

 pyHanko

 stable

 Contents:

	CLI user’s guide
	Library (SDK) user’s guide	Reading and writing PDF files
	Signature fields
	Signing functionality	General API design
	A simple example
	Signature appearance generation	Text-based stamps
	QR code stamps
	Static content stamps

	Timestamp handling
	Creating PAdES signatures
	Using aiohttp for network I/O
	Extending Signer
	The low-level PdfCMSEmbedder API
	Interrupted signing	Basic interrupted signing example
	Interrupted signing when the signer’s certificate is not known a priori

	Generic data signing

	Validation functionality
	The pdf-utils package
	Developing CLI plugins
	Advanced examples

	API reference
	Release history
	Frequently asked questions (FAQ)
	Known issues
	Release artifact authenticity
	Licenses

 pyHanko

 	
	Library (SDK) user’s guide
	Signing functionality
	
 Edit on GitHub

Signing functionality

This page describes pyHanko’s signing API.

Note

Before continuing, you may want to take a look at the
background on PDF signatures in the CLI
documentation.

General API design

The value entry (/V) of a signature field in a PDF file is given by a PDF
dictionary: the “signature object”.
This signature object in turn contains a /Contents key (a byte string)
with a DER-encoded rendition of the CMS object (see RFC 5652) containing the
actual cryptographic signature.
To avoid confusion, the latter will be referred to as the “signature CMS object”,
and we’ll reserve the term “signature object” for the PDF dictionary that is the
value of the signature field.

The signature object contains a /ByteRange key outlining the bytes of the
document that should be hashed to validate the signature.
As a general rule, the hash of the PDF file used in the signature is computed
over all bytes in the file, except those under the /Contents key.
In particular, the /ByteRange key of the signature object is actually
part of the signed data, which implies that the size of the signature
CMS object needs to be estimated ahead of time. As we’ll see soon, this has
some minor implications for the API design (see
this subsection in particular).

The pyHanko signing API is spread across several modules in the
pyhanko.sign package. Broadly speaking, it has three aspects:

	PdfSignatureMetadata specifies high-level metadata & structural requirements
for the signature object and (to a lesser degree) the signature CMS object.

	Signer and its subclasses are responsible for the construction of the
signature CMS object, but are in principle “PDF-agnostic”.

	PdfSigner is the “steering” class that invokes the Signer on an
IncrementalPdfFileWriter
and takes care of formatting the resulting signature object according
to the specifications of a PdfSignatureMetadata object.

This summary, while a bit of an oversimplification, provides a
decent enough picture of the separation of concerns in the signing API.
In particular, the fact that construction of the CMS object is delegated to
another class that doesn’t need to bother with any of the PDF-specific
minutiae makes it relatively easy to support other signing technology
(e.g. particular HSMs).

A simple example

Changed in version 0.9.0: New async-first API.

Virtually all parameters of PdfSignatureMetadata have sane defaults.
The only exception is the one specifying the signature field to contain the
signature—this parameter is always mandatory if the number of empty
signature fields in the document isn’t exactly one.

In simple cases, signing a document can therefore be as easy as this:

from pyhanko.sign import signers
from pyhanko.pdf_utils.incremental_writer import IncrementalPdfFileWriter

cms_signer = signers.SimpleSigner.load(
 'path/to/signer/key.pem', 'path/to/signer/cert.pem',
 ca_chain_files=('path/to/relevant/certs.pem',),
 key_passphrase=b'secret'
)

with open('document.pdf', 'rb') as doc:
 w = IncrementalPdfFileWriter(doc)
 out = signers.sign_pdf(
 w, signers.PdfSignatureMetadata(field_name='Signature1'),
 signer=cms_signer,
)

 # do stuff with 'out'
 # ...

The sign_pdf() function is a thin convenience
wrapper around PdfSigner’s sign_pdf()
method, with essentially the same API.
The following code is more or less equivalent.

from pyhanko.sign import signers
from pyhanko.pdf_utils.incremental_writer import IncrementalPdfFileWriter

cms_signer = signers.SimpleSigner.load(
 'path/to/signer/key.pem', 'path/to/signer/cert.pem',
 ca_chain_files=('path/to/relevant/certs.pem',),
 key_passphrase=b'secret'
)

with open('document.pdf', 'rb') as doc:
 w = IncrementalPdfFileWriter(doc)
 out = signers.PdfSigner(
 signers.PdfSignatureMetadata(field_name='Signature1'),
 signer=cms_signer,
).sign_pdf(w)

 # do stuff with 'out'
 # ...

The advantages of instantiating the PdfSigner object yourself include
reusability and more granular control over the signature’s appearance.

