_utils package
	pyhanko.sign package

	Submodules
	pyhanko.keys module
	pyhanko.stamp module
	pyhanko.version module

	pyhanko_certvalidator package

	Release history
	Frequently asked questions (FAQ)
	Known issues
	Release artifact authenticity
	Licenses

 pyHanko

 	
	API reference
	pyhanko package
	pyhanko.pdf_utils package
	pyhanko.pdf_utils.font package
	
 Edit on GitHub

pyhanko.pdf_utils.font package

Submodules

pyhanko.pdf_utils.font.api module

	
class pyhanko.pdf_utils.font.api.ShapeResult(graphics_ops: bytes, x_advance: float, y_advance: float)
	Bases: object

Result of shaping a Unicode string.

	
graphics_ops: bytes
	PDF graphics operators to render the glyphs.

	
x_advance: float
	Total horizontal advance in em units.

	
y_advance: float
	Total vertical advance in em units.

	
class pyhanko.pdf_utils.font.api.FontEngine(writer: BasePdfFileWriter, base_postscript_name: str, embedded_subset: bool, obj_stream=None)
	Bases: object

General interface for text shaping and font metrics.

	
property uses_complex_positioning
	If True, this font engine expects the line matrix to always be equal
to the text matrix when exiting and entering shape().
In other words, the current text position is where 0 0 Td would
move to.

If False, this method does not use any text positioning operators,
and therefore uses the PDF standard’s ‘natural’ positioning rules
for text showing operators.

The default is True unless overridden.

	
shape(txt: str) → ShapeResult
	Render a string to a format suitable for inclusion in a content
stream and measure its total cursor advancement vector in em units.

	Parameters:
	txt – String to shape.

	Returns:
	A shaping result.

	
as_resource() → PdfObject
	Convert a FontEngine to a PDF object suitable for embedding
inside a resource dictionary.

Note

If the PDF object is an indirect reference, the caller must not
attempt to dereference it. In other words, implementations can
use preallocated references to delay subsetting until the last
possible moment (this is even encouraged, see
prepare_write()).

	Returns:
	A PDF dictionary.

	
prepare_write()
	Called by the writer that manages this font resource before the PDF
content is written to a stream.

Subsetting operations and the like should be carried out as part of
this method.

	
class pyhanko.pdf_utils.font.api.FontSubsetCollection(base_postscript_name: str, subsets: Dict[Optional[str], ForwardRef('FontEngine')] = <factory>)
	Bases: object

	
base_postscript_name: str
	Base postscript name of the font.

	
subsets: Dict[str | None, FontEngine]
	Dictionary mapping prefixes to subsets. None represents the full font.

	
add_subset() → str
	

	
class pyhanko.pdf_utils.font.api.FontEngineFactory
	Bases: object

	
create_font_engine(writer: BasePdfFileWriter, obj_stream=None) → FontEngine
	

pyhanko.pdf_utils.font.basic module

	
class pyhanko.pdf_utils.font.basic.SimpleFontEngineFactory(name: str, avg_width: float, meta: SimpleFontMeta | None = None)
	Bases: FontEngineFactory

	
create_font_engine(writer: BasePdfFileWriter, obj_stream=None)
	

	
static default_factory()
		Returns:
	A FontEngineFactory instance representing the Courier
standard font.

	
class pyhanko.pdf_utils.font.basic.SimpleFontEngine(writer: BasePdfFileWriter, name: str, avg_width: float, meta: SimpleFontMeta | None = None)
	Bases: FontEngine

Simplistic font engine that effectively only works with PDF standard fonts,
and does not care about font metrics. Best used with monospaced fonts such
as Courier.

	
property uses_complex_positioning
	If True, this font engine expects the line matrix to always be equal
to the text matrix when exiting and entering shape().
In other words, the current text position is where 0 0 Td would
move to.

If False, this method does not use any text positioning operators,
and therefore uses the PDF standard’s ‘natural’ positioning rules
for text showing operators.

The default is True unless overridden.

	
shape(txt) → ShapeResult
	Render a string to a format suitable for inclusion in a content
stream and measure its total cursor advancement vector in em units.

	Parameters:
	txt – String to shape.

	Returns:
	A shaping result.

	
as_resource()
	Convert a FontEngine to a PDF object suitable for embedding
inside a resource dictionary.

Note

If the PDF object is an indirect reference, the caller must not
attempt to dereference it. In other words, implementations can
use preallocated references to delay subsetting until the last
possible moment (this is even encouraged, see
prepare_write()).

	Returns:
	A PDF dictionary.

	
class pyhanko.pdf_utils.font.basic.SimpleFontMeta(first_char: int, last_char: int, widths: List[int], descriptor: pyhanko.pdf_utils.generic.DictionaryObject)
	Bases: object

	
first_char: int
	

	
last_char: int
	

	
widths: List[int]
	

	
descriptor: DictionaryObject
	

	
pyhanko.pdf_utils.font.basic.get_courier(pdf_writer: BasePdfFileWriter)
	Quick-and-dirty way to obtain a Courier font resource.