In the above examples, out ends up containing a byte buffer
(io.BytesIO object) with the signed output.
You can control the output stream using the output or in_place
parameters; see the documentation for
sign_pdf().

Danger

Any IncrementalPdfFileWriter
used in the creation of a signature should be discarded afterwards.
Further modifications would simply invalidate the signature anyway.

For a full description of the optional parameters, see the API reference
documentation for PdfSignatureMetadata and PdfSigner.

Warning

If there is no signature field with the name specified in the
field_name parameter
of PdfSignatureMetadata, pyHanko will (by default) create an invisible
signature field to contain the signature.
This behaviour can be turned off using the existing_fields_only parameter
to sign_pdf(), or you can supply
a custom field spec when initialising the PdfSigner.

For more details on signature fields and how to create them, take a look at
Signature fields.

Note that, from version 0.9.0 onwards, pyHanko can also be called asynchronously.
In fact, this is now the preferred mode of invocation for most lower-level functionality.
Anyway, the example from this section could have been written asynchronously as follows.

import asyncio
from pyhanko.sign import signers
from pyhanko.pdf_utils.incremental_writer import IncrementalPdfFileWriter

async def async_demo(signer, fname):
 with open(fname, 'rb') as doc:
 w = IncrementalPdfFileWriter(doc)
 out = await signers.async_sign_pdf(
 w, signers.PdfSignatureMetadata(field_name='Signature1'),
 signer=signer,
)

 return out

cms_signer = signers.SimpleSigner.load(
 'path/to/signer/key.pem', 'path/to/signer/cert.pem',
 ca_chain_files=('path/to/relevant/certs.pem',),
 key_passphrase=b'secret'
)
asyncio.run(async_demo(cms_signer, 'document.pdf'))

For a signing process with SimpleSigner that doesn’t perform
any certificate validation, pyHanko’s move towards a more async-focused API probably doesn’t buy
you all that much.
However, using an asynchronous calling conventions allow for more efficient I/O when the signing
code needs to access resources over a network.
This typically becomes relevant when

	the cryptographic operations are performed by a remote signing service, or

	revocation info for the chain of trust needs to be embedded.

While you don’t strictly need to use the new asynchronous APIs to reap all the benefits of this
move, there are quite a few scenarios where it makes a lot of sense to do so, especially if your
project is already structured around nonblocking/concurrent I/O operations.

Signature appearance generation

See also

Styles for stamping and signature appearances in the CLI documentation for the CLI equivalent, and
Signature fields for information on how to create signature fields in general.

When creating visible signatures, you can control the visual appearance to a degree, using different
stamp types. This can be done in one of several ways.

Text-based stamps

PyHanko’s standard stamp type is the text stamp. At its core, a text stamp appearance is simply
some text in a box, possibly with interpolated parameters. Text stamps can use TrueType and OpenType
fonts (or fall back to a generic monospaced font by default). Additionally, text stamps can also
have backgrounds.

Text stamp styles are (unsurprisingly) described by a TextStampStyle
object. Here’s a code sample demonstrating basic usage, with some custom text using a TrueType font,
and a bitmap background.

from pyhanko import stamp
from pyhanko.pdf_utils import text, images
from pyhanko.pdf_utils.font import opentype
from pyhanko.pdf_utils.incremental_writer import IncrementalPdfFileWriter
from pyhanko.sign import fields, signers

signer = signers.SimpleSigner.load(...)
with open('document.pdf', 'rb') as inf:
 w = IncrementalPdfFileWriter(inf)
 fields.append_signature_field(
 w, sig_field_spec=fields.SigFieldSpec(
 'Signature', box=(200, 600, 400, 660)
)
)

 meta = signers.PdfSignatureMetadata(field_name='Signature')
 pdf_signer = signers.PdfSigner(
 meta, signer=signer, stamp_style=stamp.TextStampStyle(
 # the 'signer' and 'ts' parameters will be interpolated by pyHanko, if present
 stamp_text='This is custom text!\nSigned by: %(signer)s\nTime: %(ts)s',
 text_box_style=text.TextBoxStyle(
 font=opentype.GlyphAccumulatorFactory('path/to/NotoSans-Regular.ttf')
),
 background=images.PdfImage('stamp.png')
),
)
 with open('document-signed.pdf', 'wb') as outf:
 pdf_signer.sign_pdf(w, output=outf)

Fig. 2 shows what the result might look like. Obviously, the final result will
depend on the size of the bounding box, font properties, background size etc.

Fig. 2 A text stamp in Noto Sans Regular with an image background.

The layout of a text stamp can be tweaked to some degree, see
TextStampStyle.

Note

You can define values for your own custom interpolation parameters using the
appearance_text_params argument to
sign_pdf().

QR code stamps

Besides text stamps, pyHanko also supports signature appearances with a QR code embedded in them.
Here’s a variation of the previous example that leaves out the background, but includes a QR code
in the end result.

from pyhanko import stamp
from pyhanko.pdf_utils import text
from pyhanko.pdf_utils.font import opentype
from pyhanko.pdf_utils.incremental_writer import IncrementalPdfFileWriter
from pyhanko.sign import fields, signers

signer = signers.SimpleSigner.load(...)
with open('document.pdf', 'rb') as inf:
 w = IncrementalPdfFileWriter(inf)
 fields.append_signature_field(
 w, sig_field_spec=fields.SigFieldSpec(
 'Signature', box=(200, 600, 400, 660)
)
)

 meta = signers.PdfSignatureMetadata(field_name='Signature')
 pdf_signer = signers.PdfSigner(
 meta, signer=signer, stamp_style=stamp.QRStampStyle(
 # Let's include the URL in the stamp text as well
 stamp_text='Signed by: %(signer)s\nTime: %(ts)s\nURL: %(url)s',
 text_box_style=text.TextBoxStyle(
 font=opentype.GlyphAccumulatorFactory('path/to/NotoSans-Regular.ttf')
),
),
)
 with open('document-signed.pdf', 'wb') as outf:
 # with QR stamps, the 'url' text parameter is special-cased and mandatory, even if it
 # doesn't occur in the stamp text: this is because the value of the 'url' parameter is
 # also used to render the QR code.
 pdf_signer.sign_pdf(
 w, output=outf,
 appearance_text_params={'url': 'https://example.com'}
)

Fig. 3 shows some possible output obtained with these settings.

Fig. 3 A QR stamp in Noto Sans Regular, pointing to https://example.com

Static content stamps

PyHanko is mainly a signing library, and as such, its appearance generation code is fairly
primitive. If you want to go beyond pyHanko’s default signature appearances, you have the option
to import an entire page from an external PDF file to use as the appearance, without anything else
overlaid on top. Here’s how that works.

from pyhanko import stamp
from pyhanko.pdf_utils.incremental_writer import IncrementalPdfFileWriter
from pyhanko.sign import fields, signers

signer = signers.SimpleSigner.load(...)
with open('document.pdf', 'rb') as inf:
 w = IncrementalPdfFileWriter(inf)
 fields.append_signature_field(
 w, sig_field_spec=fields.SigFieldSpec(
 'Signature', box=(200, 600, 400, 660)
)
)

 meta = signers.PdfSignatureMetadata(field_name='Signature')
 pdf_signer = signers.PdfSigner(
 meta, signer=signer,
 stamp_style=stamp.StaticStampStyle.from_pdf_file('my-fancy-appearance.pdf')
)
 with open('document-signed.pdf', 'wb') as outf:
 pdf_signer.sign_pdf(w, output=outf)

The result of this snippet with a file from pyHanko’s test suite is shown in
Fig. 4. Essentially, this way of working allows you to use whatever tools
you like to generate the signature appearance, and use the result with pyHanko’s signing tools.
The bounding box of the content is derived from the imported page’s MediaBox (i.e. the principal
page bounding box), so take that into account when designing your own appearances.

Note

The external PDF content is imported “natively”: all vector operations will remain vector
operations, embedded fonts are copied over, etc. There is no rasterisation involved.

Fig. 4 Example of a signature appearance using a stamp imported from an external PDF file.

Timestamp handling

Cryptographic timestamps (specified by RFC 3161) play a role in PDF
signatures in two different ways.