	Parameters:
	pdf_writer – A PDF writer.

	Returns:
	A resource dictionary representing the standard Courier font
(or one of its metric equivalents).

pyhanko.pdf_utils.font.opentype module

Basic support for OpenType/TrueType font handling & subsetting.

This module relies on fontTools for
OTF parsing and subsetting, and on HarfBuzz (via uharfbuzz) for shaping.

	
class pyhanko.pdf_utils.font.opentype.GlyphAccumulator(writer: BasePdfFileWriter, font_handle, font_size, features=None, ot_language_tag=None, ot_script_tag=None, writing_direction=None, bcp47_lang_code=None, obj_stream=None)
	Bases: FontEngine

Utility to collect & measure glyphs from OpenType/TrueType fonts.

	Parameters:
		writer – A PDF writer.

	font_handle – File-like object

	font_size –
Font size in pt units.

Note

This is only relevant for some positioning intricacies (or hacks,
depending on your perspective) that may not matter for your use
case.

	features – Features to use. If None, use HarfBuzz defaults.

	ot_script_tag – OpenType script tag to use. Will be guessed by HarfBuzz if not
specified.

	ot_language_tag – OpenType language tag to use. Defaults to the default language system
for the current script.

	writing_direction – Writing direction, one of ‘ltr’, ‘rtl’, ‘ttb’ or ‘btt’.
Will be guessed by HarfBuzz if not specified.

	bcp47_lang_code – BCP 47 language code. Used to mark the text’s language in the PDF
content stream, if specified.

	obj_stream – Try to put font-related objects into a particular object stream, if
specified.

	
marked_content_property_list(txt) → DictionaryObject
	

	
shape(txt: str, with_actual_text: bool = True) → ShapeResult
	Render a string to a format suitable for inclusion in a content
stream and measure its total cursor advancement vector in em units.

	Parameters:
	txt – String to shape.

	Returns:
	A shaping result.

	
prepare_write()
	This implementation of prepare_write will embed a subset of this
glyph accumulator’s font into the PDF writer it belongs to.
Said subset will include all glyphs necessary to render the
strings provided to the accumulator via feed_string().

Danger

Due to the way fontTools handles subsetting, this is a
destructive operation. The in-memory representation of the original
font will be overwritten by the generated subset.

	
as_resource() → IndirectObject
	Convert a FontEngine to a PDF object suitable for embedding
inside a resource dictionary.

Note

If the PDF object is an indirect reference, the caller must not
attempt to dereference it. In other words, implementations can
use preallocated references to delay subsetting until the last
possible moment (this is even encouraged, see
prepare_write()).

	Returns:
	A PDF dictionary.

	
class pyhanko.pdf_utils.font.opentype.GlyphAccumulatorFactory(font_file: str, font_size: int = 10, ot_script_tag: str | None = None, ot_language_tag: str | None = None, writing_direction: str | None = None, bcp47_lang_code: str | None = None, create_objstream_if_needed: bool = True)
	Bases: FontEngineFactory

Stateless callable helper class to instantiate GlyphAccumulator
objects.

	
font_file: str
	Path to the OTF/TTF font to load.

	
font_size: int = 10
	Font size.

	
ot_script_tag: str | None = None
	OpenType script tag to use. Will be guessed by HarfBuzz if not
specified.

	
ot_language_tag: str | None = None
	OpenType language tag to use. Defaults to the default language system
for the current script.

	
writing_direction: str | None = None
	Writing direction, one of ‘ltr’, ‘rtl’, ‘ttb’ or ‘btt’.
Will be guessed by HarfBuzz if not specified.

	
bcp47_lang_code: str | None = None
	BCP 47 language code to tag strings with.

	
create_objstream_if_needed: bool = True
	Create an object stream to hold this glyph accumulator’s assets if no
object stream is passed in, and the writer supports object streams.

	
create_font_engine(writer: BasePdfFileWriter, obj_stream=None) → GlyphAccumulator
	

 Previous
 Next

 © Copyright 2020-2023, Matthias Valvekens.
 Revision 7f6cbfa0.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

 Read the Docs
 v: stable

 	Versions
	latest
	stable
	v0.23.0
	v0.22.0
	v0.21.0
	v0.20.1
	v0.20.0
	v0.19.0
	v0.18.1
	v0.18.0
	0.17.2
	0.17.1
	0.17.0
	0.16.0
	0.15.1
	0.15.0
	0.14.0
	0.13.2
	0.13.1
	0.13.0
	0.12.1
	0.12.0
	0.11.0
	0.10.0
	0.9.0
	0.8.0
	0.7.0
	0.6.1
	0.6.0
	0.5.1
	0.5.0
	0.4.0
	0.3.0
	0.2.0
	0.1.0

 	Downloads
	pdf
	html
	epub

 	On Read the Docs
	
 Project Home

	
 Builds