	They can be used as part of a PDF signature (embedded into the signature
CMS object) to establish a (verifiable) record of the time of signing.

	They can also be used in a stand-alone way to provide document timestamps
(PDF 2.0).

From a PDF syntax point of view, standalone document timestamps are formally
very similar to PDF signatures.
PyHanko implements these using the
timestamp_pdf() method of
PdfTimeStamper.

Timestamp tokens (TST) embedded into PDF signatures are arguably the more common
occurrence. These function as countersignatures to the signer’s signature,
proving that a signature existed at a certain point in time.
This is a necessary condition for (most) long-term verifiability schemes.

Typically, such timestamp tokens are provided over HTTP, from a trusted time
stamping authority (TSA), using the protocol specified in RFC 3161.
PyHanko provides a client for this protocol; see
HTTPTimeStamper.

A PdfSigner can specify a default TimeStamper to procure timestamp tokens
from some TSA, but sometimes pyHanko can infer a TSA endpoint from the signature
field’s seed values.

The example from the previous section doesn’t need to be modified by a lot
to include a trusted timestamp in the signature.

from pyhanko.sign import signers, timestamps
from pyhanko.pdf_utils.incremental_writer import IncrementalPdfFileWriter

cms_signer = signers.SimpleSigner.load(
 'path/to/signer/key.pem', 'path/to/signer/cert.pem',
 ca_chain_files=('path/to/relevant/certs.pem',),
 key_passphrase=b'secret'
)

tst_client = timestamps.HTTPTimeStamper('http://example.com/tsa')

with open('document.pdf', 'rb') as doc:
 w = IncrementalPdfFileWriter(doc)
 out = signers.sign_pdf(
 w, signers.PdfSignatureMetadata(field_name='Signature1'),
 signer=cms_signer, timestamper=tst_client
)

 # do stuff with 'out'
 # ...

As a general rule, pyHanko will attempt to obtain a timestamp token whenever
a TimeStamper is available, but you may sometimes see more TST requests
go over the wire than the number of signatures you’re creating.
This is normal: since the timestamps are to be embedded into the signature CMS
object of the signature, pyHanko needs a sample token to estimate the CMS
object’s size[2].
These “dummy tokens” are cached on the TimeStamper, so you
can cut down on the number of such unnecessary requests by reusing the same
TimeStamper for many signatures.

Creating PAdES signatures

Creating signatures conforming to various PAdES baseline profiles is also
fairly straightforward using the pyHanko API.

To create a PAdES B-LTA signature, you can follow the template of the example
below. This is the most advanced PAdES baseline profile. For other PAdES
baseline profiles, tweak the parameters of the PdfSignatureMetadata object
accordingly.

from pyhanko.pdf_utils.incremental_writer import IncrementalPdfFileWriter
from pyhanko.sign import signers, timestamps
from pyhanko.sign.fields import SigSeedSubFilter
from pyhanko_certvalidator import ValidationContext

Load signer key material from PKCS#12 file
This assumes that any relevant intermediate certs are also included
in the PKCS#12 file.
signer = signers.SimpleSigner.load_pkcs12(
 pfx_file='signer.pfx', passphrase=b'secret'
)

Set up a timestamping client to fetch timestamps tokens
timestamper = timestamps.HTTPTimeStamper(
 url='http://tsa.example.com/timestampService'
)

Settings for PAdES-LTA
signature_meta = signers.PdfSignatureMetadata(
 field_name='Signature', md_algorithm='sha256',
 # Mark the signature as a PAdES signature
 subfilter=SigSeedSubFilter.PADES,
 # We'll also need a validation context
 # to fetch & embed revocation info.
 validation_context=ValidationContext(allow_fetching=True),
 # Embed relevant OCSP responses / CRLs (PAdES-LT)
 embed_validation_info=True,
 # Tell pyHanko to put in an extra DocumentTimeStamp
 # to kick off the PAdES-LTA timestamp chain.
 use_pades_lta=True
)

with open('input.pdf', 'rb') as inf:
 w = IncrementalPdfFileWriter(inf)
 with open('output.pdf', 'wb') as outf:
 signers.sign_pdf(
 w, signature_meta=signature_meta, signer=signer,
 timestamper=timestamper, output=outf
)

Warning

For PAdES profiles requiring revocation information to be gathered, it is crucial
that the validation context be set up correctly. Not only do you need to ensure that
fetching revocation information is allowed (by passing allow_fetching=True),
but you should also make sure that all certificates that you intend to use can actually
be validated at usage time. If you rely on trust roots that are not in the system trust on
your machine, you may need to pass in your own trust roots using the trust_roots
or extra_trust_roots parameters to ValidationContext.

Using aiohttp for network I/O

New in version 0.9.0.

In version 0.9.0, pyHanko’s lower-level APIs were reworked from an
“async-first” perspective. For backwards compatibility reasons, the default
implementation pyHanko’s network I/O code (for fetching revocation info,
timestamps, etc.) still uses the requests library with some crude
asyncio plumbing around it.
However, to take maximal advantage of the new asyncio facilities,
you need to use a networking library that actually supports asynchronous I/O
natively. In principle, nothing stops you from plugging in an async-friendly
library of your choosing, but pyHanko(and its dependency
pyhanko-certvalidator) can already be used with aiohttp without much
additional effort—aiohttp is a widely-used
library for asynchronous HTTP.

Note

The reason why the aiohttp backend isn’t the default one is simple:
using aiohttp requires the caller to manage a connection pool, which
was impossible to properly retrofit into pyHanko without causing major
breakage in the higher-level APIs as well.

Also note that aiohttp is an optional dependency.

Here’s an example demonstrating how you could use aiohttp-based networking
in pyHanko to create a PAdES-B-LTA signature.

import aiohttp
from pyhanko.pdf_utils.incremental_writer import IncrementalPdfFileWriter
from pyhanko.sign import signers
from pyhanko.sign.fields import SigSeedSubFilter
from pyhanko.sign.timestamps.aiohttp_client import AIOHttpTimeStamper
from pyhanko_certvalidator import ValidationContext
from pyhanko_certvalidator.fetchers.aiohttp_fetchers \
 import AIOHttpFetcherBackend

Load signer key material from PKCS#12 file
(see earlier examples)
signer = signers.SimpleSigner.load_pkcs12(
 pfx_file='signer.pfx', passphrase=b'secret'
)

This demo async function takes an aiohttp session, an input
file name and an output file name.
async def sign_doc_demo(session, input_file, output_file):
 # Use the aiohttp fetcher backend provided by pyhanko-certvalidator,
 # and tell it to use our client session.
 validation_context = ValidationContext(
 fetcher_backend=AIOHttpFetcherBackend(session),
 allow_fetching=True
)

 # Similarly, we choose an RFC 3161 client implementation
 # that uses AIOHttp under the hood
 timestamper = AIOHttpTimeStamper(
 'http://tsa.example.com/timestampService',
 session=session
)

 # The signing config is otherwise the same
 settings = signers.PdfSignatureMetadata(
 field_name='AsyncSignatureExample',
 validation_context=validation_context,
 subfilter=SigSeedSubFilter.PADES,
 embed_validation_info=True
)

 with open(input_file, 'rb') as inf:
 w = IncrementalPdfFileWriter(inf)
 with open(output_file, 'wb') as outf:
 await signers.async_sign_pdf(
 w, settings, signer=signer, timestamper=timestamper,
 output=outf
)

async def demo():
 # Set up our aiohttp session
 async with aiohttp.ClientSession() as session:
 await sign_doc_demo(session, 'input.pdf', 'output.pdf')

Note

Best practices for managing aiohttp sessions are beyond the scope of
this guide. Have a look at
the documentation
for more information on how to use the aiohttp library effectively.

Extending Signer

Changed in version 0.9.0: New async-first API.

Providing detailed guidance on how to implement your own Signer subclass
is beyond the scope of this guide—the implementations
of SimpleSigner and
PKCS11Signer should help.
You might also want to take a look at the AWS KMS example
on the advanced examples page.
This subsection merely highlights some of the issues you should keep in mind.

First, if all you want to do is implement a signing device or technique that’s
not supported by pyHanko, it should be sufficient to implement
async_sign_raw().
This method computes the raw cryptographic signature of some data (typically
a document hash) with the appropriate key material.
It also takes a dry_run flag, signifying that the returned object should
merely have the correct size, but the content doesn’t matter[1].

If your requirements necessitate further modifications to the structure of the
CMS object, you’ll most likely have to override
async_sign(), which is responsible for the
construction of the CMS object itself.

The low-level PdfCMSEmbedder API

New in version 0.3.0.

Changed in version 0.7.0: Digest wrapped in
PreparedByteRangeDigest
in step 3; output returned in step 3 instead of step 4.

If even extending Signer doesn’t cover your use case (e.g. because you want
to take the construction of the signature CMS object out of pyHanko’s hands
entirely), all is not lost.
The lowest-level “managed” API offered by pyHanko is the one provided by
PdfCMSEmbedder. This class offers a coroutine-based interface
that takes care of all PDF-specific operations, but otherwise gives you full
control over what data ends up in the signature object’s /Contents entry.

Note

PdfSigner uses PdfCMSEmbedder under the hood, so you’re still mostly
using the same code paths with this API.

Danger

Some advanced features aren’t available this deep in the API (mainly seed
value checking). Additionally, PdfCMSEmbedder doesn’t really do any
input validation; you’re on your own in that regard.
See also Interrupted signing for a more middle-of-the-road solution.

Here is an example demonstrating its use, sourced more or less directly from
the test suite. For details, take a look at the API docs for PdfCMSEmbedder.

from datetime import datetime
from pyhanko.sign import signers
from pyhanko.sign.signers import cms_embedder
from pyhanko.pdf_utils.incremental_writer import IncrementalPdfFileWriter

from io import BytesIO

input_buf = BytesIO(b'<input file goes here>')
w = IncrementalPdfFileWriter(input_buf)

Phase 1: coroutine sets up the form field, and returns a reference
cms_writer = cms_embedder.PdfCMSEmbedder().write_cms(
 field_name='Signature', writer=w
)
sig_field_ref = next(cms_writer)

just for kicks, let's check
assert sig_field_ref.get_object()['/T'] == 'Signature'

Phase 2: make a placeholder signature object,
wrap it up together with the MDP config we want, and send that
on to cms_writer
timestamp = datetime.now(tz=tzlocal.get_localzone())
sig_obj = signers.SignatureObject(timestamp=timestamp, bytes_reserved=8192)

md_algorithm = 'sha256'
for demonstration purposes, let's do a certification signature instead
of a plain old approval signature here
cms_writer.send(
 cms_embedder.SigObjSetup(
 sig_placeholder=sig_obj,
 mdp_setup=cms_embedder.SigMDPSetup(
 md_algorithm=md_algorithm, certify=True,
 docmdp_perms=fields.MDPPerm.NO_CHANGES
)
)
)

Phase 3: write & hash the document (with placeholder)
prep_digest, output = cms_writer.send(
 cms_embedder.SigIOSetup(md_algorithm=md_algorithm, in_place=True)
)
The `output` variable is a handle to the stream that contains
the document to be signed, with a placeholder allocated to hold
the actual signature contents.

Phase 4: construct the CMS object, and pass it on to cms_writer

NOTE: I'm using a regular SimpleSigner here, but you can substitute
whatever CMS supplier you want.

signer: signers.SimpleSigner = FROM_CA
let's supply the CMS object as a raw bytestring
cms_bytes = signer.sign(
 data_digest=prep_digest.document_digest,
 digest_algorithm=md_algorithm, timestamp=timestamp
).dump()
sig_contents = cms_writer.send(cms_bytes)

The (signed) output document is in `output` now.
`sig_contents` holds the content of the signature container
in the PDF file, including any padding.

Interrupted signing

New in version 0.7.0.

Changed in version 0.9.0: The new async-first API requires some changes to the workflow at this (relatively low)
level of abstraction.

Changed in version 0.14.0: It is no longer mandatory to make the signer’s certificate available from the start of the workflow,
although this comes at the cost of some convenience (signature size estimation and revocation info
collection being two major ones). This makes it easier to implement remote signing scenarios where
the signer’s certificate is unknown until the remote signing service produces its response.

There are use cases where trying to run the entire signing process in one go isn’t feasible.
Think of a remote signing scenario with pyHanko running on a server, and calling an external signing
service to perform the cryptographic operations, or a case where pyHanko needs to wait for
interactive user input to proceed with signing.

In cases like this, there are several points where you can interrupt the signing process partway
through, save the state, and pick up where you left off some time later—this conserves
valuable resources in some scenarios.
We refer to pyhanko.sign.signers.pdf_signer for a full overview of what’s possible; below, we
describe the most common use case: a scenario where pyHanko prepares a document for signing,
computes the digest, sends it off to somewhere else for signing, and finishes the signing process
once the response comes in (potentially in an entirely different thread).

Basic interrupted signing example

In the example scenario, we use ExternalSigner to format the
signed attributes and the final CMS object, but the same principle applies (mutatis mutandis) to
remote signers that supply complete CMS objects.

from pyhanko.sign import signers, fields, timestamps
from pyhanko.sign.signers.pdf_signer import PdfTBSDocument
from pyhanko_certvalidator import ValidationContext
from pyhanko.pdf_utils.writer import BasePdfFileWriter

Skeleton code for an interrupted PAdES signature

async def prep_document(w: BasePdfFileWriter):
 vc = ValidationContext(...)
 pdf_signer = signers.PdfSigner(
 signers.PdfSignatureMetadata(
 field_name='SigNew', embed_validation_info=True, use_pades_lta=True,
 subfilter=fields.SigSeedSubFilter.PADES,
 validation_context=vc,
 md_algorithm='sha256'
),
 # note: this signer will not perform any cryptographic operations,
 # it's just there to bundle certificates with the generated CMS
 # object and to provide size estimates
 signer=signers.ExternalSigner(
 signing_cert=..., ...,
 # placeholder value, appropriate for a 2048-bit RSA key
 # (for example's sake)
 signature_value=bytes(256),
),
 timestamper=timestamps.HTTPTimeStamper('http://tsa.example.com')
)
 prep_digest, tbs_document, output_handle = \
 await pdf_signer.async_digest_doc_for_signing(w)
 md_algorithm = tbs_document.md_algorithm
 psi = tbs_document.post_sign_instructions

 signed_attrs = await ext_signer.signed_attrs(
 prep_digest.document_digest, 'sha256', use_pades=True
)
 return prep_digest, signed_attrs, psi, output_handle

After prep_document finishes, you can serialise the contents
of prep_digest, signed_attrs and psi somewhere.
The output stream can also be stored in a temporary file, for example.
You could now call the remote signing service, and once the response
comes back, proceed with finish_signing() after deserialising
all the intermediate outputs from the previous step.

async def finish_signing(sig_value: bytes, prep_digest, signed_attrs,
 psi, output_handle):
 # Here, assume sig_value is the signed digest of the signed_attrs
 # bytes, obtained from some remote signing service

 # use ExternalSigner to format the CMS given the signed value
 # we obtained from the remote signing service
 ext_signer = instantiate_external_signer(sig_value)
 sig_cms = await ext_signer.async_sign_prescribed_attributes(
 'sha256', signed_attrs=signed_attrs,
 timestamper=DUMMY_HTTP_TS
)

 validation_context = ValidationContext(...)
 await PdfTBSDocument.async_finish_signing(
 output_handle, prepared_digest=prep_digest,
 signature_cms=sig_cms,
 post_sign_instr=psi,
 validation_context=validation_context
)

The above example below also showcases how to apply proper post-signature processing in an
interrupted PAdES signature. This is only necessary for PAdES-LT and PAdES-LTA signatures.
In other scenarios, you can replace the async_finish_signing call with the following one-liner:

prep_digest.fill_with_cms(output_handle, sig_cms)

In particular, you don’t have to bother with
PostSignInstructions at all.

Interrupted signing when the signer’s certificate is not known a priori

Note that, starting with pyHanko 0.14.0, the signer’s certificate need no
longer be provided at the start of the signing process, if you supply some
additional parameters yourself. This is useful in situations involving integrating
with a remote signing service that only provisions a short-lived certificate
when provided with a hash of the document (typically, such signers respond with
complete CMS signature containers).

Here’s what that might look like in a toy example.

w = IncrementalPdfFileWriter(pdf_file_handle)
pdf_signer = signers.PdfSigner(
 # Specifying a digest algorithm (or signature mechanism)
 # is necessary if the signing cert is not available
 signers.PdfSignatureMetadata(
 field_name='Signature',
 md_algorithm='sha256',
),
 signer=ExternalSigner(
 # note the 'None's
 signing_cert=None, cert_registry=None,
 signature_value=256,
)
)

Since estimation is disabled without a certificate
available, bytes_reserved becomes mandatory.
prep_digest, tbs_document, output = await pdf_signer\
 .async_digest_doc_for_signing(w, bytes_reserved=8192)

Call the external service
note: the signing certificate is in the returned payload,
but we don't (necessarily) need to do anything with it.
signature_container = \
 await call_external_service(prep_digest.document_digest)

Note: in the meantime, we could've serialised and deserialised
the contents of 'output', of course
await PdfTBSDocument.async_finish_signing(output, prep_digest)

If you want, you can now proceed to tack on additional revisions
with revocation information, document timestamps and the like.

Generic data signing

New in version 0.7.0.

Changed in version 0.9.0: New async-first API.

If you need to produce CMS signatures that are not intended to be consumed as traditional PDF
signatures (for whatever reason), the Signer classes in pyHanko expose a more flexible
API that you can use.

The Signer class’s async_sign_general_data() method is
a fairly thin wrapper around async_sign() that performs
some of the bookkeeping operations on the payload being signed.
It outputs a CMS object with essentially the same set of attributes that would be expected in a
typical PDF signature, but the actual payload can be arbitrary data.

It can take either an IO-type object, or simply a bytes payload. For advanced uses (e.g.
those requiring a custom-set contentType), passing in a cms.ContentInfo
(or cms.EncapsulatedContentInfo object) also works.
This has a number of caveats; carefully review the API documentation for
async_sign_general_data() and section 5.1 of
RFC 5652 first.

The signer can operate in “detached” or “encapsulating” mode. In the former case, the payload being
signed is not encoded as part of the resulting CMS object.
When in doubt, use detached mode—it’s the default.

Here is an example showcasing a typical invocation, combined with a call to
embed_payload_with_cms() to embed the resulting payload as
a signed attachment in a PDF file.

from pyhanko.sign.signers.pdf_cms import SimpleSigner
from pyhanko.sign.signers.functions import embed_payload_with_cms
from pyhanko.pdf_utils import embed, writer

async def demo():
 data = b'Hello world!'
 # instantiate a SimpleSigner
 sgn = SimpleSigner(...)
 # Sign some data
 signature = \
 await sign.async_sign_general_data(data, 'sha256', detached=False)

 # Embed the payload into a PDF file, with the signature
 # object as a related file.
 w = writer.PdfFileWriter() # fresh writer, for demonstration's sake
 embed_payload_with_cms(
 w, file_spec_string='attachment.txt',
 file_name='attachment.txt',
 payload=embed.EmbeddedFileObject.from_file_data(
 w, data=data, mime_type='text/plain',
),
 cms_obj=signature,
 file_spec_kwargs={'description': "Signed attachment test"}
)

Warning

This way of signing attachments is not standard, and chances are that your PDF reader won’t
process the signature at all. This snippet is simply a demonstration of the general principle
behind CMS signing, and doesn’t really represent any particular PDF feature.

Footnotes

[1]
The dry_run flag is used in the estimation of the CMS object’s size.
With key material held in memory it doesn’t really matter all that much,
but if the signature is provided by a HSM, or requires additional input
on the user’s end (such as a PIN), you typically don’t want to use the “real”
signing method in dry-run mode.

[2]
The size of a timestamp token is difficult to predict ahead of time, since it
depends on many unknown factors, including the number & form of the various
certificates that might come embedded within them.

 Previous
 Next

 © Copyright 2020-2023, Matthias Valvekens.
 Revision e9f2a07f.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

 Read the Docs
 v: stable

 	Versions
	latest
	stable
	v0.22.0
	v0.21.0
	v0.20.1
	v0.20.0
	v0.19.0
	v0.18.1
	v0.18.0
	0.17.2
	0.17.1
	0.17.0
	0.16.0
	0.15.1
	0.15.0
	0.14.0
	0.13.2
	0.13.1
	0.13.0
	0.12.1
	0.12.0
	0.11.0
	0.10.0
	0.9.0
	0.8.0
	0.7.0
	0.6.1
	0.6.0
	0.5.1
	0.5.0
	0.4.0
	0.3.0
	0.2.0
	0.1.0

 	Downloads
	pdf
	html
	epub

 	On Read the Docs
	
 Project Home

	
 Builds

